

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

UlCbr

v/Y\.O.S»53-SS?>

QO^ z

CENTRAL CIRCULATION AND BOOKSTACKS

be charged a minimum fee or *

each non-returned or o ^. _ ^
Theft, mufilation. o. de ^^'^materiais owned by

causes for s»uder,t «"««P ,,""» ""'"•«,.
properry of .he S.a.e

,he University of HlinoUJL.br«v
« »"

.
P

JP^ ^^
of Illinois and are protected by Art.

UW and ^edure^ ^ 333.^,

Unlver^ JEL«=r-'^^Z s

£UUl

JUL i I ZUU1

When renewing by phone, write new due d£

below previous due date.

Digitized by the Internet Archive

in 2013

http://archive.org/details/memoryprocessorc557lawr

^-^br
Report No> uiUCDCS-R-73-557

y\c.ssi -$&
^^ 0*

MEMORY- PROCESSOR CONMICTION NETWORKS

by

?&

kc*

ov^V o^

Duncan Hamish Lawrie

February 1973

Report No. UIUCDCS-R-73-557

MEMORY-PROCESSOR CONNECTION NETWORKS

hy

Duncan Hamish Lawrie

February 1973

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

This work was supported in part by the National Science Foundation
under Crant No. US NSF CJ 2

r

jkk6 and was submitted in partial ful-

fillment of the requirements for the degree of Doctor of Philosophy
in Computer Science, February 1973

•

MEMORY-PROCESSOR CONNECTION NETWORKS

Duncan Hamish Lawrie, Ph.D.

Department of Computer Science

University of Illinois at Urbana- Champaign, 1973

In order to utilize the potential speed of a SIMD type parallel

processor it is necessary to arrange data in the memory system so that sub-

sets of this data can be fetched in parallel without memory conflicts. Addi-

tionally, we must provide sufficient memory-processor paths to allow the data

to be correctly aligned with the processor array. In this paper we present

several storage mapping algorithms together with a memory-processor inter-

connection network. We demonstrate the cost and effectiveness of these and

compare them with other networks which have been proposed for this application,

Ill

ACKNOWLEDGMENT

The author would like to thank Professor David J. Kuck for his

patience and inspiration, the Department of Computer Science for its support,

and the ILLIAC IV Project for a long and usually fruitful relationship.

The diligent efforts of Vivian Alsip and Barbara Armstrong in

typing this document and the workmanship of the printing and drafting de-

partments are greatly appreciated.

IV

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. ft NETWORKS, THEORETICAL DEVELOPMENT 5

2.1 Fundamentals . 5

2.2 The t Relation and its Properties 9
2.3 Construction of a Network from ft l8
2.k The Equivalence of H(ft) and ft 2^4

2.5 Minimal ft Networks 29
2.6 Summary 31

3. EFFECTIVENESS OF ft NETWORKS 33

3-1 Representation of Array Storage Schemes and N-Vectors. . . 35
3-2 Important N-Vectors 37
3.3 Memory Conflicts, Memory and Vector Equations, and the

Network Connection Equation 38
3.4 Effectiveness of ft Networks ^1

3.5 Additional Considerations, Cost 69

3-6 Summary 7°

k. CONSTRUCTION OF SEVERAL ft NETWORKS 72

k.l A Bit Serial ft Network 72

k.2 A Better Network 7&

k.3 Processor-Processor Connections °7

k.k Summary 92

5 • CONSTRUCTION AND PROPERTIES OF OTHER NETWORKS 95

5.1 Uniform Shift Networks 95

5-2 The Barrel Shifter 100

5-3 The Batcher Network 10°

5-h The Benes Network 10l+

5.5 The Crossbar Switch 1Q6

5-6 Network Comparison
' 1°"

6. CONCLUSION 112

LIST OF REFERENCES lll+

VITA 115

1. INTRODUCTION

It has been suggested that the use of a large number of processors

operating on a single program can be used to produce improvements in speed

and possibly cost effectiveness. Recent experiments with this concept have

indicated a number of problems which are as yet unsolved. The purpose of

this paper is to investigate a possible solution to one of these problems,

the problem of how to provide the processors with data at a rate which matches

the processors' speed.

It is clear that given N processors, we need on the order of N

memories just to provide the raw bandwidth requirements. Given an order of N

memories, we must still solve two problems. The first problem is to assign

the data to memory in such a way that memory conflicts are minimized; that

is, the data must be arranged so that during the fetch of any required set of

N data elements, no two of these will be stored in the same memory. This will

be called the memory assignment problem. Once the data has been fetched, each

datum must be sent to the correct processor. This is the second problem which

we will call the data alignment problem.

Independent solutions to the above problems have been suggested in

the literature and elsewhere, but to the best of our knowledge no practical

and compatible solution to both problems has ever been published. For example,

(±1,±/n), and barrel shifters have been proposed (and built) to solve the

data alignment problem [1] and memory assignment algorithms have been pro-

posed to solve the memory assignment problem [2, 3] • Unfortunately, the

better solutions of the latter generally require alignments which are more

complex than simple uniform shifts (see Chapter 5)- More complex networks

have been proposed [.'i, 5] , but their high cost or excessive switching time

make them impractical for our purposes.

In this paper we present several effective memory assignment

algorithms and propose a new network which can meet the resulting alignment

requirements. We begin by proving some useful results about these networks

and then showing their effectiveness in handling certain important align-

ments. We follow this with a comparison with other solutions and show that

our solution is more effective than these previous solutions.

Before continuing we will define some terms and assumptions which

will be implicit in the following work. By a network we mean a device which

has n input and n output ports. Each datum entering the network remains

integral, but the ordering of the data may be altered by the network. We

assume that a different ordering (or permutation) of the inputs is required

for each successive set of inputs, i.e., a different switching of the network

is required for each set of n or less inputs. Thus, the time required to

switch the network is a significant factor.

This network may be thought of as lying between the N processors

and M memories as in Figure 1, as a separate function box available to the

processors as in Figure 2, or as an integral part of the processors.

In general, we assume that at each unit of time, N or fewer of the

processors require one datum each. These data are fetched and aligned with

the correct processors. We shall also assume that these data are taken from

a uniform part of an N x N matrix, e.g., row, column, diagonal, etc. We will

define this more clearly in Chapter 3.

• • •

ALIGNMENT
NETWORK

• • •

PROCESSORS

MEMORIES

iCure] . l'rooer.jor-Network-Memory System

ALIGNMENT
NETWORK

A Mi A• • W PROCESSORS

MEMORIES

Figure 2. Network-Processor-Memory System

2. fi NETWORKS, THEORETICAL DEVELOPMENT

The purpose of a switching network, variously known as a

permutation, indexing, connection, or sorting network, is to produce

connections between input nodes and output nodes. The network may he

changed or switched by means of control signals in such a way as to

alter these connections to meet various requirements. In this chapter

we will investigate in some detail a special class of network, hence-

forth ft networks, which we feel are especially useful for connections

between a vector of memories and a vector of processors.

ft networks are based on a mathematical notion of a "ft base"

representation of integers. We begin by investigating some special

properties of an ft base system. We then proceed to show how to build

a network from an ft base and then using our results we show how to

determine whether the ft network can produce certain special connections.

In later chapters we will derive a number of connections which

are frequently required during operation of a parallel computer. Then,

using the results derived in this chapter, we will show that the ft

network performs well in certain types of parallel computers.

2.1 Fundamentals

We will begin with some fundamental definitions from number

theory. Any number x can be expressed as the sum of a multiple of a

modulus m and a remainder r

:

x = mb + r r<m

Given two numbers

x = nib + r
x x

y = nib + rJ
y y

we say x = y if and only if r = r . Further, we say
* ym

m
x = y

if and only if b = b . We say x divides yx y

x|y

if there exists an integer a such that ax = y. Further, whether or not

x divides y, we define

XTy

to be the integer part of the quotient x/y.

The greatest common divisor of x and y,

gcd(x,y)

is the largest integer a such that

a|x and a|y.

If gcd(x,y) = 1, we say x and y are relatively prime, x is prime to y, or

y is prime to x.

The greatest prime factor, written

gpf(x,y),

is the greatest integer factor (divisor) of x which is prime to y. Thus,

gcd(gpf (x,y) ,y) = 1.

We now present a number of results. Most proofs can be

found in Vinogradov [6] or Shanks [7].

PI

P2

P3

PU

P5

P6

PT

P8

P9

P10

x+a = y+a <--* x = y
m m

x = y -> ax e ay
m m

gcd(a,m)=l A ax = ay -> x e y
m m

a|m A ax e ay + x e y
m m/a

a|n A x E y ^ x = y
m m/a

m
x ^yAxEy + x^y

am m

x = y A (0 <_ x,y < m/a) * x = y
m/a m

x = y -* ax E ay
m am

m/a ma|mAx e y->xEy

a-xEa-y-e+xEy
m m

am m
x E y -+ x^a E y^-aPll

m am
P12 x J y<--+ ax f ay

We will tend to use these results in their rontraposit ive form.

That is
,

P2 ax i ay -+ x £ y
m m

Let R be an ordered set of factors of
n

n, R
n

= {p
1

, P
2
,..., P

k

such that p. x p_x...X p. = n. Define ft (R) to be the set
1 2 K n

ft(R) = lw, |w. = 1, cj. = ix).^.. x p..-, < i < k-1}, so co. = Ji p
n L

' k l l+l l+l — i . .
. ,

j=l+l

JNote that oj = n.
o

In general, any number x < co can be expressed as

x = l x. X co . ,

, , i l
i=l

8

where x. < p . . We say that x x x ... x^ is the "base ft" representation

of x.

Thus, if ft = {8,U,2,l}, then we get the familiar base 2

number system while if ft = {12,6,3,1}, then we get a somewhat unusual

(but useful) number system where

°10 = 000
ft

X
10 = 001

ft

2
10 = 002

ft

3
10 = 010

ft

u
io = °1^

5
10 = 012

ft

6
10 = 100

ft

7
10 -

101ft

8
10

= l02
ft

9
10

= ll°ft

10
io

=
111ft

U
10

= 1120,

Notice that

0) .

J

x 7 "* X
i

= y
i 1 1 i 1 J

and

x = y -> x. = y. j + 1 ^ i <_ k.

J

For example, if R
n

= (2,5,3), then ft(lT) = {30,15,3,1}, and

5
10 = 012

ft

U
10 = 011

a

1T
10 = 102

ft

So

5 ~= h (012, s 011^)

5 5 17 (012^ = 102)

5 ? IT (012^ 4 102).

15
-fi

15
-^

In most of the following work, when R is understood or not

important we will refer simply to n rather than R(R). Further, the

unsubscripted lower case letters x, y, z, s, d are usually variables

whose range is the set of non-negative integers. The notation

{f(x) Condition on x} denotes the set of all numbers in the range of

the function f where the domain of f is all values of x which satisfy

the specified condition. Thus, {2x:x >_ 0} is the set of all even,

non-negative integers. Subscripted letters usually refer to specific

values of the variable.

2.2 The t Relation and its Properties

An n-set represents a mapping or connection between n input

nodes and n output nodes

.

Definition 1 : n-set

An n-set P is a set of pairs of integers, P = {(s,d)}. If

(s,d)e P, then we say P connects input s' mod n to output d mod n.

Thus, if P = {(2,1), (7,0), (2,0)} and n=U-, then P

represents the connection illustrated in Figure J.

10

Input Output
Nodes Nodes

Figure 3 • A Connection

Definition 2 : m + P

Given an n-set P, we say the integer m passes P, written

m t P, if an only if for all (s.,d.), (s ,d.)e P

m
s . $ s . and s. ^ s J

-> d. ^ d . D
1

n J
-

X
m J x J

Definition 3 : a + P

Given an n-set P and a = {w =n, w-,,..., w, =1} , if

for all id e H, to t P, then we say 8 +.P. That is

n + P«-> (Voe fl, V(s, ,d),azxd y(s ,d.)e P, s. f s . a s. e b a - d L]11 J J x
n J x

03
J i 3

The negative form of a A P is useful and perhaps its statement will make

the relation i clearer.

a f P ++ 3 to e a and 3(s ,d),(s.,d.)e P, such that s. i s

n °

oo

and s. e s. and d. e d . n
1

u)
J x J

We will now demonstrate several functions f(P) on n-sets and

show that

11

a + p •* a + f(p)

.

Theorem 1 : Let P + c = { (s+c ,d) : (s ,d)e P , c an integer constant).

Then q + p -». Q + p+ c

We shall prove the contrapositive form of this theorem:

ntP + c->^tP. We have

fi fP + c^ 3oj e fi, 3(s.+c, d) , and 3(s .+c, d.) , such that
J J

(0

s. + c^s + e . s.+ces,+c, and d . S d . . But
i j i J i J

n co

PI
S. +C^S.+C"> S. ^S,
1

n J X
n J

and*

PI

s. + c = s , + c - S . = S
,

1 J 1 J

so J] f P . D

Theorem 2 : Let P x a = { (xxa,d) : (

s

,d)e P, a an integer constant}

If for all co e JJ, gcd(a,co) = 1, then ft + P -> ft + P x a.

