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Preface 

INTENDED AUDIENCE 

LEVEL 

This book originally grew out of our lecture notes for an "Applied Multivariate 
Analysis" course offered jointly by the Statistics Department and the School of 
Business at the University of Wisconsin-Madison. Applied Multivariate Statisti
calAnalysis, Sixth Edition, is concerned with statistical methods for describing and 
analyzing multivariate data. Data analysis, while interesting with one variable, 
becomes truly fascinating and challenging when several variables are involved. 
Researchers in the biological, physical, and social sciences frequently collect mea
surements on several variables. Modem computer packages readily provide the· 
numerical results to rather complex statistical analyses. We have tried to provide 
readers with the supporting knowledge necessary for making proper interpreta
tions, selecting appropriate techniques, and understanding their strengths and 
weaknesses. We hope our discussions wiII meet the needs of experimental scien
tists, in a wide variety of subject matter areas, as a readable introduction to the 
statistical analysis of multivariate observations. 

Our aim is to present the concepts and methods of muItivariate analysis at a level 
that is readily understandable by readers who have taken two or more statistics 
courses. We emphasize the applications of multivariate methods and, conse
quently, have attempted to make the mathematics as palatable as possible. We 
avoid the use of calculus. On the other hand, the concepts of a matrix and of ma
trix manipulations are important. We do not assume the reader is familiar with 
matrix algebra. Rather, we introduce matrices as they appear naturally in our 
discussions, and we then show how they simplify the presentation of muItivari
ate models and techniques. 

The introductory account of matrix algebra, in Chapter 2, highlights the 
more important matrix algebra results as they apply to multivariate analysis. The 
Chapter 2 supplement provides a summary of matrix algebra results for those 
with little or no previous exposure to the subject. This supplementary material 
helps make the book self-contained and is used to complete proofs. The proofs 
may be ignored on the first reading. In this way we hope to make the book ac
cessible to a wide audience. 

In our attempt to make the study of muItivariate analysis appealing to a 
large audience of both practitioners and theoreticians, we have had to sacrifice 

xv 
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onsistency of level. Some sections are harder than others. In particular, we 
~~ve summarized a volumi?ous amount .of materi~l?n regres~ion ~n Chapter 7. 
The resulting presentation IS rather SUCCInct and difficult the fIrst ~Ime throu~h. 
We hope instructors will be a?le to compensat.e for the une~enness In l~vel by JU
diciously choosing those s~ctIons, and subsectIOns, appropnate for theIr students 
and by toning them tlown If necessary. 

ORGANIZATION AND APPROACH 

The methodological "tools" of multlvariate analysis are contained in Chapters 5 
through 12. These chapters represent the heart of the book, but they cannot be 
assimilated without much of the material in the introd~ctory Chapters 1 thr?~gh 
4. Even those readers with a good kno~ledge of matrix algebra or those willing 
t accept the mathematical results on faIth should, at the very least, peruse Chap
o 3 "Sample Geometry," and Chapter 4, "Multivariate Normal Distribution." 

ter , Our approach in the methodological ~hapters is to ~eep the discussion.di-
t and uncluttered. Typically, we start with a formulatIOn of the population 

re~dels delineate the corresponding sample results, and liberally illustrate every
:'ing ~ith examples. The exa~ples are of two types: those that are simple and 

hose calculations can be easily done by hand, and those that rely on real-world 
~ata and computer software. These will provide an opportunity to (1) duplicate 
our analyses, (2) carry out the analyses dictated by exercises, or (3) analyze the 
data using methods other than the ones we have used or suggest~d. . 

The division of the methodological chapters (5 through 12) Into three umts 
llo~s instructors some flexibility in tailoring a course to their needs. Possible 

a uences for a one-semester (two quarter) course are indicated schematically. 
seq . . . fr h t Each instructor will undoubtedly omit certam sectIons om some c ap ers 
to cover a broader collection of topics than is indicated by these two choices. 

Getting Started 

Chapters 1-4 

For most students, we would suggest a quick pass through the first four 
hapters (concentrating primarily on the material in Chapter 1; Sections 2.1, 2.2, 

~.3, 2.5, 2.6, and 3.6; and the "assessing normality" material in Chapter ~) fol
lowed by a selection of methodological topics. For example, one mIght dISCUSS 
the comparison of mean vectors, principal components, factor analysis, discrimi
nant analysis and clustering. The di~cussions could feature the many "worke? 
out" examples included in these sections of the text. Instructors may rely on dI-

Preface xvii 

agrams and verbal descriptions to teach the corresponding theoretical develop
ments. If the students have uniformly strong mathematical backgrounds, much of 
the book can successfully be covered in one term. 

We have found individual data-analysis projects useful for integrating ma
terial from several of the methods chapters. Here, our rather complete treatments 
of multivariate analysis of variance (MANOVA), regression analysis, factor analy
sis, canonical correlation, discriminant analysis, and so forth are helpful, even 
though they may not be specifically covered in lectures. 

CHANGES TO THE SIXTH EDITION 

New material. Users of the previous editions will notice several major changes 
in the sixth edition. 

• Twelve new data sets including national track records for men and women, 
psychological profile scores, car body assembly measurements, cell phone 
tower breakdowns, pulp and paper properties measurements, Mali family 
farm data, stock price rates of return, and Concho water snake data. 

• Thirty seven new exercises and twenty revised exercises with many of these 
exercises based on the new data sets. 

• Four new data based examples and fifteen revised examples. 

• Six new or expanded sections: 

1. Section 6.6 Testing for Equality of Covariance Matrices 

2. Section 11.7 Logistic Regression and Classification 

3. Section 12.5 Clustering Based on Statistical Models 

4. Expanded Section 6.3 to include "An Approximation to the, Distrib
ution of T2 for Normal Populations When Sample Sizes are not Large" 

5. Expanded Sections 7.6 and 7.7 to include Akaike's Information Cri
terion 

6. Consolidated previous Sections 11.3 and 11.5 on two group discrimi
nant analysis into single Section 11.3 

Web Site. To make the methods of multivariate analysis more prominent 
in the text, we have removed the long proofs of Results 7.2,7.4,7.10 and 10.1 
and placed them on a web site accessible through www.prenhall.comlstatistics. 
Click on "Multivariate Statistics" and then click on our book. In addition, all 
full data sets saved as ASCII files that are used in the book are available on 
the web site. 

Instructors' Solutions Manual. An Instructors Solutions Manual is available 
on the author's website accessible through www.prenhall.comlstatistics.For infor
mation on additional for-sale supplements that may be used with the book or 
additional titles of interest, please visit the Prentice Hall web site at www.pren
hall. corn. 
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Chapter 

ASPECTS OF MULTIVARIATE 
ANALYSIS 

1.1 Introduction 

Scientific inquiry is an iterative learning process. Objectives pertaining to the expla
nation of a social or physical phenomenon must be specified and then tested by 
gathering and analyzing data. In turn, an analysis of the data gathered by experi
mentation or observation will usually suggest a modified explanation of the phe
nomenon. Throughout this iterative learning process, variables are often added or 
deleted from the study. Thus, the complexities of most phenomena require an inves
tigator to collect observations on many different variables. This book is concerned 
with statistical methods designed to elicit information from these kinds of data sets. 
Because the data include simultaneous measurements on many variables, this body 

. of methodology is called multivariate analysis. 
The need to understand the relationships between many variables makes multi

variate analysis an inherently difficult subject. Often, the human mind is over
whelmed by the sheer bulk of the data. Additionally, more mathematics is required 
to derive multivariate statistical techniques for making inferences than in a univari
ate setting. We have chosen to provide explanations based upon algebraic concepts 
and to avoid the derivations of statistical results that require the calculus of many 
variables. Our objective is to introduce several useful multivariate techniques in a 
clear manner, making heavy use of illustrative examples and a minimum of mathe
matics. Nonetheless, some mathematical sophistication and a desire to think quanti
tatively will be required. 

Most of our emphasis will be on the analysis of measurements obtained with
out actively controlling or manipulating any of the variables on which the mea
surements are made. Only in Chapters 6 and 7 shall we treat a few experimental 
plans (designs) for generating data that prescribe the active manipulation of im
portant variables. Although the experimental design is ordinarily the most impor
tant part of a scientific investigation, it is frequently impossible to control the 
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generation of appropriate data in certain disciplines. (This is true, for example, in 
business, economics, ecology, geology, and sociology.) You should consult [6] and 
[7] for detailed accounts of design principles that, fortunately, also apply to multi
variate situations. 