* The notation PI above the implication symbol means that the implication
follows from property PI found at the beginning of this chapter.

12

Proof :

o,+ PXa + 3 W £0^ 3 (s xa,d .), and 3 (s-Xa,d.), such that

CO

s.xa^s^xa, s.xa^s.xa-j and d .
Ed.. But

i J ^
,, J 1 J

n w

P2
s.xa^s.x. a-* s. ^ s , and if gcd(a,co) = 1, then
1

n J X
n J

P3

s.x aEs.x a * s. e s . . Thus , 0, * P

.

n
a)

J X
co

J

Corollary 2.1 : If gcd(a,n) = 1, then ft+P + ft+Px a .

Proof :

We need only show that gcd(a,n) = 1 -* y w e ft, gcd(a,co) = 1

and then apply Theorem 2. Assume there exists an co e ft , such that

gcd(a,to) = b .

Then

b
|

a and b
|
co

,

but recall that u|n (from the definition of ft) , i.e., there exists an

integer c such that

ioc = n.

Since b
|

co then b
|

toe or b|n. Thus, gcd(a,n) ^_b, and so

gcd(a,n) = 1 -* V" £ ^> gcd(a,co) =1.

13

Theorem 3 : Let c - P = { (c-s ,d) : (s ,d)e P} . Then ft + P * ft + c - P

Proof :

P10
As before, c-s. = c - s. -» s. = s.

i J i J
CO co

so Hfc-P^-flfP qi

Let P = {(ax + b, ex + d):0 <_x < E,} , where a,b,c and d are

integer constants . We will now prove a theorem which states that if

a,c and £ satisfy certain conditions with respect to ft, then ft + P.

Theorem h :

Let Pc {(ax + b, cx+ d)|0 < x < £} be an n-set and

define

h = gpf(c,n)

Ym
= gcd(c,m)

nm
= gcd(c,aYm)

6
m

= gpf (aVV m/Ym
)

Cm
= gpf(a,m)

R
n

=
{ Pi>P 2

'"-' p k
}

ft(R) = {m =n,m ,m , . . . , nL=l}

\i = the largest m e ft such that gcd(a,m) = m.

If the following three conditions hold,

A: c <_ n

B: ah/c > 1 or £ < hn/c

Ik

C : For all m e 9,, u <_ m < n

CI: a/(6 xi) < 1, ormm —

C2: £ < m z, /a,— m

then n i P.

The proof will consist of two parts and several subparts. First, we

need a preliminary result. Let (ax + b, ex + d) , (ay + b, cy + d) be

any two elements of P. Then we will show

ax + b iay+b + ex + d ^ cy + d
n n

We have

PI

ex + d = cy + d -> ex = cy

n n

P3
-> — E -£- where h = gpf (c ,n

)

n

Now since c < n and h = gpf(c,n), then ^-| n . So

?k
* x E y

hn
c

Multiplying by a

P8
+ ax = ay,

ahn

ah
P5

Suppose ~ >_ 1. Then -> ax E ay. If — < 1, then since x,y < E < —- c

(condition B), then ax, ay < =E. Thus,

Finally,

15

PT
•+ ax = ay

.

n

PI
> ax + b e ay + b .

n

Thus,

ax+b2"ay+b->-cx + d^ay + d.

n n

Now we will prove that if for all m e ft where u ^_ m < n,

condition CI or C2 holds, then for all m e ft

m
ax+b ^ ay + b Aax + b Eay+b->-cx + d^cy + d

n m

and thus !1 t P. Specifically, we shall prove the equivalent theorem

m
ax + b ^ay+b Acx + dEay + d->-ax + b ^ ay + b

n m

Using our previous result, we have from condition B

ax+b ^ay+b+cx+d^cy+d.
n n

Then, by P6 we get

Now

m P6

cx + d^cy + dAcx + dEay + d * cx + d^cy + d.

n m

PI
+ ex t cy

m

P8
-* -3- t -*- where y = gcd(c,m)

Y Y mmm m

^™m

nm
= gcd(c,aYm).

Let

16

v = c/ii , u = ay /n.mm m m m

Then since 6 = gpf(u ,m/y
]m OJ^ m m

PU,3
u ex u cy
m -. m+ ^
Y Ym mu m

m
6 ymm

P2
u ex u cy
m / m

But since

v Y v ymm u m mm
m

6 ym'm

u ay nm m m a

v y Y n c cmm mm

we have

ax f. ay

u m
m

5 Ymm

Now suppose CI holds, i.e., u /& y < 1. Then
m m'm —

P5
-* ax f. ay

m

and

PI
ax + "b ^ ay + b

m

Suppose now that CI does not hold, i.e., u /S y > 1, but C2 does hold, i.e
m mm

4 < ^m

17

Let 3 = u /& Y • Then we have
m mm

ax ^ ay 3 > 1

P2

m 3m m

where

where

?m
= gpf(a,m).

mc
Since x < £ < , then ax, ay < mr— a m

PT
and - ax

,
ay.-

mm m

P3
-> ax ^ ay

m

^m
= SPf(a,m) * gcdU

m
,m) = 1

Finally,

PI
* ax + b ^ ay + b

.

m

New, suppose p is the largest m e fi such that gcd(a,m) = m, and that

CI or C2 hold for all m, n > m >_ p. We will now show that for all

m < p, ex + b p cy + b . Let me fi be <_ p such that m = p/p as per the

definition of fi. Since gcd(a,p) = p,

ax + b = ay + b

P

must be true always. Since CI or C2 hold for p, we have

P

ax+b say+b->cx + d^cy + d.

P

18

By P9
;

y
u/p

ex + d % cy + d -* ex + d t cy + d.

Since the original premise is true, then the final conclusion must be

true, and since m = U/p,

m
ex + d i cy + d.

Now, in the special case where u = n, then neither CI nor C2

need hold. But since gcd(a,n) = n, then

ax + b = ay + b

n

must be true always . Thus , ft \ P trivially

.

Theorems 1, 2, and 3 tell us that if Q tP, then ft + P+c

,

ft t c-P and if gcd(a,n) = 1, then ft i Pxa. However, they tell us nothing

about whether or not ft i P. Theorem k tells us that if P satisfies

certain conditions with respect to ft, then ft + P. We will use all of

these theorems later. First, we will present an algorithm for

constructing a switching network from a given ft. We will then conclude

this chapter by showing that if ft t P, then the network constructed from

ft can produce without conflict the input-output connections specified by P,

2.3 Construction of a Network from ft

Algorithm 1 : Construction of a network from ft.

Let ft(R) be as defined earlier, i.e., ft(R) is the set
n ' ' n

ft(R
n

) = {oj.: w =1, u. = n p.,0<i<k-l}.
1 X

j=i+l J

The network will consist of k stages numbered 1,2,..., k from left to

19

right. The i stage will consist of n/p . crossbar switches*, each

switch being p. x P.« Refer to Figure k and number the inputs (left)

and outputs (right) of each stage from to n - 1.

Now, for 1 < i ^_ k - 1, connect output j of stage i to input

I of stage i + 1 where

I = (j t u
i_1

) x w
i _1

+ (j mod p .) x w -

+ (j mod Usj) * P
i

(Recall x v y is the integer part of the quotient x/y)

.

Finally, the actual network inputs must be connected to the

stage 1 inputs (actually this will be shown in the figures as a

renumbering of the stage 1 inputs). Let

R
n

= {pk' pk-l'"" p 2' p
l

}

where

and form

and

R
n

= {p lt p ,..., P
k_r P kK

fl(R) = {(ii.- 0) =1, u).=co. p , •: i < k-1]
n i k l l+l l+l — —

fi(R
n) = («

1
:«

|p.1 . Vw
i+1 pk-i+l' ° ^ i ^ k-^

Define a function t(x) on •' x < n - 1 such that if x = (x x . .. r)",

then t(x) = (x ... x x)
fi

. Now connect (or renumber) stage 1 input x

to x(x).

Figures 5, 6, and 7 are examples of networks constructed in this way.

* A crossbar switch is capable of producing any one-to-one or one-to-
many connection of inputs to outputs. An attempt to produce a many-

to-one connection results in a "conflict."

20

STAGE i

INPUTS
STAGE i STAGE 1*1

OUTPUTS INPUTS

-
1 -

/>-!—

1

STAGE i+1

OUTPUTS

—
— 1

p f
-I pul -l 1 I /0, +i-l

P\ P\+i

pi+1 pi.i+1

*P\ "I 1 I
2/), -1 2/DI+l-l I 2/>, +1-l

n-^+1

n-1

n+/>,+l

n-1 n-1

A*iV>i*

#n>
'/».«

n-/> i*l

n-1

STAGE STAGE 1*1

Figure k. Stages of a Network Constructed from fi

21

I

N
P
U
T

—

1

2

3

4

5

6

7

8

9

10

— 11

u
T
P
U
T

Figure 5. Network Constructed from fi = (12, 6, 2, 1}

22

Figure 6. Network Constructed from Q, = {l8, 9, 3, 1}

23

I

N
P
U
T

U
T
P
U
T

ire 7- Network Constructed from = (l8, 6, 3, 1}

2h

Algorithm 2 : Network Control Algorithm
:

Each (s,d) pair in P establishes a path through the network as

follows. Assume s and d are expressed in base fi notation, i.e.,

s = s s ... s , d = id ... d. Then, starting at input s, for

i = 1, 2,..., k, each (s,d) pair "enters" a p. x p. crossbar switch and

is connected to output d. of that crossbar. Alternately, starting at

output d for i - k, k-1,..., 1, each (s,d) pair "enters" an output of a

p. x P. crossbar and is connected to input s
n . , ., of that crossbar switch.11 - k-i+1

Figure 8 shows the necessary switching of the fi = (l8, 6, 3, 1}

network for E = {(0,7), (0,9), (7,l6), (l6,13)> where 7 = 101^,

9 = HOjj, 13 = 201„, and 16 = 211 . Figure 9 shows the switching for

P = {(12,15), (15, l6)>, where 15 = 210 , and l6 = 211„ . Note the

conflict at the output of stage 2: H(fl)f P and 9, f" P.

2.k The Equivalence of H(°Q and fl

It remains for us to show that this network is in some way

equivalent to fi. That is, we would like to show that if 0, t P, then

the network constructed from 0, "passes" P, and conversely.

Each output of each stage of the 0, network is only accessible

to elements of P having certain characteristics. This follows from the

construction algorithm and the control algorithm. Let

(xx... x a ... a) represent the set of all integers z such that

Z
of,

(£Vl V2 ••' \ }
fi'

J

and (a a ... a. xx... x) represent the set of all integers z, such that

03 .

z -= (a^... a. 00... 0)
Q

.

25

I

N
P
U
T

u
T
P
U
T

Figure 8. fi = (l8, 6, 3, D Switching for P = {(0,7), (0,9), (7,l6),

(16,1-))}

26

N
P
U
T

u
T
P
u
T

Figure 9- Switching with Conflict for P - {(12,15), (15, l6)}

27

Finally, (xx... x s s ... s , id ... d. xx. . . x) represents the

set of all (s,d) such that

S ' (S
J
+1

S
j +2

••• S
k

}
fi

J

and

w

.

d = (dld2
... d. 00... 0)

Q
.

Now each output of each stage of the network can "be labeled with the

representation of the set of (s,d) pairs which are accessible to that

output. This is shown in Figure lOfor a specific network.

Theorem 5 :

Let H(Q) -t- P denote the fact that the network H(fi) constructed

from 9, passes or connects P. Then Q + P -*--* H(fi) + P

Proof
;

Assume H(p») t P. Then there must be a conflict at the output

of one of the crossbar switches. That is, two pairs (s ,d),

(s ,d)e P, s i Sp, must be trying to use the same output. Without
n

loss of generality, assume this output is labeled

(xx... x a a ... a
k

, b.^ . . . b xx. . . x) .

Then (s ,d) and (s ,d) must both be elements of the set represented

by this output label. This implies

s
1

= s
2
and ^ = d

g
.

28

ooo

XXX, 001
I— 1

2
XXX, 010

i
XXX .011

- 4
XXX, 020

XXX, 121— 11

Figure 10. Network for ft = {12, 6, 2, 1} with Stage Outputs Labelled

with (s, d) Classes

29

But this implies Q, f P. So we have

H(n) t"p -* fi
~ p

or

ti + P + H(R) + P.

By a similar argument it is easy to show that if ft t P,

then H(Q) t P> and thus we have

fl t P «--* H(fi) + P.

Thus far in this chapter we have defined and explored a

relation + between a special kind of set ft(R) and an arbitrary set

of pairs P which represents a set of connections between two sets of

nodes. We have shown how to construct a switching network H(ft(R))
n

from an ft(R), and we have shown that if 0, i P, then E(Q) + P and

conversely. Thus, given a network H(ft) and an n-set P we have

some useful tools for determining whether or not H(fi) can produce the

connections specified by P.

2 . 5 Minimal fl Networks

Before leaving this chapter we will present three more results

which will be needed in later chapters.