It will become increasingly clear that many multivariate methods are based 
upon an underlying proBability model known as the multivariate normal distribution. 
Other methods are ad hoc in nature and are justified by logical or commonsense 
arguments. Regardless of their origin, multivariate techniques must, invariably, 
be implemented on a computer. Recent advances in computer technology have 
been accompanied by the development of rather sophisticated statistical software 
packages, making the implementation step easier. 

Multivariate analysis is a "mixed bag." It is difficult to establish a classification 
scheme for multivariate techniques that is both widely accepted and indicates the 
appropriateness of the techniques. One classification distinguishes techniques de
signed to study interdependent relationships from those designed to study depen
dent relationships. Another classifies techniques according to the number of 
populations and the number of sets of variables being studied. Chapters in this text 
are divided into sections according to inference about treatment means, inference 
about covariance structure, and techniques for sorting or grouping. This should not, 
however, be considered an attempt to place each method into a slot. Rather, the 
choice of methods and the types of analyses employed are largely determined by 
the objectives of the investigation. In Section 1.2, we list a smaller number of 
practical problems designed to illustrate the connection between the choice of a sta
tistical method and the objectives of the study. These problems, plus the examples in 
the text, should provide you with an appreciation of the applicability of multivariate 
techniques acroSS different fields. 

The objectives of scientific investigations to which multivariate methods most 
naturally lend themselves include the following: 
L Data reduction or structural simplification. The phenomenon being studied is 

represented as simply as possible without sacrificing valuable information. It is 
hoped that this will make interpretation easier. 

2. Sorting and grouping. Groups of "similar" objects or variables are created, 
based upon measured characteristics. Alternatively, rules for classifying objects 
into well-defined groups may be required. 

3. Investigation of the dependence among variables. The nature of the relation
ships among variables is of interest. Are all the variables mutually independent 
or are one or more variables dependent on the others? If so, how? 

4. Prediction. Relationships between variables must be determined for the pur
pose of predicting the values of one or more variables on the basis of observa
tions on the other variables. 

5. Hypothesis construction and testing. Specific statistical hypotheses, formulated 
in terms of the parameters of multivariate populations, are tested. This may be 
done to validate assumptions or to reinforce prior convictions. 

We conclude this brief overview of multivariate analysis with a quotation from 
F. H. C Marriott [19], page 89. The statement was made in a discussion of cluster 
analysis, but we feel it is appropriate for a broader range of methods. You should 
keep it in mind whenever you attempt or read about a data analysis. It allows one to 
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maintain a proper perspective and not be overwhelmed by the elegance of some of 
the theory: 

If the results disagree with informed opinion, do not admit a simple logical interpreta
tion, and do not show up clearly in a graphical presentation, they are probably wrong. 
There is no magic about numerical methods, and many ways in which they can break 
down. They are a valuable aid to the interpretation of data, not sausage machines 
automatically transforming bodies of numbers into packets of scientific fact. 

1.2 Applications of Multivariate Techniques 
The published applications of multivariate methods have increased tremendously in 
recent years. It is now difficult to cover the variety of real-world applications of 
these methods with brief discussions, as we did in earlier editions of this book. How
ever, in order to give some indication of the usefulness of multivariate techniques, 
we offer the following short descriptions_of the results of studies from several disci
plines. These descriptions are organized according to the categories of objectives 
given in the previous section. Of course, many of our examples are multifaceted and 
could be placed in more than one category. 

Data reduction or simplification 

• Using data on several variables related to cancer patient responses to radio
therapy, a simple measure of patient response to radiotherapy was constructed. 
(See Exercise 1.15.) 

• ltack records from many nations were used to develop an index of perfor
mance for both male and female athletes. (See [8] and [22].) 

• Multispectral image data collected by a high-altitude scanner were reduced to a 
form that could be viewed as images (pictures) of a shoreline in two dimensions. 
(See [23].) 

• Data on several variables relating to yield and protein content were used to cre
ate an index to select parents of subsequent generations of improved bean 
plants. (See [13].) 

• A matrix of tactic similarities was developed from aggregate data derived from 
professional mediators. From this matrix the number of dimensions by which 
professional mediators judge the tactics they use in resolving disputes was 
determined. (See [21].) 

Sorting and grouping 

• Data on several variables related to computer use were employed to create 
clusters of categories of computer jobs that allow a better determination of 
existing (or planned) computer utilization. (See [2].) 