Let

R
n

= {p liP p ±1 P i+1
,..., P

k
>

and R
n

= W'V-' p
i
X p

i +l'--" p
k

}

Thus, R has k elements while R' has k - 1 elements,
n n

Theorem 6: fi(R) t P * fi(R') + P
n n

30

Proof :

Assume fi
? T P. Then 3 co e fi

f and 3(s ,d), and 3(s ,d)e P

w
such that s $ s and s P s and d = d . But then fit P, so we have

n w

fi(R) + P -» n(R') t P D
n n

Theorem 7: The network constructed from fi(R) has the same
n

number or fewer gates than the network constructed fromfi(R').
n

Proof-

2
A p x P crossbar switch has order of P gates . So the

number of gates in H(fl) is just

k
2

k
;(fi) = S (p.) n/p . = n Z p . ,

i=l i=l

while the number of gates in H(fi') is

g(fl') = p n + p n +...+ p. n + p.p. n +...+ p n
n.

1 2 l-l ii+l k

Since for p
. , p . . > 1,
l l+l

p p > p + p
i
M i+l - M

i
p i+l

it follows that

g(0) i g(n').

Notice the special case of Theorem 7 where p. = p. = 2. Then

s(n) = g(n f

)

since p. + p.
+i

- p . p . +r

Theorem 8 : Minimal Network

Let p
1
,p

2
,..., p^ be a prime factorization of n; that is,

P
1
P
2 P 3*'* p

k
~ n

'
and p

i Prime numbers. Then the network constructed

31

from

fl = £u
i
:«

1
= pi+1

U .

+1 , < i < k - 1, u = n}

is minimal for n in terms of gates

.

Proof :

This follows easily from Theorem 7. If

Qi = {^.-u). = p.
+i

u>

i+1
, o < i < k - 1, a, = n},

and for some i = I
, p^ +l

is not prime, i.e., p
£+i

= ab , then the

fl generated from p^.pg,..., P^ , a,b ,p£+1> . . . , p
k
yields a network with

equal or fewer gates than fl'. Continued application of this until

each p
i

is prime, therefore, results in a minimal network.

2.6 Summary

In this chapter we have developed some basic results relating

the concept of an Q set to a class of switching networks. In

particular, we showed how to construct a network from 0, and we proved

sufficient conditions on P relative to fi such that 11 t P. In review

Theorem 1: ft+P+fttP+c

Corollary 2.1: gcd(a,n) =1, fi + P-»-n + Pxa

Theorem 3

Theorem 5

Theorem 6

Theorem 7

Theorem 8

ft+P + ft+c-P

fl + P •«"» H(fl) + P

n + p -* n 1

+ p

g (n) < g(fi')

If all p . e R are prime numbers

,

in
then H(fl(R)) is a (gate) minimal network

n

32

In the following chapters we shall examine n-sets which

are needed in computer programs, and we will examine in more detail

the construction of some networks. In particular, we will compare

ft network with other classes of networks in terms of capability and cost

33

3- EFFECTIVENESS OF fi NETWORKS

One of central problems in utilizing parallel computers is in

alignment of data in the memory system. In this paper we are restricting

ourselves to the primary memory problem. Here the problem is two-fold:

1. If x and y are two data elements which are required at the

same time, then x and y should be stored in separate memory

modules in order to avoid a "memory conflict."

2. If x is required by processor p, then x should be stored in a

memory module which is "readily accessible" to p via the

processor-memory connection network.

For example, refer to Figure 11, which shows an N x N array stored "straight"

in N memories, i.e., element a. . is stored in memory j . An attempt to fetch

a column of this array would result in memory conflicts since the elements of

any given column are stored in one memory. In addition, data is only acces-

sible to processor p, < p < n-1 if the data is in memories p or p ±1 since

each processor is only connected to the three closest memories.

In order to solve the first problem, a number of special storage

schemes have been proposed (Budnik [2], Kraska [3], Muraoka [8]). In general,

these schemes place data in the memories in such a way that the most desirable

N-vectors can be fetched without memory conflict.

The purpose of this paper is to solve both of these problems simul-

taneously. We begin with the following assumptions. We assume that there are

N processors and M > N memories. The processors and memories are connected

together by an n x n network. The data is an N X N array where the (i,j)-th

element is logically in the i-th row, j-th column of the matrix space.

^

PROCESSORS

MEMORIES

N-l

Figure 11. An Example of an N X N Array Stored Straight in a Parallel

Memory-Processor System

35

3 .1 Representation of Array Storage Schemes and ^-Vectors

Definition k : Memory Equation

We define the function ju(i, j) to yield the memory number where data

with coordinates i, j is stored. D

For example, if an array is stored "straight", then u(l,j) = j,

whereas if it is stored with skew = 1, then ju(i, j) = i + j (mod M) . In general,

we will consider only linear equations u(i, j) = ax + bj + c(mod M), where a is

called the skew and b is the skip.

Memory equations for some of the more popular storage schemes are

given below:

straight

:

j

1-skew: i + j

VN-skew: 7n i + j

1-skew, 2-skip: i + 2j

2- skew, 1-skip: 2i + j

TN+1-skew: (i/N+l)i + j

Definition 5 : Vector Equation

The N processors operate on N-vectors of data where the x-th element

of the N-vector goes to the x-th processor. We define v(x) to be a function

which yields the i, j coordinates of the x-th element of the N-vector. The

vector equation for some of the common N-vectors are shown below:

X

All arithmetic is mod M.

1 arithmetic is mod N. N is assumed to be a perfect square where necessary.

36

1 . row

:

v(x) = <V J
'o

+ x)

column: v(x) = (i + x, j)

forward diagonal: v(x) = (i
Q

+ x, j + x
Q)

reverse diagonal: v(x) = (i + x, j - x)

Tijx 7k partition: v(x)

N broadcast: v(x) -

-/n row broadcast: v(x) =

VN column broadcast: v(x) =

(i + x -j- -/n, j + x mod -/n)v o o

<w
(i
o,J o

+(x * Vn) X Vw)

(i
Q

+(x -f Vn) X t/S, jQ
) D

We should make it clear at this point just what the vector equation

means . Notice that i , 3 in the above equations determine the first element

of the N-vector. For example, if i =1 and j = 2, then the row equation

specifies the row beginning with element (1,2). Thus, each vector equation

above actually represents a class of vector equations and a particular equa-

tion is determined by a choice of i and j . An N-vector is really repre-

sented by a function v(x, i , j) for all x. For the sake of brevity, we will

delete the subscript o on i and j in the following pages.

Combining a vector equation representing a given N-vector with the

memory equation which determines the storage map for the data, we get

m(v(x)) : < x < N-l
,

which is the memory in which the x-th element of the N-vector is stored. The

set

{ju(v(x)) : < x < N}

thus represents the set of memories which contain the given N-vector.

37

Later we will define a "network connection equation" which deter-

mines the memory-processor connection which is required for N processors to

access a given N-vector in a particular order. This network connection equa-

tion will depend primarily on the memory and vector equations. We will then

evaluate various connection networks to determine whether or not they can

produce the necessary or common memory-processor connections. Obviously then,

we must first know which N-vectors are necessary or common.

3.2 Important N-Vectors

Let us assume for a moment that we intend to build a parallel

processor and that we know exactly which problems will be solved on this

machine. We could then analyze these problems to determine which N-vectors

are important. Using these results, we could then determine the effectiveness

of any given connection network in producing the connections determined by

these N-vectors.

Unfortunately, there are several problems here. First, we do not

have a specific problem set in mind. Second, the determination of important

N-vectors from a given problem set is not trivial. In fact, there generally

exists more than one algorithm for solving any given problem and each algorithm

may require different types of N-vectors. For example, one algorithm for

solving the fast Fourier transform requires very strange memory-processor

connections (Pease [9l) but a trivial change in this algorithm requires only

simple shifts (Stevens [10]).

So where does this leave us? It is our purpose only to present a

new connection network and show it is a plausible solution to the memory-

processor connection problem. Thus, we will only consider those vector equa-

tions and memory equations listed above. We must leave it to the reader to

38

apply the results of the previous chapter in evaluating the effectiveness

of fl networks on other vector-memory equations.

The vector equations listed above represent some of the N-vectors

which are most frequently encountered in programming the ILLIAC IV computer.

Of these, the first two, rows and columns, are so important that we will

disregard any system which cannot handle them. Diagonals are also important

in many applications. /n partitions represent any submatrix of size equal

or less than -/n X VN. Of course, sometimes rectangular partitions are

referenced where one of the dimensions is greater than VN , but we will not

consider them here. N broadcast is simply one element broadcast to all the

processors, -/n broadcast is every -/if-th element of a row or column sent to

-/n consecutive processors. This pattern is frequently encountered when,

for reasons of storage efficiency, a large matrix is partitioned into

-/n x t/n blocks and operations are performed in parallel on these blocks.

3-3 Memory Conflicts, Memory and Vector Equations, and the Network Connection

Equation

So far we have a memory equation and a vector equation. Thus, the

memory where the x-th element of an N-vector is stored is simply jh(v(x)).

Definition 6: Memory Conflict

We say the N-vector v(x) can be fetched without conflict if and

only if x/y (0 < x, y < n) and ju(v(x)) = ju(v(y)) -»v(x) = v(y) . That is,

M

if two elements of the N-vector v(x) and v(y) occur in the same memory

element, then there will be a memory conflict unless v(x) and v(y) are the

same

.

D

Assume ju(v(x)) = ax + b, < x < £. A sufficient condition that

v(x) can be fetched without conflict is the following.

39

Theorem 9: If iu("v(x)) = ax + b, < x < £, and if

£ < M a/a

where a = gpf(a,M),

then the £ -vector v(x), < x < I, can be fetched without conflict,

Proof :

We need only to show that for all < x, y < £,

Xjty->ax + b^ay+b .

M

/ ¥a
We have x f y and x,y < £ < — <M

M

Pk
a / a

_» - x ^ r. y

a

P7
-» - x if

- y since x,y <
a M a a

M_a

P3

-> ax ^ ay since a = gpf(a,M)
M then gcd(o,M) = 1

PI

-> ax + b ^ ay + b

M

Next we need to specify the connection between network ports and

memories.

Definition 7 : Memory Connection Equation

We define l(m) to be the network port connected to memory m.

In most cases l(m) = m.

>+0

Thus, the network port at which the x-th element of an N-vector will

appear is simply

Ku(v(x))).

Now we have said that the x-th element of the N-vector must go to processor

x. In order to determine the output port to which this element must be sent

we must specify how the processors are connected to the network ports.

Definition 8 : Processor Connection Equation

We define $ (x) to be the port(s) attached to processor x.

In most cases <$> (x) = x. However, in case n = M = 2N, <f> (x) is multivalued

and may have one of the following two forms:

<f> (x) - 2x and 2x + 1

or $ (x) = x and x + N.

We now have enough information to specify the network connections

P = {(s,d)} required to send each element of the N-vector to its correct proces-

sor.

Definition 9 : Network Connection Equation

We define C(x) to be the (s(x),d(x)) connection required to route

v(x) from memory u(v(x)) through network input l(ju(v(x))) to output $ (x) and

thence to processor x.

Thus C(x) = (l(/x(v(x))), $(x)) .

Now what have we got? Recall in the previous chapter (Theorem k)

that if

Pc{(f(x),g(x)):0 <x < i) ,

and if f, g and g satisfy certain conditions with respect to Q, then fitP and so

kl

the network constructed from U can produce the connections specified by P.

Thus, in many cases we can easily show that a given ft network will pass C(x)

if C(x) satisfies Theorem k.

3 .k Effectiveness of ft Networks

In this section we will be concerned with showing the effectiveness

of a particular type of ft network for various memory and storage configurations.

First, we shall assume that N, the number of processors, is a power of two.

Second, we will assume that ft = {n, n/2, . .., 2, 1], where n, the "size" of

the ft network, is a power of two. This latter assumption is pragmatic. Recall

Theorem 8 of the previous chapter. If n is a power of 2, then ft = {n, n/2, ...,

2, 1} results in a network which is minimal in terms of gates.

Our choice of a power of two for the number of processors is not

so defensible. Suffice to say that investigation of any specific system

where N is not a power of two is beyond the scope of this paper. Additionally,

we only consider values of N < ^096, except where noted otherwise.

Tables I- HI show C(x) for various combinations of u(i, j), v(x),

l(m) and$(x). Shown along with C(x) are two numbers. The first of these,

memory cycles, is the maximum number of memory cycles required to fetch the

specified N-vector. For example, if 2 elements of the N-vector lie in the

same memory, then at least two cycles of the memory system will be required.

The second number shown with C(x) is the number of network cycles

required to pass the N-vector. For example, if ft f P but P = P, U P and

ft f P-,, ft t Pp then two cycles of the network are required.

•>ome cases, where N must have an integer square root, we assume N is a power
Of 'l .

k2

In some cases the numbers given for memory cycles and net-work cycles

represent (not necessarily least) upper bounds or lower bounds. This is

indicated by the symbols < and > respectively. Table IV" is a summary of the

results presented in Tables I-III. The numbers shown in Table IV are the

maximum of memory cycles or network cycles. As we can see, of the configu-

rations investigated, only Table III-D can handle all 8 of the most frequent

types of N-vectors. Before discussing additional pros and cons of these con-

figurations, we will investigate one additional W-vector which sometimes occurs

Consider the f-vector consisting of the elements of small dxd sub-

matrices along the diagonal (see Figure 12). We assume that the first row of

the first submatrix goes in order to the first d processors, the next row of

this first submatrix to the second d processors, and so on [11]

.