• Measurements of several physiological variables were used to develop a screen
ing procedure that discriminates alcoholics from nonalcoholics. (See [26].) 

• Data related to responses to visual stimuli were used to develop a rule for sepa
rating people suffering from a multiple-sclerosis-caused visual pathology from 
those not suffering from the disease. (See Exercise 1.14.) 
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• The U.S. Internal Revenue Service uses data collected from tax returns to sort 
taxpayers into two groups: those that will be audited and those that will not. 
(See [31].) 

Investigation of the dependence among variables 

• Data on several variables were used to identify factors that were responsible for 
client success in hiring external consultants. (See [12].) 

• Measurements of variables related to innovation, on the one hand, and vari
ables related to the business environment and business organization, on the 
other hand, were used to discover why some firms are product innovators and 
some firms are not. (See [3].) 

• Measurements of pulp fiber characteristics and subsequent measurements of . 
characteristics of the paper made from them are used to examine the relations 
between pulp fiber properties and the resulting paper properties. The goal is to 
determine those fibers that lead to higher quality paper. (See [17].) 

• The associations between measures of risk-taking propensity and measures of 
socioeconomic characteristics for top-level business executives were used to 
assess the relation between risk-taking behavior and performance. (See [18].) 

. Prediction 

• The associations between test scores, and several high school performance vari
ables, and several college performance variables were used to develop predic
tors of success in college. (See [10).) 

• Data on several variables related to the size distribution of sediments were used to 
develop rules for predicting different depositional environments. (See [7] and [20].) 

• Measurements on several accounting and financial variables were used to de
velop a method for identifying potentially insolvent property-liability insurers. 
(See [28].) 

• cDNA microarray experiments (gene expression data) are increasingly used to 
study the molecular variations among cancer tumors. A reliable classification of 
tumors is essential for successful diagnosis and treatment of cancer. (See [9].) 

Hypotheses testing 

• Several pollution-related variables were measured to determine whether levels 
for a large metropolitan area were roughly constant throughout the week, or 
whether there was a noticeable difference between weekdays and weekends. 
(See Exercise 1.6.) 

• Experimental data on several variables were used to see whether the nature of 
the instructions makes any difference in perceived risks, as quantified by test 
scores. (See [27].) 

• Data on many variables were used to investigate the differences in structure of 
American occupations to determine the support for one of two competing soci
ological theories. (See [16] and [25].) 

• Data on several variables were used to determine whether different types of 
firms in newly industrialized countries exhibited different patterns of innova
tion. (See [15].) 

T 
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The preceding descriptions offer glimpses into the use of multivariate methods 
in widely diverse fields. 

1.3 The Organization of Data 
Throughout this text, we are going to be concerned with analyzing measurements 
made on several variables or characteristics. These measurements (commonly called 
data) must frequently be arranged and displayed in various ways. For example, 
graphs and tabular arrangements are important aids in data analysis. Summary num
bers, which quantitatively portray certain features of the data, are also necessary to 
any description. 

We now introduce the preliminary concepts underlying these first steps of data 
organization. 

Arrays 

Multivariate data arise whenever an investigator, seeking to understand a social or 
physical phenomenon, selects a number p ~ 1 of variables or characters to record . 
The values of these variables are all recorded for each distinct item, individual, or 
experimental unit. 

We will use the notation Xjk to indicate the particular value of the kth variable 
that is observed on the jth item, or trial. That is, 

Xjk = measurement ofthe kth variable on the jth item 

Consequently, n measurements on p variables can be displayed as follows: 

Variable 1 Variable 2 Variablek Variable p 
Item 1: Xu X12 Xlk xl p 
Item 2: X21 X22 X2k X2p 

Itemj: Xjl Xj2 Xjk Xjp 

Itemn: Xnl Xn2 Xnk xnp 

Or we can display these data as a rectangular array, called X, of n rows and p 
columns: 

Xll X12 Xlk xl p 

X21 Xn X2k X2p 

X 
Xjl Xj2 Xjk Xjp 

Xnl Xn2 Xnk x np 

The array X, then, contains the data consisting of all of .the observations on all of 
the variables. 
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Example 1.1 (A data array) A selection of four receipts from a university bookstore 
was obtained in order to investigate the nature of book sales. Each receipt provided, 
among other things, the number of books sold and the total amount of each sale. Let 
the first variable be total dollar sales and the second variable be number of books 
sold. Then we can re&ard the corresponding numbers on the receipts as four mea
surements on two variables. Suppose the data, in tabular form, are 

Variable 1 (dollar sales): 42 52 48 58 
Variable 2 (number of books): 4 5 4 3 

Using the notation just introduced, we have 

Xll = 42 X2l = 52 X3l = 48 X4l = 58 
X12 = 4 X22 = 5 X32 = 4 X42 = 3 

and the data array X is 

l42 4l X = 52 5 
48 4 
58 3 

with four rows and two columns. • 
Considering data in the form of arrays facilitates the exposition of the subject 

matter and allows numerical calculations to be performed in an orderly and efficient 
manner. The efficiency is twofold, as gains are attained in both (1) describing nu
merical calculations as operations on arrays and (2) the implementation of the cal
culations on computers, which now use many languages and statistical packages to 
perform array operations. We consider the manipulation of arrays of numbers in 
Chapter 2. At this point, we are concerned only with their value as devices for dis
playing data. 

Descriptive Statistics 

A large data set is bulky, and its very mass poses a serious obstacle to any attempt to 
visually extract pertinent information. Much of the information contained in the 
data can be assessed by calculating certain summary numbers, known as descriptive 
statistics. For example, the arithmetic average, or sample mean, is a descriptive sta
tistic that provides a measure of location-that is, a "central value" for a set of num
bers. And the average of the squares of the distances of all of the numbers from the 
mean provides a measure of the spread, or variation, in the numbers. 

We shall rely most heavily on descriptive statistics that measure location, varia
tion, and linear association. The formal definitions of these quantities follow. 

Let Xll, X2I>"" Xnl be n measurements on the first variable. Then the arith
metic average of these measurements is 

r 
I 

, 

I 
I 
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If the n measurements represent a subset of the full set of measurements that 
might have been observed, then Xl is also called the sample mean for the first vari
able. We adopt this terminology because the bulk of this book is devoted to proce
dUres designed to analyze samples of measurements from larger collections. 

The sample mean can be computed from the n measurements on each of the 
p variables, so that, in general, there will be p sample means: 

1 n 

Xk = - 2: Xjk 
n j=l 

k = 1,2, ... ,p (1-1) 

A measure of spread is provided by the sample variance, defined for n measure
ments on the first variable as 

2 1~( _2 
SI = - "'" Xjl - xd 

n j=l 

where Xl is the sample mean of the XiI'S. In general, for p variables, we have 

2 1 ~ ( _ )2 
Sk = - "'" Xjk - Xk 

n j=l . 
k = 1,2, ... ,p (1-2) 

1\vo comments are in order. First, many authors define the sample variance with a 
divisor of n - 1 rather than n. Later we shall see that there are theoretical reasons 
for doing this, and it is particularly appropriate if the number of measurements, n, is 
small. The two versions of the sample variance will always be differentiated by dis
playing the appropriate expression. 

Second, although the S2 notation is traditionally used to indicate the sample 
variance, we shall eventually consider an array of quantities in which the sample vari
ances lie along the main diagonal. In this situation, it is convenient to use double 
subscripts on the variances in order to indicate their positions in the array. There
fore, we introduce the notation Skk to denote the same variance computed from 
measurements on the kth variable, and we have the notational identities 

k=I,2, ... ,p (1-3) 

The square root of the sample variance, ~, is known as the sample standard 
deviation. This measure of variation uses the same units as the observations. 

Consider n pairs of measurements on each of variables 1 and 2: 

[xu], [X2l], •.. , [Xnl] 
X12 X22 X n 2 

That is, Xjl and Xj2 are observed on the jth experimental item (j = 1,2, ... , n). A 
measure of linear association between the measurements of variables 1 and 2 is pro
vided by the sample covariance 
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or the average product of the deviations from their respective means. If large values for 
one variable are observed in conjunction with large values for the other variable, and 
the small values also occur together, sl2 will be positive. If large values from one vari
able occur with small values for the other variable, Sl2 will be negative. If there is no 
particular association between the values for the two variables, Sl2 will be approxi
mately zero. 

The sample covariance 

1 n _ ~ 
Sik = -:L (Xji - Xi)(Xjk - Xk) i = 1,2, ... ,p, k = 1,2, ... ,p (1-4) 

n j=l 

measures the association between the ·ith and kth variables. We note that the covari
ance reduces to the sample variance when i = k. Moreover, Sik = Ski for all i and k .. 