2
In all there can be at most N-s-d full dxd submatrices in an I -vector

2 2
where i < N. Thus, there are a total of I = (N-s-d) x d elements. We have

2 2 2 2
v(x) =

((x mod d)+ d + d(x*d) + i, (x mod d) mod d + d(x*d) + j),

and for jLt(i, j) = (t/n+1)i + 2j (Table III-D) we get

u(v(x)) - (/w+l)[(x mod d
2

* d + d(x-fd
2

) + i] +

2 2
2[(x mod d mod d + d(x*d) + j]

.

This function has yet to yield to analysis. Instead, an exhaustive

check' was performed using a computer and assuming the same configuration as in

Table III-D for

W = k^, where k = 2, 3, k, 5-

The results are summarized in Table V. A second check was performed for

J2 = {2N, N/2, ..., k, 1} and the results were identical to those of Table V.

^

N processors

N memories

N x N network

$(x) = x

I(m) = m

u(i>J) - 3 (straight storage)

C(x) = (ju(v(x)), x)

v(x)
0)

-p

8
m(v(x)) QJ >j

6 o

?H w
O QJ

|S r-l

-P V
QJ >i

(:i, ;j+x) rows j+x 1 1

(i+x, j) columns a j N 1

fi+x, ;'mx) fwd. diag. j+x 1 1

Ci ^x, ,j-x) rev. diag. j-X 1 1

(i+(x+/I), j + (x mod /n))

/iix /ti partitions b j + (x mod -/n) /n 1

(i,,i)

N broadcast c j 1 1

(i,J + (xWN) x Vn)

AT row broadcast d j + (xWn)x/n 1 1

M !

1

:•
: /N) X /N, j

)

/i7 column broadcast e /n 1

Table I-A

kk

N processors

N memories

N X N network

$(x) = x

l(m) = m

ji(i, j) = i+j (skewed storage)

C(x) = (n(v(x)), x)

v(x)
.

0)p
o ^(v(x))

fn 0)

a o

S o

^H W
O 0)

-P O

(i, j+x) rows i+j+x i 1

(i+x, j) columns i+j+x l 1

(i+x, j+x) fwd. diag. f i+j +2x 2 N/2

(i+x, j-x) rev. diag. g i+j N 1

(i+(xWN), j + (x mod t/n))

/n x Vn partitions h i+j+xWN+x mod -/I t/N 7n

(i,d)

N broadcast i i+j 1 i

(i,j + (xWSf) x t/n)

VW row broadcast J i+j + (xWN)xi/N 1 l

(i+(xWn) x 7n, j)

vN column broadcast k i+j + (x-jVN)x-/N 1 l

Table I-B

^

N processors

N memories

N x N network

$(x) = x

I(m) = m

fi(i,j) = 3i+j (3 skew)

Cfx) = (u(v(x)), x)

n = /N

v(x) •p
O u(v(x)) B o

X
O <1>

-P O

(i, ;j+x) rows 3i+j+x 1 1

(i4x, ,j) columns f 3(i+x)+j 1 1

f i t x, ,i+x) fwd. diag. m i+x+3i+a ^ nA

(i-ix, ,i-x) rev. diag. n 2x+3i+j 2 N/2

(i+lx-r/N), j + (x mod /n))

; x -/n partitions

(i,.i)

broadcast 3i+j 1 1

. i
i (xWn) x /n)

/ii row broadcast 3i+j+(x-fr|)xTi 1 1

. : /N) X t/N, j)

/N column broadcast

Table I-C

k6

N processors

N memories

N X N network

$ (x) = x

l(m) = m

/i(i >tl) = T]i+j (-/n skewing)

C(x) = (ju(v(x)), x)

v(x)
0)

o m(v(x)) S o

o cu

CD >3

(i, j+x) rows rii+j+x 1 1

(i+x, j) columns T]X+Tli+j /n t/n

(i+x, j+x) fwd. diag. P (T]+l)x+T]i+j 1 1

(i+x, j-x) rev. diag. q (t}-1)x+t)X+j 1 1

(l+(xWw), j + (x mod Tn))

/I x -/i partitions r x+Tii+j 1 1

(i,j)

N broadcast r)i+J 1 1

(i,j +(xWI) x t/n)

VN row "broadcast s Tli+j+(x*T))XT) 1 1

(i-i(xWN) xi/l, j)

Vff column "broadcast t Tii+j+N(x-fTi) 7n 1

Table I-D

^7

N processors

N memories

N x N network

$(x) = x

Km) = m

//(i,«l) = rji+J (t/n+1 skewing)

C(x) - U(v(x)), x)

n = 7n+i

v(x) •p
o u(v(x))

^ 0)

QH

S o

X
o cu

-P O
0) >5
S3 O

(j, ;j+x) rows Tri+j+x 1 1

(i+x, ,j) columns u T)(i+x)+J 1 1

(i+x, ,i+x) fwd. diag. V (T)+l)x+T)i+j w2 -

(i+x, ,j-x) rev. diag. w (TT,-l)x+T
1
i+j t/N 7n

(i+(x+/N), j+(x mod t/n))

t/n x /n partitions

X T](x-^-/N)+T]i+Ti(x mod 7n) +

>1

(i,.D

II broadcast r\±+3 1 i

(i, j + (x+i/N) x t/n)

/N row broadcast y TT,i +j + (x+/N) x7N(X+-/N) 1 l

M
! (x+t/n) x t/n, ,i

/?! .lumn broadcast

z tp.+j+N(x+-/n)+t/n (x-m/n)

1 i

Table I-E

ii-8

Notes to Table I

a) Since all elements of a column lie in the same memory, i.e.,

v(x) = (i+x, j), ju(v(x)) = 2> that memory must be cycled N times to produce

all elements of the column. One might suspect that the networks would also

have to be cycled N times. This is not necessarily so. Notice the resulting

connection equation C(x) = (j, x) satisfies the condition gcd(a, N) = N since

a = 0. Thus, the network can produce the connection C(x) = (j, x), < x <

N - 1 by Theorem k of the last chapter. So how do we reconcile the fact that

our theory says the connection is possible while intuition says it is not.

In fact, there is no real reconciliation. If two different data

elements are present at the same input port, then any network would have to be

cycled at least twice to pass both elements. We shall simply state that the

number shown under network cycles represents the number of cycles required,

assuming no multiple data at any input port. Extra cycles required due to

such multiple data are reflected in the memory cycles column.

b) The equation C(x) = (j +(x mod Vn), x) is not of the correct

form to be covered by Theorem k. Thus, we must show that C(x) satisfies

k i— k/2definition 3. We assume N = 2 where k is even. Thus, VN = 2 '
. Now we

assume x mod t/n 4 7 na°d /n (so x ^ y),
N N

m
and x = y. Then, (P6)

x 4 7-
m

Now, if m < 7n, then obviously x mod 7n = x and y mod -/n = y , so

m m

x mod 7n ^ y mod 7n .

m

^9

If m > /n, then we have (since x mod /n, y mod -/n < /n < m)

x mod Vn ^ y mod 7N -> x mod 7n ^ y mod -/i?

N 7n

and finally

P5
-» x mod Tn ^ mod -/n .

m

Thus, ft t P, where P = { (x mod /N, x)
: o < x < N - 1} so by Theorem 1 (previous

chapter) ft t P + j, where P + j = {(j +(x mod /n), x) : < x < N - 1} .

c) See note (a) .

d) Again we must show that C(x) = (j + (xWn) x /n, x) satisfies

definition 3> i-e., for all m e ft

m
s(x) ^ s (y) and s (x) - s (y) implies x ^ y .

N m

First, consider the case m > -/n. Let r\ = VN.

We have j + (x+T])r) ^ ,j +(y+T])n
N

I'l

-» (x+t])t) ^ (y+T])ii

N

and j i(x+t])t] s j + (y4t|)r)

m

PI
-» (x+ti)ti 3 +(y+T])Ti.

m

Thus,

P6 m
-> (X+T])T] ^ (y+T])T)

50

P12 m/r]

-> (x+tj) 4 (y+Tj)

Pll m
-» x ^ y .

Now, for m < ri let rj = mcr = 7n . We have

H

-» (x*t) f (y-Mi)

and

or

Thus,

ti(x-mi) = n(y+Ti)

m

mcr(x-M-)) == mcr(y4-T])

m

P4

-> cr(x-fTi) = ^(y-Mi)
1

P3

-» (x-s-ti) = (y*T)) •

1

p6 i

Pll mcr

-» x ^ y

P9 m
-» x ^ y .

51

Thus, fi t C(x). The vector v(x) can be fetched without conflict since

£i(v(x)) satisfies definition 6.

e) See notes (a) and (b)

.

f) Divide v(x) into two n/2-vectors:

v
1
(x) = (i+x, j+x), < < N/2

v
2
(x) = (i+x+N/2, j+x+N/2), < x < n/2 .

Then v(x) = v
1
(x) U v (x), and

jLi(v,(x)) and u(v (x)) both satisfy Theorem 9. See also

note (n)

.

g) See note (a)

.

h) It is easy to see that there are -/n elements (the reverse

diagonal) of the partition in memory ni(v/N-l)) = i+j+ t/N-1 . Thus, the -/n

memory cycles. In order to show that the network cycles are < t/N, we divide

v(x) into -/n /N-vectors:

v (x) = (i+p, j+x mod 7n),0 < x < -/n, < p < -/n .

/n-i
Then v(x) = U v (x)

p=0 P

and by the argument in note (b),

fi t C (x), where C (x) = (u(v (x)), x + p-/N), < x < 7n, < p < /n.

i) See note (a) .

52

j) See note (d)

.

k) See note (d)

.

l) Since 3 is prime to any power of 2, C (x) satisfies Theorem 4

and *i(v(x)) satisfies Theorem 9*

m) The required partition for the memory is:

v (x) = (i+x, j+x), < x < N/4, < p < 4

This allows the N-vector to be fetched in 4 cycles.

The partition required for the network is

v (x)"=(i+p+Nx/Ij-, j+p+NxA), < x < 4, < p < nA

and thus (since Nx=0),
N

C (x) = (4p+3i+j, p+NxA), < x <4, < p < nA-

n) An argument similar to m applies here.

o) An argument similar to m applies here.

p) If t/n + 1 is prime to N, then C (x) satisfies Theorem 4 and

ju(v(x)) satisfies Theorem 9« t/n + 1 is prime to 4, l6, 64, 256, 1024, and

4096.

q) This is true for N = 4, l6, 64, 256, 1024, and 4096

.

r) Note that -/n(xW"N) + x mod Vn = x.

s) See note (d)

.

t) The required partition is

v
p
(x) = (p+i, 3), < x < n

< p < T]

T) = Vn ,

giving us ju(v (x)) == r)(i+p) + j, which satisfies definition 6 since
ir

53

v (x) = v (y).

To prove Q, f C(x), we have

T]i+j+N(x*t)) = iii+j+N(y^ri),

i.e., the source is the same memory element for all data. See note (a).

u) 7n + 1 is prime to N = k, l6, 6k, 256, 1024, and 4096. Thus,

this result holds for these N by Theorems k and 9«

v) The cycles required here vary since r\+l = VN+2 is not prime to

N = hf
l6, 6k, 256, or 1024. The memory cycles vary from k for N = k to 2 for

N = 1024, where in general memory cycles is (Theorem 9)

— where a = gpf (a,N) .

The required number of network cycles is unknown.

w) Note T)-l = Vn . An argument similar to note m applies here.

x) t}(xWn + x mod -/S) + T)(i+j)

= -/n(xWn) + (x mod t/n) + (x+ t/n) + Vn(x mod t/n) + T\(l+j)

= x + (x+VN) + /n(x mod 7n) + r)(i+j) •

Since)u(v(Vn-1)) s ju(v(N-/n)) e rj(i+j) , we know that memory cycles

N N

are > 1.

y) See note (d)

.

z) Since N(xWn) = ,

N

jLi(v(x)) =
71i+,j + (x+/N)>c/N .

N

See note (d)

.