The final descriptive statistic considered here is the sample correlation coeffi
cient (or Pearson's product-moment correlation coefficient, see [14]). This measure 
of the linear association between two variables does not depend on the units of 
measurement. The sample correlation coefficient for the ith and kth variables is 
defined as 

n 

:L (Xji - x;) (Xjk - Xk) 
j=l 

for i = 1,2, ... , p and k = 1,2, ... , p. Note rik = rki for all i and k. 

(1-5) 

The sample correlation coefficient is a standardized version of the sample co
variance, where the product of the square roots of the sample variances provides the 
standardization. Notice that rik has the same value whether n or n - 1 is chosen as 
the common divisor for Sii, sa, and Sik' 

The sample correlation coefficient rik can also be viewed as a sample co variance. 
Suppose the original values 'Xji and Xjk are replaced by standardized values 
(Xji - xi)/~and(xjk - xk)/~.Thestandardizedvaluesarecommensurablebe
cause both sets are centered at zero and expressed in standard deviation units. The sam
ple correlation coefficient is just the sample covariance of the standardized observations. 

Although the signs of the sample correlation and the sample covariance are the 
same, the correlation is ordinarily easier to interpret because its magnitude is 
bounded. To summarize, the sample correlation r has the following properties: 

1. The value of r must be between -1 and + 1 inclusive. 

2. Here r measures the strength of the linear association. If r = 0, this implies a 
lack of linear association between the components. Otherwise, the sign of r indi
cates the direction of the association: r < 0 implies a tendency for one value in 
the pair to be larger than its average when the other is smaller than its average; 
and r > 0 implies a tendency for one value of the pair to be large when the 
other value is large and also for both values to be small together. 

3. The value of rik remains unchanged if the measurements of the ith variable 
are changed to Yji = aXji + b, j = 1,2, ... , n, and the values of the kth vari
able are changed to Yjk = CXjk + d, j == 1,2, ... , n, provided that the con
stants a and c have the same sign. 

f 
if 
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The ~u~ntities Sik and rik do not, in general, convey all there is to know about 
the aSSOCIatIOn between two variables. Nonlinear associations can exist that are not 
revealed .by these ~es~riptive statistics. Covariance and corr'elation provide mea
sures of lmear aSSOCIatIOn, or association along a line. Their values are less informa
tive ~~r other kinds of association. On the other hand, these quantities can be very 
sensIttve to "wild" observations ("outIiers") and may indicate association when in 
fact, little exists. In spite of these shortcomings, covariance and correlation coeffi
cien~s are routi':lel.y calculated and analyzed. They provide cogent numerical sum
man~s ~f aSSOCIatIOn ~hen the data do not exhibit obvious nonlinear patterns of 
aSSOCIation and when WIld observations are not present. 

. Suspect observa.tions must be accounted for by correcting obvious recording 
mIstakes and by takmg actions consistent with the identified causes. The values of 
Sik and rik should be quoted both with and without these observations. 

The sum of squares of the deviations from the mean and the sum of cross
product deviations are often of interest themselves. These quantities are 

and 

n 

n 

Wkk = 2: (Xjk - Xk)2 
j=I 

Wik = 2: (Xji - x;) (Xjk - Xk) 
j=l 

k = 1,2, ... ,p (1-6) 

i = 1,2, ... ,p, k = 1,2, ... ,p (1-7) 

The descriptive statistics computed from n measurements on p variables can 
also be organized into arrays. 

Arrays of Basic Descriptive Statistics 

Sample means i~m 

[u Sl2 

'" ] Sample variances 
Sn = S~l S22 S2p 

(1-8) and covariances 

Spl sp2 spp 

R ~ l~' 
r12 

'" ] Sample correlations 1 r2p 

'pI 'p2 1 
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The sample mean array is denoted by X, the sample variance and covari~nce 
array by the capital letter Sn, and the sample correlation array by R. The subscrIpt ~ 
on the array Sn is a mnemonic device used to remind you that n is employed as a di
visor for the elements Sik' The size of all of the arrays is determined by the number 

of variables, p. 
The arrays Sn and R consist of p rows and p columns. The array x is a single 

column with p rows. The first subscript on an entry in arrays Sn and R indicates 
the row; the second subscript indicates the column. Since Sik = Ski and rik = rki 

for all i and k, the entries in symmetric positions about the main northwest
southeast diagonals in arrays Sn and R are the same, and the arrays are said to be 

symmetric. 

Example 1.2 (The arrays ;c, SR' and R for bivariate data) Consider the data intro
duced in Example 1.1. Each. receipt yields a pair of measurements, total dollar 
sales, and number of books sold. Find the arrays X, Sn' and R. 

Since there are four receipts, we have a total of four measurements (observa-

tions) on each variable. 
The-sample means are 

4 

Xl = 1 2: Xjl = 1(42 + 52 + 48 + 58) = 50 
j=l 

4 

X2 = 12: Xj2 = ~(4 + 5 + 4 + 3) = 4 
j=l 

The sample variances and covariances are 
4 

Sll = ~ 2: (Xjl - xd 
j=l 

and 

= ~«42 - 50)2 + (52 - 50l + (48 - 50)2 + (58 - 50)2) = 34 

4 

S22 = ~ 2: (Xj2 - xd 
j=l 

~ 1«4 - 4f + (5 - 4? + (4 - 4f + (3 - 4)2) = .5 

4 

Sl2 = ~ 2: (Xjl - XI)( Xj2 - X2) 
j=l 

= ~«42 - 50)(4 - 4) + (52 - 50)(5 - 4) 

+ (48 - 50)(4 - 4) + (58 - 50)(3 - 4» = -1.5 

S21 = Sl2 

[ 
34 -1.5J 

Sn = -1.5 5 
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so 

The sample correlation is 

Sl2 
r12 = ---,=--vs;; VS; 
r21 = rl2 

R _ [ 1 
-.36 

Graphical Techniques 

-1.5 . 
V34 v'3 = -.36 

-.3~J 
lE 

Plot~ are im~ortant, but frequently neglected, aids in data analysis. Although it is im
possIble to simultaneously plot all the measurements made on several variables and 
study ~he configurations, plots of individual variables and plots of pairs of variables 
can stIll be very informative. Sophisticated computer programs and display equip
n;tent al.low on~ the luxury of visually examining data in one, two, or three dimen
SIOns WIth relatIve ease. On the other hand, many valuable insights can be obtained 
from !he data by const~uctin~ plots with paper and pencil. Simple, yet elegant and 
~ffectIve, met~ods for ~IsplaYIllg data are available in [29]. It is good statistical prac
tIce to plot paIrs of varIables and visually inspect the pattern of association. Consid
er, then, the following seven pairs of measurements on two variables: 

Variable 1 (Xl): 3 4 2 6 8 2 5 

Variable2 (X2): 5 5.5 4 7 10 5 7.5 

. Thes~ data ~re ?lotted as seven points in two dimensions (each axis represent
Ill~ a vanable) III FIgure 1.1. The coordinates of the points are determined by the 
patr~d measurements: (3,5), (4,5.5), ... , (5,7.5). The resulting two-dimensional 
plot IS known as a scatter diagram or scatter plot. 

X2 X2 

• 10 10 • 

• 8 8 

! • • • 
'" 6 6 :a • • CS •• • • 
Cl • • 4 4 

2 2 

0 4 6 8 

• ! • ! • ! ! I .. XI 
2 4 6 8 10 Figure 1.1 A scatter plot 

Dot diagram and marginal dot diagrams. 

lE 



• 
12 Chapter 1 Aspects of Multivariate Analysis 

Also shown in Figure 1.1 are separate plots of the observed values of variable 1 
and the observed values of variable 2, respectively. These plots are called (marginal) 
dot diagrams. They can be obtained from the original observations or by projecting 
the points in the scatter diagram onto each coordinate axis. 

The information contained in the single-variable dot diagrams can be used to 
calculate the sample means Xl and X2 and the sample variances SI 1 and S22' (See Ex
ercise 1.1.) The scatter diagram indicates the orientation of the points, and their co
ordinates can be used to calculate the sample covariance s12' In the scatter diagram 
of Figure 1.1, large values of Xl occur with large values of X2 and small values of Xl 

with small values of X2' Hence, S12 will be positive. 
Dot diagrams and scatter plots contain different kinds of information. The in

formation in the marginal dot diagrams is not sufficient for constructing the scatter 
plot. As an illustration, suppose the data preceding Figure 1.1 had been paired dif
ferently, so that the measurements on the variables Xl and X2 were as follows: 