5+

N processors

2N memories

2NX2N network

$(x) = x, < x < N

l(m) = m, < m < 2N

/i(i, j) = j (straight storage)

C(x) = (n(v(x)), x), < x < N

v(x), < x < N
(U
•p

g
m(v(x))

H (L)

sHS o

o

O <D

-P O
CD >>

(i, j+x) rows j+x 1 1

(i+x, j) columns a d N 1

(i+x, j+x) fwd. diag. j+x 1 1

(i+x, j-x) rev. diag. j-x 1 1

(i+(xWl), j+(x mod i/i))

-/N x Vn partitions b j + (x mod V^) /n 1

N broadcast 1 1

(i,j +(xWN) X Vn)

VN row broadcast
.
j+(xWn)xt/n 1 1

(i+(xW5) x Vw, j)

VN column broadcast c J t/n 1

Table II-A

55

N processors

2N memories

2NX2N network

$(x) = x, < x < N

I(m) = m, < m < 2N

u(i,3) = 2i+j (2- skew, 1-skip)

Cfx) = (m(v(x)), x), < x < N

v(x), o < x < N
-p

s
u(v(x))

M
U w
O <D

-P O

S3 O

(i, ;j+x) rows 2i+j+x 1 1

(i+x, ,j) columns d 2x+2i+j 1
N
2

(i+x, /Hx) fwd. diag. 3x+2i+j 1 1

(i+x, ,1-x) rev. diag. x+2i+j 1 1

(i + (x+i/N), j+(x mod /i))

/n x /n partitions e 2(x+/N)+2i+j+x mod t/n 7n

N broadcast 2i+j i 1

(i,j+(xWN) x t/n)

i/N row broadcast f .2i+j + (x+/N)x /N l 1

(:i i(xWn) x t/n, j)

/u column bro idc ist g 2i+j+2-/N(xWlf) l 1

Table II-B

56

Notes to Table II

a) See note (a), Table I.

b) See note (b), Table I.

c) See notes (a) and (b), Table I,

d) Theorem 9 i- s satisfied since

a 2

See note (n), Table I.

e) Partition v(x), < x < N

into

v (x) = (i+ps/N, 3), < x < 7n, < p < -/n .

Then since n(y (x)) satisfies Theorem 9 and

71-1
v(x) = U v (x) .

p=0 P

f) See note (d), Table I.

g) We have (after applying Po and 2-/I(xWn) = 2t/n x -j- 2U)

m
2t/n x + 2N ^ 2t/k y -s- 2N

Pll 2mN
-» 2-/N x ^ 2t/n y

P12, 9 m
-» x ^ y .

57

N processors

2N memories

2NX2N network

$(x) = 2x, < x < N

I(m) = m, < m < 2N

iu(i>«j) = j (straight storage)

C(x) = (u(v(x)), 2x), < x < N

v(x), < x < N
-P

s
m(v(x))

S o

^H W
O CD

£ H
-P c>

CD >s

(i, ,j+x) rows a d+x 1 1

(i+x, ,j) columns b j N 1

(i+x, j+x) fwd. diag. j+x 1 1

(i+x, j-x) rev. diag. j-x 1 1

(i+(xWN), j + (x mod t/n))

/N x t/n partitions c j+x mod t/n t/n 1

(i,j)

N broadcast j 1 1

(i,j+(xWN) x Vn)

/N row broadcast d j + (x /N) -/TT 1 1

(xWn) x i/N, j)

vN column broadcast e j /N 1

Table III-A

58

N processors

2N memories

2NX2N network

J>(x) = 2x, < x < N

l(m) = m, < m < 2N

ju(i,o) = 2i+j (2- skew, 1-skip)

C(x) = (ju(v(x-)), 2x), < x < N

v(x), < x < N
-p

s
m(v(x))

5h (L)

S o

M
J-l CO

O d)

£ H
-P c>

0) >>
C o

(i, ,i+x) rows 2i+j+x 1 1

(i+x, j) columns f 2i+2x+j 1 1

(i+x,
ti+x) fwd. diag. 3x+2i+j 1 1

(i-tx, j-x) rev. diag. x+2i+j 1 1

(i+(xWN),. j + (x mod t/n)
)

t/n X t/n partitions g 2i+j+2(xWN) + x mod t/n t/N
_

(i,j)

N broadcast 3 1 1

(i, J +(xWn) X t/n)

vN row broadcast h 2i+J + (x4-/N) VN 1 1

(i-i (xWN) x t/n, j)

fu column broadcast i 2i+j+2(xWN) t/n 1 1

Table III-B

59

N processors

2N memories

2Nx2N network

$(x) = 2x, < x < N

l(m) = m, < m < 2N

iu(i,j) = i+2j (1-skew, 2- skip)

C(x) = (m(v(x)), 2x), <x <N

v(x), < x < N
CD

•P

s
m(v(x))

OH
e o
aj ;>>

^ W
CD

5rH
•P O
<D >>

(i, ,j+x) rows
j i+2j+2x 1 1

(i+x, j) columns x+i+2j 1 1

(i+x, ,]4x) fwd. diag. 3x+2j+i 1 1

(i+x, j-x) rev. diag. x+2j+i 1 1

(i+(x+VN), j + (x mod /n))

/ix /l partitions k xWN+i+2j+2(x mod /I)
7n
2 2

N broadcast i+2j 1 1

(i,j+(xWw) x t/n)

vi? row broadcast I • i+2j+2(x4-/N) /N 1 1

(i i (xWS) x/n, j)

i/Ti column broadcast m 2i+j +(xWN) t/n 1 1

Table III-C

6o

N processors

2N memories

2Ik<2N network

k) = 2x, < x < N

Hm) = m, < m < 2N

//(i, ,0 = T)i+2j (-/n+1 skew, 2 skip)

C jc) = (n(v(x)), 2x), < x < N

T) = nTn + 1

v(x), < x < N
s

u(v(x)) CD >j
S o

O QJ

-p a
CD >5
C o

(i, j+x) rows n T]i+2j+2x 1 1

(i+x, j) columns o T]i+2j+T]X 1 1

fi+x, j+x) fwd. diag. P (Ti+2)x+T]i+2j 1 1

(i-tx, j-x) rev. diag. q (r
1
-2)x+T

1
i+2j 1 1

i+(x+VN), j + (x mod /ii)

)

vN x -/n partitions

r r)(x4-7N)+T]i+2j +

2(x mod -/N) 1 1

(i,,1)

N broadcast T]i+2j 1 1

i,j+(xWw) x 7w)

/N row broadcast s Y]i+2j+2i/N(xWN) 1 1

(H(xWn) x t/n, j)

/w column broadcast t T]i+2j+T]7N(x4-7N) 1 1

Table III-D

61

Notes, Table III

a) Note that c(x) is now (u(v(x)), 2x) .

b) See note (a), Table I.

c) See note (b), Table II.

d) See note (d), Table I.

e) See notes (a) and (b), Table I.

f) Note that 2x + 2i + j satisfies Theorem 9, since x < N. Also,

C (x) = (2x, 2x) satisfies Theorem k.

g) See note (e), Table II.

h) See note (d), Table I.

i) See note (d), Table I.

j) See note (f), Table III.

k) Note that

2(x mod nTn) = 2x mod 2 >/n.

Partition v(x), < x < N into

v (x) = (i+(x4- nTn)+2p, j+(x mod/N)),

< x < 2 J~N,

< p < vTn/2 .

Then iu(v (x)) satisfies Theorem 9 since x < 2 n'N < 2N, and

n/n/2

v(x) = U v (x).

p=0 p

62

and i—

,

VN/2
v(x) = U v (x) .

p=0 P

These same partitions satisfy Theorem k.

l) The result follows from note (&), Table I, and P2.

m) See note (d), Table I.

n) Theorem 9 is satisfied since x < 2N/2. Theorem 4 is also

satisfied (since $(x) = 2x)

.

o) VN + 1 is prime to 2N for N = k
9

16, 64, 256, 1024, or 4096.

Thus, Theorems 4 and 9 are satisfied again.

p) ti + 2 = 7n + 3. 7n + 3 is prime to 2N for N = k, 16, 64, 256,

1024, or 4096.

q) t] - 2 = -i/n - 1. t/n - 1 is prime to 2N for N = 4, l6, 64, 256,

1024, or 4096.

r) An exhaustive check of the function

C(x) = ((VI+1) (xWn) + 2(x mod 7n), 2x), < x < N - 1

was made by computer for N = 4, 16, 64, 256, 1024, and 4096. In all cases,

definitions 3 and 6 were satisfied. The required connections then follow

by Theorem 1.

s) We have

T)i + 2j + 2t/n(xWn) = T]i + 2j .
+ 2-/I(yWM

r

)

m

PI

-^ 2/n(xWn) s 2yiT(yWN)
m

But tji + 2,j + 27n(xWn) ^ T)i + 2j + 2-/N(yWN)
2N

PI

-* 2t/n(xWn) ^ 27N(y-7N)
2N

63

These two results give us

P6 m
-* 2-/n(x-«-t/n) 4 2i/n(v.*t/n) .

Since 27n(xs.-/n) - (2y/lf)+ (2N),

we get

Pll 2mN
_> 2-/N x ^ 27n y

P12 2m/I
-» 2x ^ 2y

P9 m
-* 2x ^ 2y .

Thus, definition 3 is satisfied. Definition 6 is satisfied since it is

satisfied for rows (see note (d), Table i)

.

t) We have

T|i + 2j + tiTn(xWn) = r\± + 2j + Ty/N(y-s7N)

m

PI
_» t)/n(xWn) s ^(yWN), where t]=/n +1

m

Again, t] is prime to 2N for 2N=2 , so

P3

_, Vn(xWn) = VN(y+n/N) .

m

But t>l + 2j + t]/n(xWn) ^ T|i + 2j + Ty/N(yWN)

2N

PI, 3

-» /N(xWN) ^ /N(y-sVN)

2N

6k

So P6 m

Since Tn(x-jV^) = (x^O+N, we get

m
(xM) + N ^ (yV^)* N

Pll Mn
_>- 7n x 4 -& y

P9 Nm/2

-» Vn x ^ 71 y

P12 2Mn/2

_> 271 x ^ 271 y

Nm
27N x ^ 271 y

P12 Vk/fS

-> 2x ^ 2y

P9 m
-> 2x ^ 2y .

Thus, definition 3 is satisfied since

m
s(x) ^ s(y) A s(x) s s(y) -»d(x) ^ d(y) .

2N m

Definition 6 is satisfied by an argument similar to note (s), Table III,

65

That is, since there are no memory conflicts for columns, and since the Vn

column broadcast involves fetching only -/n elements out of N in a column, then

there cannot be any memory conflicts in a 7n column broadcast. That there

are no memory conflicts for a column fetch follows from the fact that 7w + 1

is prime to 2N = 2 . Thus, Theorem 9 is satisfied since the greatest factor

of 7n + 1 prime to 2N is -/n + 1,

gpf(-/N+l,N) = /N + 1

and so it is only required that x be less than M = 2N,

x < I < M = 2N .

Thus x^y and ji(v(x)) = jLi(v(y))

M

or (/N+l)(x+i) + 2j (7N+l)(y+i) + 2j

M

PI
-> (/N+l)(x+i) =(/N+l)(y+i)

M

P3

-» x+i = y+i

M

_» (x+i,o) = (y+i,j) since x,y <M

-» v(x) - v(y) .

66

o H
HH

H H H H H H rH H
OJ *? OJ

OJ

H

O
lH
H H H H H fl

w H H H [25

OJ
H OJ X

OJ
H

pq

H H H H H 15 H H H [25 OJ rH X
H OJ OJ
H A|

<
H
H

H S H H
»e

H H <? [25

OJ
O rH

OJ
H

PQ
I H OJ H H is H H rH [25 OJ rH X
H A| OJ
H A|

1H H S H H <? H H •? [25

OJ
O H X

H

H
i

H H H 2cvj I?
CM

Al
H H H [25

+
1? H X

O
i

H H »? H H H H H
«!

[Sh-

•§ H X

O _* OJ
l H H ~\^ ^~^

1 H H 1
is; KA H XH S S

pq
i

H H H
CVJ

S •? H H H [25 H H X

<
i

H H S H rH
"? H H i? S O H X

P
W

£ CO

O P o
•H 02 d

?H -P CO CO
cu H o o
£ -P

CO

d
co

oS
CO

bO
CO

Ph -P
w 1 w

CD

H
CO •H

d •H
d «?

CO

O |3 H
CD

•H
r^ E d O o !h
03 w p • • X CO U o O ,5 Ph s-—

V

EH £ rH d J> o g CD •H X
O
rH

o
O

IS

<H
CD i? >? «5

CD

o

67

d

d

d

"d"

d

d

N

N

are 12. Storage of dx d Submatrices Along the Diagonal

68

c-

saxoiCo

3[jcoMq.au
i H OJ

A|

OJ

A|

sbjoAo
Aj.ovsdm H H OJ

A|

VO

sajo^o

3fjcoMq.au
i H OJ

A|

OJ

Al

saiojfo

JLzomBm
i H OJ

A|
H

UA

sa"[Oi?o

s[jcoM-q.au
i OJ

OJ

A|

OJ

Al

sajo^o
jCjcoraara

! rH H H

-4-

saxc/fo

3j;jcoM.q.au
H OJ

OJ

A|
OJ

A|

saxo^o
^jcoutara

H 04
OJ

A|

OJ

Al

KA

saxojCo

^JcoAq.au
H OJ

OJ

Al

OJ

Al

saxo.<fo

.Aiomara
H OJ

OJ

Al

OJ

Al

CVJ

S8~["0.£0

3];jcoM.q.au
OJ OJ

OJ

Al

OJ

A|

safjo^o

^jcoraani
H H OJ

A|
OJ

Al

n3 fe
VDH LIA

OJ

-=J-

OJ
oH

H
03

C
O
bD
cO

•H
R
d)

-P

o
oa

o
oH
pq

CO

>
CD

H
,£>

CO

EH

69

3.5 Additional Considerations, Cost

Tables I-V give us a pretty good idea of the performance of the ft

network on certain highly frequent N-vectors. We will not discuss these

results any further in this chapter. (in a later chapter we will compare

these results with similar results from other types of networks) . We will,

however, discuss several questions raised by these results.

First, it seems apparent that using 2N memories yields fewer memory

conflicts than a system with N memories. In fact, purely combinatorial

arguments tell us that of a total of () = —4——— possible distinct N-
(ir-N) in:

vectors in an N x N array, the N memory systen can deliver NUT without

conflict, while the 2N memory system can deliver -^— without conflict,

NI2

But we must ask: What is the difference in cost between an N memory system

and a 2N memory system? Let us assume that the total storage capacity of

both systems is equal, e.g., each memory in the N memory system can store K

words while each memory in the 2N memory system can store k/2 words.

There is some evidence which suggests that at least the cost of the

basic memory components would be the same. For example, Intel supplies a

solid state memory board which can be configured either as kK X l8 bit words

or 8K x 9 bit words. However, the total cost of a memory system is

primarily determined by the cost of power supplies, packaging, inter-

connections, etc., and thus further analysis of this

* p
The assumption is made that all N~ elements of the N x N array are evenly
distributed among all N or 2N memories.

TO

problem is beyond the scope of this paper. We will simply assert that it is

not unlikely that the cost of a 2N memory system would not be prohibitively

greater than the cost of an N memory system when the total cost of the

computer system is considered.

Another question which arises is the relative cost of a 2N X 2N ft

network versus an N X N ft network. As we shall see in a later chapter, the

number of gates in an N X N ft network (including control circuitry) is on the

order of

2|(d + log
2
(log

2
N)) log

2
W ,

where d is the number of bits per data word. The gate ratio of a 2N X 2N ft

network to an N x N network is approximately 2. (This should be

compared with a ratio of k for a crossbar switch)

.

Finally, it might be argued that each memory in a 2N memory system

only needs to be half as fast as each memory in an N memory system in order

to provide the same effective memory bandwidth. This argument is valid only

if successive N-vectors do not interfere with each other. 'While an analysis

of successive N-vector interference is beyond the scope of this work, it seems

obvious that this interference could be significant and so the argument

justifying slower memories would not hold.

3.6 Summary

In this chapter we have explored several memory systems in conjunction

with various memory equations. We have shown that in almost all cases the ft

network performs at least as well as the memories themselves. That is, in

almost all cases, if the N-vector can be accessed without memory conflict,

then the ft network can establish the necessary memory-processor connection.

71

In the next chapter we will discuss actual implementation of Q. networks. This

will be followed in later chapters by comparisons with various other switching

networks which have been proposed in the literature.

72

k. CONSTRUCTION OF SEVERAL ft NETWORKS

In this chapter we will present several implementations of ft net-

works. Of course, many implementations are possible but we will present only

a few which represent various extremes of design. The first design is probably

the simplest design possible. It is somewhat slow, due to the fact that it

operates in bit serial mode. It might be useful in applications requiring the

switching of bit serial data, such as switching data between tracks of a

rotating memory.

The second design is a more general network which might be used for

the processor-memory connections discussed earlier. Finally, we will discuss

a particular interconnection of processors which is surprisingly related to ft

networks

.

k.l A Bit Serial ft Network

This ft network, shown in Figure 13, will be constructed from elements

shown in Figure lh . (Notice that the two center NAND gates form a bistable

device). The network operates as follows. The network is first reset by using

the reset lines which are common to all elements. Associated with each input

is a log n bit number which represents the number of the output port to which

that input port is to be connected (the destination tag) . This number is in-

serted bit serially into each input port, most significant bit first. Each

element then transmits these bits

A = C, B = D.

As the i-th most significant bit is fed into the network, the strobe signal is

turned on momentarily in the i-th stage (from the left). This strobe signal

allows the bistable pair of NAND gates to be switched, and if A = 1, then the

element will begin transmitting A = D, B = C; otherwise, it will continue to

•

73

Figure 13 . An fi Network

7^

* A B

Strobe Reset

L_L

B — D

FT
Strobe Reset

Figure Ik . One Element of a Bit Serial ft Network Constructed from
NAND Gates

75

transmit A - 0, B = D.

Now assume there are no conflicts as defined in Chapter 2. Then it

can be shown (refer to Figure 10 in Chapter 2) that both streams entering an

element of the i-th stage (from the left) must he equal in the first i-1 most

significant bits and must be unequal in the i-th most significant bit position.

Thus, the i-th stage is strobed when the i-th most significant bits are present

at the inputs. (if there are no conflicts, then these bits are unequal). If

A = at this time, then the element remains in state A = C, B = D. Otherwise,

A = 1 and the element enters state A = D, B = C. The strobe is now turned off

which effectively locks the element in this state until the reset signals are

used. Thus, the network is being switched according to Algorithm 2 of Chapter 2

as long as there are no conflicts.

Now there are two problems. First, if a conflict does arise, the

network will produce an erroneous connection. (The destination tags could be

examined as they emerge from the outputs to determine if the correct connection

was established) . Second, it is impossible to set up any one-to-many connec-

tions . (Recall these are allowed in the generalized Q network presented in

Chapter 2). Nevertheless, this network may prove useful in some applications.

Notice in Figure Ik that each element requires 9 NAND gates. Thus,

the total number of gates required for the network is 9 X p l°gpn or

(
~ n log n. Further examination of Figure Ik reveals that 3 gate delays are

needed for switching and 2 for transmission through each element. This, to-

gether with the bit serial nature of transmission, reveals that

loGp
n

*-
p

L •
i 2i = 21og n +(log n) gate delays are required to properly switch

i I

2 2

the network.

76

This could be reduced to 51og_n by the addition of appropriate

latching registers and clock signals.

We will now turn to a more complicated ft network.

k.2 A Better Network

In the previous network when a conflict arises, one of the inputs

is switched in the "wrong" direction. This wrongly switched input can, in a

later stage, cause other inputs to be wrongly switched. The network which we

will now discuss prevents this by associating a validity signal with each in-

put. As soon as an input is switched in the wrong direction, its validity

signal is turned off and thus the wrongly switched input is prevented from

influencing later switching decisions.

Additionally, this network will be capable of producing one to many

connections (broadcasts) as discussed in Chapter 2. This is accomplished by

using source tags rather than destination tags. A source tag is a number as-

sociated with each output port which represents the input to which that output

port is connected.

This network is divided into one "control plane" and one or more

"data planes" as shown in Figure 15. Signals generated by the control plane

are used to control the switching of the data planes. Each plane is similar

(at least topo logic ally) to Figure 13- Notice that the control signals will

flow from right to left while the data will be transmitted from left to right.

We begin by designing the "control plane" for this ft network. The

control plane generates signals which are fed to the switches in each data

plane of the ft network. Refer to Figure l6. On the right edge are n shift

registers of log
g
n bits each. Each of these shift registers contain the

number of the input port to which this output is to be connected. The least

77

Data

Planes^

Control

Plane

Figure 15. The Control and Data Planes of an fi Network

78

f r

r r

s 1 SOURCE
« TAG SHIFT

|

REGISTERS

^\//
f

r

2
r

3

1

* 4
*

5

I | |

6

7

STf*OBE 3 STIROBE 2 STF OBE 1

Figure l6. Control Plane for an 8 x 8 n Network

79

significant bit of each of these registers is connected to the inputs of the

control plane as shown in Figure 16. Generally, each stage of the control

plane will he "set up" during one major clock. The entire plane is thus set

in log n major clocks. During the i-th major clock, the i-th stage (from the

right) is strobed allowing the signal from the current least significant bit

to set the switching and memory of each block in the stage. Then the source

tag registers are shifted allowing the next least significant bit to be

switched through the i-th stage to the (i+l)-th stage where this process is

repeated.

The following signals are used in each element of the control plane

(refer to Figure 17)

:

Strobe: enables setting of the flip flops

A: upper output tag

B: lower output tag

V»: upper output validity

V_: lower output validity
B

C : upper input tag

D: lower input tag

Vp : upper input validity

V : lower input validity

Fn
' upper switching signal for data switch

F : lower switching signal for data switch

Reset: resets both flip flops

A special situation arises if an attempt is made to switch both

inputs to the same output in this control plane. This may arise if a broad-

cast connection is being set up (i.e., two network outputs requesting con-

nection to the same network input) or in the case of a genuine conflict. When

8o

Reset Strobe

Reset Strobe

Figure 17. One Control Plane Switching Elenent

8i

this happens, the signals which will control the data planes are set to

connect the broadcast connection but the switch of the control plane is set

to transmit only one of the tag signals correctly. The other tag signal is

transmitted incorrectly but its associated validity signal is set to zero.

(Note that the validity signals may also be used to indicate that a given

network output port requires no connection)

.

Thus, each source tag travels bit by bit from right to left through

the control plane. Each bit causes a given stage to switch the next bit

through to the next stage

.

The logic diagram of one element of the control plane is shown in

Figure l8. The two flip flops are set or reset by their respective input

(C or D) provided they are enabled by the strobe signal. (These flip flops

are the same as the three gate devices shown in Figure Ik) . The outputs of

these flip flops control subsequent transmission of this element in addition

to the switching of corresponding elements of each data plane (see Figure 20).

Associated with each tag input signal (C or D) are two validity signals

(y or V) . These validity signals indicate whether or not the corresponding

tag signal is valid. (A tag signal is invalid if it was incorrectly switched

in a previous stage or if the corresponding network output port is not re-

questing a connection)

.

The logic equations are determined as follows. First, the flip flops

are strobed and set or reset as C and D are set or reset. The various trans-

mission states of this element are shown in Figure 19- Numbers on the right of

each box correspond, top to bottom to C, V , D, and V , respectively. Lines

in each box represent connections and the numbers on the right indicate trans-

mitted validity signals (V., V_.) . Don't care conditions were chosen to
A B

82

Reset Strobe

Reset Strobe

Figure l8. Control Plane Switching Element Circuitry

83

i ° n

V° V°Ao Ao11 : x:10

7: v\ '7:

'

10 1

1

1

1

'Xi
i i

°\:
i i

°x
i

m

;ure 19 . Transmission States of One Control Element

Qk

minimize gate counts.

As mentioned earlier, the signals from one of these control planes

will be used to control the switching of one or more data planes. Each data

plane consists of logpn stages of n/2 elements. One such element is shown in

Figure 20. Notice that the switching of this element is controlled "by the

signals F , F , which are generated by the corresponding element of the control

plane (see Figure 3) • Figure 21 shows the states of this data switching

element. The numbers above each box represent values of F and F , respec-
o u

tively.

In summary then, each output requests connection to a particular

input port by placing the number of that port in the source tag register. The

control plane is then clocked log n times after which the data planes are set

to provide some or all of the specified connections between inputs and outputs.

If the requested connection does not create conflicts in the sense defined in

Chapter 2, then the resulting connection will be the requested connection.

If there is a conflict, then some output (s) will not be connected to their

requested input. For example, refer to Figure 16. Assume output requests

connection to input and output 2 to input k. Then the first element of the

middle stage of Figure 16 will be placed in state f (Figure 19) . At this point

the request from output 2 will be effectively cancelled, since its validity

signal is turned off and in fact output 2 will be connected via the data planes

to input instead of k.

In many cases it would be desirable to detect this condition. This

can be done by including a log n bit source tag along with each element of

data at the inputs. After the data is sent through the network each output

port checks the source tag received against the source tag requested. Lack

Upper

Lower

85

Fc Signal From Control Plane

Upper

Data

Output

Lower

FD Signal From Control Plane

Figure 20. One Element of a Data Plane Using NAND Gates

86

a

i I I o

Figure 21. States of One Data Switching Element

8T

of equality indicates a conflict occurred, and the process must be repeated

to process the unsatisfied requests.

We have discussed in some detail the construction of the control and

data planes of an Q. based network which allows broadcast patterns and is

capable of detecting conflicts. If we assume that a flip flop requires 3

2
l0g

2
I^ates, then a control plane requires yr log n elements of 22 gates (see

Figure l6) for a total of lln log n gates. Each data plane has — log n

elements of 8 gates for a total of 4n log n gates. If there are d data planes,

then the entire network requires (4d+ll)n log n gates.

Examination of Figure 18 reveals that transmission through a stage

requires 3 gate delays and switching of a stage required 3 gate delays. Thus,

log n

5 2
it requires E 3(i-l) + 3 = —(log„n + (log„n)) gate delays to switch the

i=l

entire network. This could be changed to 6log n by the addition of appropriate

latches between stages.

k .3 Processor-Processor Connections

As readers may have noticed, the topology of the P. network is

equivalent to that of the last log n stages of both the bitonic sorting net-

works discussed by Batcher [k] and the binary switching networks discussed

by Benes [5]• This in itself is somewhat surprising. It is even more sur-

prising to discover that the interconnections between stages turn out to be

the "perfect shuffle" connection discussed by Pease[9 1 and Stone [12]. We

Ml not present a proof of this result but it can be easily seen by examining

i "><
, which is the same binary Q. network we have been discussing all

along. While it appeared earlier (Figure 13) that each pair of stages was

88

f\

1 1 1

—
— l

u

1 V
J

2 —v /\
3 3 2

— 2

3-^ V / — 3

4 A
2 2 3

— 4

5 -/ \ > — 5

6 -^ \

7

4 4 4
— 6

— 7^

Figure 22. An fi Network with Identical Interstage Connections Revealed

89

interconnected differently, (it was expedient to draw them this way to facili-

tate understanding of how they worked), in fact, a reordering of elements in

each stage allows them to be drawn as shown in Figure 22. Thus, it becomes

clear that the stage interconnections are identical for each stage. (The

numbers on each element indicate their original order as shown in Figure 13)

.

Since each stage is identical, it appears that it might be possible

to save more gates and build just one stage of an 0, network, add some

registers, and simply recycle this stage log n times. We will now examine

some particularly effective ways of doing this.

Assume that we have N processors interconnected by the perfect

shuffle, as shown in Figure 25« This interconnection was proposed by Stone

[12]. The new results, effectively proved in Chapter 2, is that shifts and

other patterns required by our solution to the memory conflict problem can

be performed in exactly 1 + log N cycles. This is accomplished as follows.

Each processor will have as many as two data words which need to be

transmitted to another processor (possibly itself) . Associated with each data

word will be a log N bit destination tag and a one bit validity indicator.

Assume these interconnections are wide enough to allow parallel transmission

of d bits of data, log_N bits of tag and one extra bit. During each cycle the

contents of the output registers (see Figure 2*0 which contain data, tag and

validity information are sent via the shuffle connection to the input registers

of other processors. Then, depending on the tags and validity bits, the two

input registers in each processor may exchange or not as they are gated to the

output registers, (it should be noted that one to many connections are not

possible using this scheme, but another scheme similar to section 2 of this

90

w

ftg*

„

Figure 23- Four Processors Connected by the Perfect Shuffle

91

Output Registers Input Registers

Figure 2^. Internal Registers Required for the Processor Interconnection

Scheme

92

chapter is possible which does allow broadcast type connections)

.

From Chapter 2, we know that any permutation of n numbers which

satisfies definition 3 of that chapter can be produced in log n cycles. Since

n = 2N, this becomes 1 + log N cycles. In addition, we know that any permuta-

tion can be done in log n(log n+l)/2 cycles. This latter result follows from

Batcher's work [k], and the facts that the stage interconnections in the

Batcher network are perfect shuffles and that the only data dependent informa-

tion required by a Batcher element can be obtained from the inputs to that

element. It is not known at this time whether or not log n(log n+l)/2 is a

least upper bound, given the above constraints.

One additional result which follows from Batcher is that we can sort

2N numbers using this same hardware.

k.k Summary

It is difficult to summarize the results of this chapter in terms of

actual numbers. In one case we took existing processors, possibly modified

them, and formed an ft network. The primary cost here would not be determined

by gates (which presumably are already available in the processors) but by

wires, drivers, connectors, etc. In two other cases we actually designed

separate ft networks. We can say that any permutation which satisfies defi-

nition 3 of Chapter 2 can be produced in time on the order of log n cycles and

with an order of n gates/stage.

Thus, we have a number of options available

:

I. Processor-processor connections.

A. Advantages: possibly cheaper due to the use of already

existing gates and can be used to implement a bitonic

93

sorter with almost no extra logic.

B. Disadvantage: during each cycle, some input must travel a

distance of n/2 processors. If the processors are large or

there are a lot of them, the wire lengths involved may be a

problem.

II. Separate networks.

A. Multistage.

1. Advantages: size and thus wire lengths are smaller.

2. Disadvantage: cost in terms of gates.

B. Single stage.

1. Advantages: size and wire lengths are smaller than

processor-processor connections; uses fewer gates than

the multistage networks.

2. Disadvantage: probably slower than multistage due to

extra clocking requirements and i/o registers.

C. Multistage pipelined.

1. Advantages: size and wire length are smaller than

processor-processor connections, higher bandwidth.

2. Disadvantages: cost in terms of gates for the necessary

interstage registers and in terms of extra transmission

time due to these registers and extra clocking.

It should also be pointed out that it is not necessary to build these networks

using binary elements. Larger elements, consistent with the particular

implementation technology, can be used with no loss in capability (Theorem 6,

Chapter 2) and yield a possibly faster network.

In the next chapter we will review some other networks which might

be adaptable to memory-processor connection networks and we will compare these

9h

networks with ft networks in terms of cost, speed and effectiveness.

95

5. CONSTRUCTION AND PROPERTIES OF OTHER NETWORKS

In this chapter we will examine five networks which have been pro-

posed as data alignment networks.

5.1 Uniform Shift Networks

A -uniform shift network has the capability of "shifting" all inputs

±1 or ± S (mod n) positions through any stage or cycle of the network. How-

ever, during any cycle it must shift all inputs by the same distance. It is

easy to show that the maximum number of cycles required to perform an arbitrary

In S
uniform shift is Loi-^lJ + LoJ-1* This upper bound is minimized if S = Vn

(assuming n is a square). This type of network generally performs well for

uniform shifts, the time being bounded by 7n-l cycles. But if non-uniform

shifts are required, then we run into trouble.

In the case of ILLIAC IV, it was generally true that significant

changes had to be made either to the storage mapping function or to the

algorithm itself in order to force the alignment patterns to be uniform shifts.

If this could not be done, then a software routine had to be used which resulted

in n shifts of +1. Any problem which relied on this routine usually performed

so badly that it was no longer considered for use on ILLIAC IV.

Let us examine our alignment requirements in terms of uniform shifts.

Recall (Chapter 3) that we characterize our' alignment requirements by a

function

C(x) = (ju(v(x)), *(x)) ,

where we considered the cases <t(x) = x or r (x) = 2x. In terms of shift

"^e all stages would be identical, we may assume only one stage is used
but is recycled to necessary number of times.

"^he network used in ILLIAC IV is a +1, ±8 uniform shifter.

96

distances then, the x-th element of the n vector will require a shift of

S(x) = $(x) - ju(v(x)) (mod n) .

Now, if <$>(x) is independent of x, then it is a -uniform shift; otherwise it is

not. Table VI summarizes the results of Tables I-III of Chapter 3, in terms

of uniform or non-uniform shifts. An x represents a non-uniform shift while

represents a uniform shift. As we can see, in no case are more than two

of the n-vectors listed accessible by uniform shifts. (We have not even con-

sidered broadcast patterns since this kind of network cannot produce them)

.

There are several ways of building such a network. One way is to

use a single stage as shown in Figure 25. (Figure 25 actually shows two stages

in order to more easily show the connections. One may mentally fold the second

stage into the first). Figure 26 shows one of the n elements. Clearly, the

interstage wiring for this type of network is more complex than that of the 9.

network. This network requires 5n gates/stage (see Figure 20 of Chapter h) .

Finally, we may consider connecting the N processors together with a

±1, ±S connection and using the processors as a single, recycleable stage.

Each processor requires h input and h output lines, while using fi connections

required only two input and two output lines. Further, the fi connections

allowed us to align 2N data words while the ± 1 , ± S connection only allows us

to shift N words.

let us propose that we add ±1 connections to the Q connections.

Then, we have a system whose cost is approximately the same as the ±1, ± /n

system, but which can do any uniform shift in < log N cycles as opposed to

< t/n cycles for the ±1, ±71 system. Additionally, the ±1, fl system can

produce permutations which are not uniform shifts.

In spite of the apparently overwhelming evidence against the uniform

97

o HH O X X X X S OJ XH
H

C\J »?
OJ

O
1

H O X X X X s H OJ XH OJ OJ
H

PQ
I

H X o X X X s OJ H MH CVI OJ
H

<
IH X X X X X S o H X
H CJ OJ
H

pq
1 o X X o X s OJ H x
H CVJ

H

<! o X o X X 5 o H xH OJ
1—

1

W rH
i o X X X X Ss5 + H X
H

US

Q
1

H
o X X X o & <?

rH X

O
1

H o X X X X [25 K> H X

pq
i o o X X X }?*; rH rH XM

<
1 o X o X X ft o H XH

co
CO co d
rH H OH CO CO •H

<D a a -p
rg o

bo
o
5p

•H
-P

£ CO CO Fl
•H •H CO

CD
>d 13 ft wH ta CD

to I? CD

•H
CO 3 CO h Fh
Eh w p •j Q) x '

: ft ^—

^

[5 rH fi R CD •H X

B
o
o

o I? a) 5
CO co o

CO

d
CD

-P
-P
CO

Cm

s
CD

•H
rH
<
-P
<H
•H

en

•H
d

d

o

•H
d

CD

H
s
E-t

98

Figure 25. A (±1,±2) Uniform Shift Network

99

CONTROL SIGNALS

-S INPUT

1 INPUT

1 INPUT

S INPUT

]=o
o
o
o

:>
-> OUTPUT -S

•» OUTPUT -1

-> OUTPUT +1

-> OUTPUT +S

re 26. One Element of a (± 1, ± S) Shift Network Using NAND Gates

100

shift networks, we will examine one more such network, the barrel shifter.

5.2 The Barrel Shifter

The barrel shifter is capable of doing any -uniform shift. It is

conceptually a simple device. It consists of log n non-identical stages.

The i-th stage is capable of switching all inputs either or 2 positions.

This is shown in Figure 27 for a four port network.

Thus, the barrel shifter requires log n stage delays for any uni-

form shift. It requires 3n gates/stage. This is to be compared with the o,

network which requires Un gates/stage and logpn stage delays. Unfortunately,

the stage interconnections of the barrel shifter are not uniform and thus we

cannot build just a single stage and recycle it log n times.

The only advantage of the barrel shifter is that the upper bound on

the time required to perform any uniform shift is less than the same bound for

the ±1, ±S shifter. But the latter network has a smaller lower bound. The

barrel shifter is clearly inferior for our purposes to the Q network.

5-3 The Batcher Network

The Batcher network [k] was first proposed as a sorting network

(see Figure 29)- However, it should be clear that any network capable of

sorting n numbers is also capable of switching n numbers. We will not go into

the details of this network. It is sufficient to say that the networks

consist of log n(l+log n)/2 stages. Each stage is (or can be) interconnected

by the perfect shuffle and each of the n/2 elements of each stage is capable

of ordering its two inputs into descending or ascending sequence. Each

element can be built with 13 NOR gates for a total of 13n/2 gates/stage

(see [h]) . This is for the "control" plane. Data planes can be identical to

101

Figure 27. A Four Port Barrel Shifter

102

CONTROL LINES

INPUT -2 1

INPUT
O

o

OUTPUT

OUTPUT 2'

Figure 28. One Barrel Switch Element

103

1

2

3

4

5

6

7

Figun 29. An 8 x 8 Batcher Network. Crosshatched Elements Sort in

Descending Order

104

those of the ft network except there are more stages.

We could build only one stage and recycle it «(log n) times in

order to save gates. However, one additional problem arises. Each element

will require some extra logic since during some cycles it must produce a

descending order while during others it must produce an ascending order. We

will ignore this problem.

Finally, we could use the processors themselves as Batcher elements.

Now we have a system which is practically identical to that of section 3,

Chapter k. Batcher's results tell us that using this system we can do any

permutation in an order of (log n) cycles. The results of Chapter 2 tell us

that if the permutation satisfies definition 3 of Chapter 2 (which includes

uniform shifts), then it can be done in log n cycles. Other permutations may

require fewer or greater than log n cycles.

5-4 The Benes Network

While Benes did not invent this network, his extensive discussion

of this network prompted us to name it after him [5 1 It was originally in-

tended for telephone traffic switching.

The data planes of a Benes network consist of (21og n)-l stages of

n/2 elements interconnected by the perfect shuffle and with the exception of

the number of stages they are identical to the data planes of the ft and

Batcher networks (see Figure 30). Benes shows that the typology of such a

network is sufficient to produce any permutation of inputs. Unfortunately,

the determination of the switching of each element in the network is complex.

The best known result [13] requires time on the order of n Log n

Actually, Benes considered these networks in a more general form. We
consider here only binary networks.

105

Figure 30. A Binary 8x8 Benes Network

io6

operations. Thus, it would appear that this network would not be practical

in situations where the control signals have to he determined in real time.

However, in some instances it might be possible to compute these signals

ahead of time, say in a compiler, and in these cases the Benes network might

be useful.

5.5 The Crossbar Switch

A conceptual diagram of a crossbar switch is shown in Figure 31.

This could be implemented as shown in Figure 32 using fan- in logic and

limiting fan-in and fan-out to 2. Control signals for this network are derived

directly from the source tags. This circuit can produce any set of one-to-

2
one or one-to-many connections. It requires an order of n gates and log n

gate delays for transmission.

5.6 Network Comparison

At this point we have discussed these networks sufficiently to allow

us to compare them as much as possible with ft networks. We will begin by

assuming that we will build a complete network, i.e., we will not build just a

single stage which can be recycled. We will follow this by a comparison based

on single stage design. In this first case we will not consider the ±1, + S

uniform shifter since it is clearly nonsensical to build such a network. For

each of the ft, barrel shift, Batcher and Benes networks we will compare control

gates, data gates, switching time, data transmission time, and capability.

Table VII shows the relative values of these parameters. The expressions listed

represent only relative magnitudes and do not represent actual values.

-

Now let us assume we interconnect the N processors in by ±1, ± /n

connections or by the perfect shuffle connections. Table VIII summarizes these

results. The only difference between the ft, Batcher, and Benes "networks" is

107

(I

2

3

INPUTS <

N

ill f1^^ 1<

ihh^ ^

12 3 • • • N

OUTPUTS

Figure 51. A Conceptual Diagram of an N x N Crossbar Switch

108

Figure 32. A k X k Crossbar Using AWD-OR Components and Controlled by

Source Indexing

109

™T^^
(D

^
2H

bO O
2 sd
•H -H£~

ra W OJ
cd H
•H -P •

-P co ,d
H
H
•H

W o
fltH^ sd sd sd

,Q w O O w o o o
CO p •H -P H •H •H

ft CH PfO'H -P -p -P
CO •H CO -H CO CO co

o & -P d .£ -P -p -P
CO g O w

g g g
S fi -P £ s H M
In CD -H £ CD (D CD

O ft sd o ft ft ft
Ch •H <Vn

•H t^'Pl »H >? £> £?
$H C CD id S sd sd

^ CO ^d 2 CO CO CO

a
o 0J
H
CO Sd Sd 'cT a sd

CO

•H bO bD bO bO bD

g O O O o o
CO H rH H H rH

(B CJ O — OJ
-Ptlig
CO fn >H
Q H Eh

OJ

H
O C 'H' sd

-p (1) H bO '.:) bD H
o O O
H r-\ H

O En
id

OJ

Sd d Id sd

co

CO 0) bD bO bD bD
-p -p O O o O W

,H
CO CO H H H r-l sd

« C3 ««—

^

Sd id d sd

OJ

OJ ,0

rH
o

Sd $d "id

CO bD bO M i

U w *. * O O o i

-P 0) o <-\ r-\ H i

d -p ^-^

o ro a d sd

o a A

fH
CD
-p
fH
•H
.£w

5h

Sh
CO

H CD ,0
0) A co co

fn o QJ w
fn -p sd O
CO

§
cd fn

Ml a o

CD

-P
•H
sd
•H
CH

H
CD

S*

w
CO

I
•p
•H
Jh

O
bDH
CO

bD
sd

s
-p
•H

-p
co

CO

p
Sh

.2

tS
CD

5h

•H

&
CD

fH

CD

Sh
CO

CO

CD

•H
U

I

fn

^>
•H
bD
•H
H
bD
CD

I-
1 u

•, 1 d
J3 •i i

rd
sd o

ed

bD E
oH CD

1

'

1
1

'

CO

-p
(D

CD

Ph

O

sd

o
co

•H
fH
CO

&
8

HH
>
CD

H
§
EH

110

CD

"1

£
•H
Eh

M a) 1

Pi H i

•H O o H Pi i—

i

,£ >3
O O
-P
•H Jh

£ CD

GQ f^

!»
Ti fH

pi cc

O fn fn

•H -P CVJ OJ
r& PS -H <H H —-s —*

S3 C^ ,Q O I PI PJ pi

pi CD H -H
O Pi < 4J

S OJ OJ OJ
bO w bO

PQ co O o O
w Pi -P H H H

fn 0) CO pi s—

-

CVJ
-

—

-

CD i—l S
fto ^ S
P) i>iO OJ

lb o *U Ph

-d
CD

?H H
•H i P!

&g *?
0J

bO
CD O P! PI O
K <+H V| OJ OJ H

•H bO bO
w Pi o O O V|
J) D -p H H
H fH V| OJ o
o fn -H
>3 O rd H V|
O fH 02

H

fH

-P o
p5 co

Pi w a
-P fH 0)
pi -H O
O CO o -=h OJ OJ _4-\ Pm "h

-P Ph
pi CD

Ph Pi fH

Pi -H CD

H hlft

G
|

fH

G CD

? 1 o

CO
+1 CD

CO
pq

»\ O CD •N

H -P
CO

P!
CD

H
+1 PQ m +1

CO

CD

.a
om
a
o
•H
-p
o

o
o
fH
CD

-P
P!H
fH

O
w
CO

CD

O
O
fH

Ph

Ch
O
p!

o
to

•H
fH

CO

t
Oo

>
CD

H

Eh

Ill

the decision process required in each processor during each cycle. In the

case of the P. network, this requires examination of one bit each of two log N

hit tags in each processor during each cycle- For the Batcher network this

requires arithmetic comparison of two log„N bit tags in each processor during

each cycle. Since these two are so similar, we have combined them in Table

VIII. The Benes network using Opferman and Tsao-Wu's algorithm requires a

control time on the order of n log n but cannot be done based on examination

of the two data elements in each processor at each cycle. The switching time

shown in Table VIII simply reflects the total time divided be the number of

cycles.

It should be pointed out that the ± 1, ± /n connection can shift N

inputs and during each cycle only one of the four I/O line pairs is used. The

shuffle connections allow permutation of n = 2N numbers and during each cycle

both i/o line pairs are used. We have shown in Chapter 3 that using 2N memories

resulted in the ability to fetch significantly more N-vectors. Thus, the

ability to handle any N out of 2N inputs may be significant.

112

6. conclusion :

The problem of data alignment for a large parallel computer has been

investigated before, but previous results generally relate only to inter-

processor connections or switching networks; memory assignment; or (rarely)

control algorithms for switching networks. For example, Benes [5] in-

vestigated the properties of some 21og n stage binary switching networks which

might provide a solution except that no control algorithm is known which is

fast enough to allow the fast word-after-word switching required in a highly

parallel computer. Kuck and Budnik [2] proposed a solution to the memory

assignment problem which allows a wide variety of vectors to be fetched from

a parallel memory system without conflicts, but the alignment and indexing

problems indicate that this solution is probably not practical.

We have attempted to consider all these problems simultaneously in

order to arrive at a realistic solution. In this paper we have presented such

a solution. In order to prove the merits of this solution, we began in Chapter

2 by deriving some theoretical properties of a particular type of network which

we called an ft network. We showed, for example, a necessary and sufficient

condition (definition 3) for a given permutation to be producible by a given

ft network. Then, in Chapter 3, we derived some important N-vectors, several

storage assignment schemes, and considered several memory systems. We showed

in each case whether or not certain N-vectors could be fetched in parallel

without conflict and aligned by a binary ft network. We found that by using

twice as many memories as processors, a (-/N+l)-skew, 2 skip memory assignment,

and a binary ft network we could fetch and align at least the four most im-

portant N-vectors (rows, columns, diagonals and t/n x t/n positions) without

conflicts.

Finally, in Chapter 5, we discussed several other types of networks

.

113

and their relationships to the ft network. Here we showed that in general the

uniform shift networks are not flexible enough to "be useful in general

parallel computing applications and, in fact, need not be considered since ft

networks are more flexible and either cost less or at least do not cost

significantly more than uniform shift networks. In addition, comparison with

more general networks (Benes [5] and Batcher [!)-]) which are capable of

producing any arbitrary permutation showed the ft network to be cheaper and

faster.

We also discussed the possibility of interconnecting the processors

together in such a way as to form one stage of an ft network. By recycling this

single stage the correct number of times we could effectively simulate an ft,

Batcher, or Benes network. As it turns out, this particular interconnection

of processors was proposed by Stone [12] and called the perfect shuffle. Using

the results of Chapter 2, we were able to prove the new result that certain

important permutations (including uniform shifts) could be done in exactly

log-N cycles where N is the number of processors. In comparison, the ILLIAC IV

±1, ± /N connections allow any uniform shift in time < 7n. If we add ±1

connections to the perfect shuffle connection we get a system with the same

number of i/o line pairs (probably the major cost item) and which can handle

any uniform shift plus other important permutations in time < log N.

Thus, while we may not have found a panacea, we have demonstrated a

class of network which provides a feasible solution to the data alignment and

memory conflict problems in a parallel vector processing machine.

114

LIST OF REFERENCES

[l] G. H. Barnes, et. al., "The Illiac IV Computer," IEEE Transactions on
Computers, Vol. C-17, pp. 746-757; August 196b.

[2] P. Budnik, and D. J. Kuck, "The Organization of Parallel Memories,"

IEEE Transactions on Computers , C20, p. 1566; December 1971-

[3] P. W. Kraska,
• "Array Storage Allocation," M.S. Thesis, Department of

Computer Science, University of Illinois at Urbana-Champaign,
Report No. 344; August 1969.

[4] K. E. Batcher, "Sorting Networks and Their Applications," Proceedings
of the Spring Joint Computer Conference , 1968; pp. 307-314.

[5] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone
Traffic, Academic Press, New York; 1965

•

[6] I. M. Vinogradov, Elements of Number Theory , Dover Publications; 1954.

[7] D. Shanks, Solved and Unsolved Problems in Number Theory, Vol. I,

Spartan Books, Washington, D. C; 1962.

[8] Y. Muraoka, "Storage Allocation Algorithms in the TRANQUIL Compiler,"
M.S. Thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, Report No. 297; January 1969-

[9] M. C. Pease, "An Adaption of the Fast Fourier Transform for Parallel
Processing," Journal of the ACM, Vol. 15, pp. 252-264; April 1968

[10] J. E. Stevens, "A Fast Fourier Transform Subroutine for Illiac IV,"
Center for Advanced Computation, University of Illinois at
Urbana-Champaign, Document No. 17; October 1971*

[11] D. J. Kuck, and A. H. Sameh, "Parallel Computation of Eigenvalues of
Real Matrices," Proceedings of the IFIP Congress , p. TA-1-24;
1971.

[12] H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE
Transactions on Computers , C20, pp. 153-l6l; February 1971

•

[13] D. C. Opferman, and N. T. Tsao-Wu, "On a Class of Rearrangeable
Switching Networks," Bell System Technical Journal , Vol. 50,

pp. 1579-1618; May-June 1971.

115

VITA

Duncan Hamish Lawrie was born in Chicago, Illinois, on April 26,

19^3. He received the B.A. degree from DePauw University in Greencastle,

Indiana, and the B.S.E.E. degree from Purdue University, "both in 1966, and the

M.S. degree in Computer Science from the University of Illinois in 1969. While

at the University of Illinois Mr. Lawrie held a NASA Traineeship in Computer

Science and a Research Assistantship in the Department of Computer Science.

He also worked on the Illiac IV project as Senior Research Programmer in charge

of language development and computer operations. He is a member of Tau Beta Pi,

Eta Kappa Nu, the Association for Computing Machinery, the Institute of Elec-

trical and Electronic Engineers, and is an associate member of Sigma Xi . He

has published two papers, "The Use and Performance of Memory Hierarchies: A

Survey," in Software Engineering , Vol. I, Academic Press, New York (197°); and

"interconnection Networks for Processors and Memories in Large Systems, " pre-

sented at the COMPCON 72 convention in San Francisco, California (1972), both

with D. J. Kuck.

BLIOGRAPHIC DATA
IEET

1. Report No.

uiucdcs-r-73-557
Title and Subtitle

MEMORY-PROCESSOR CONNECTION NETWORKS

3. Recipient's Accession No.

5. Report Date

February 1973

6.

Author(s)

Duncan Hamish Lawrie
8. Performing Organization Rept.

No-uiucdcs-R-73-557
Performing Organization Name and Address

University of Illinois at Urbana- Champaign
Department of Computer Science
Urbana, Illinois 6l801

10. Project/Task/Work Unit No.

11. Contract/Grant No.

US NSF GJ 274J+6

Sponsoring Organization Name and Address

National Science Foundation
Washington, D. C.

13. Type of Report & Period
Covered

Doctoral - 1972
14.

Supplementary Notes

Abstracts

In order to utilize the potential speed of a SIMD type parallel processor it

is necessary to arrange data in the memory system so that subsets of this data can
be fetched in parallel without memory conflicts. Additionally, we must provide
sufficient memory-processor paths to allow the data to be correctly aligned with
the processor array. In this paper we present several storage mapping algorithms
together with a memory-processor interconnection network. We demonstrate the cost

and effectiveness of these and compare them with other networks which have been
proposed for this application.

Key Words and Document Analysis. 17o. Descriptors

Indexing Networks
Sorting Networks
Switching Networks
Crossbar Switch
Memory-Processor Connection

b. Identifiers/Open-Ended Terms

e. COSAT1 lie Id /Group

• Availability Statement

RELEASE UNLIMITED

19. Security Class (This
Report)

UNCLASSIFIED
:uritv Class (Thi20. Security Class (This

Page
1JNCLASS1FIED

21. No. of Pages

121

22. Price

RM N TIS-19 (10-701 USCOMM-DC 40329-P7 1

mtfiiaw*

OCT 24 19/3

UNIVERSITY OF ILLINOI9-URBANA

3 0112 052121743