Variable 1 (Xl): 

Variable 2 (X2): 

5 

5 

4 

5.5 

6 

4 

2 

7 

2 

10 

8 

5 

3 

7.5 

(We have simply rearranged the values of variable 1.) The scatter and dot diagrams 
for the "new" data are shown in Figure 1.2. Comparing Figures 1.1 and 1.2, we find 
that the marginal dot diagrams are the same, but that the scatter diagrams are decid
edly different. In Figure 1.2, large values of Xl are paired with small values of X2 and 
small values of Xl with large values of X2' Consequently, the descriptive statistics for 
the individual variables Xl, X2, SI 1> and S22 remain unchanged, but the sample covari
ance S12, which measures the association between pairs of variables, will now be 
negative. 

The different orientations of the data in Figures 1.1 and 1.2 are not discernible 
from the marginal dot diagrams alone. At the same time, the fact that the marginal 
dot diagrams are the same in the two cases is not immediately apparent from the 
scatter plots. The two types of graphical procedures complement one another; they 
are nqt competitors. 

The next two examples further illustrate the information that can be conveyed 
by a graphic display. 

X2 X2 

• 10 10 • 

• 8 8 • • • 
• 6 6 • • • • • 
• 4 4 • 

2 2 

0 2 4 6 8 10 
XI 

• Figure 1.2 Scatter plot 
t • t • t t I and dot diagrams for 
2 4 6 8 10 

... XI 
rearranged data. 

f 

1 
I 
I 
f 
• 
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Example 1.3 (The effect of unusual observations on sample correlations) Some fi- . 
nancial data representing jobs and productivity for the 16 largest publishing firms 
appeared in an article in Forbes magazine on April 30, 1990. The data for the pair of 
variables Xl = employees Gobs) and X2 = profits per employee (productivity) are 
graphed in Figure 1.3. We have labeled two "unusual" observations. Dun & Brad
street is the largest firm in terms of number of employees, but is "typical" in terms of 
profits per employee. TIme Warner has a "typical" number of employees, but com
paratively small (negative) profits per employee. 

X2 

40 

• 8';,' • 
S,§ 30 

- 0 • ~::: • '-' 0 
20 ~ ~ Co] 

tE ~ 
£~ 10 , 

0 

-10 
0 

• • Dun & Bradstreet • • • • 
• • • 
Time Warner 

Employees (thousands) 

Figure 1.3 Profits per employee 
and number of employees for 16 
publishing firms. 

The sample correlation coefficient computed from the values of Xl and X2 is 

{ 

-.39 for all 16 firms 

-.56 for all firms but Dun & Bradstreet 
r12 = _ .39 for all firms but Time Warner 

-.50 for all firms but Dun & Bradstreet and Time Warner 

It is clear that atypical observations can have a considerable effect on the sample 
correlation coefficient. • 
Example 1.4 (A scatter plot for baseball data) In a July 17,1978, article on money in 
sports, Sports Illustrated magazine provided data on Xl = player payroll for Nation
al League East baseball teams. 

We have added data on X2 = won-lost percentage "for 1977. The results are 
given in Table 1.1. 

The scatter plot in Figure 1.4 supports the claim that a championship team can 
be bought. Of course, this cause-effect relationship cannot be substantiated, be
cause the experiment did not include a random assignment of payrolls. Thus, statis
tics cannot answer the question: Could the Mets have won with $4 million to spend 
on player salaries? 
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Table 1.1 1977 Salary and Final Record for the National League East 

Team 

Philadelphia Phillies 
Pittsburgh Pirates 
St. Louis Cardinals 
Chicago Cubs 
Montreal Expos 
New York Mets 

o 

• 
•• • 

Xl = player payroll 

3,497,900 
2,485,475 
1,782,875 
1,725,450 
1,645,575 
1,469,800 

• • 

Player payroll in millions of dollars 

X2= won-lost 
percentage 

.623 

.593 

.512 

.500 

.463 

.395 

Figure 1.4 Salaries 
and won-lost 
percentage from 
Table 1.1. 

To construct the scatter plot in Figure 1.4, we have regarded the six paired ob
servations in Table 1.1 as the coordinates of six points in two-dimensional space. The 
figure allows us to examine visually the grouping of teams with respect to the vari
ables total payroll and won-lost percentage. -

Example I.S (Multiple scatter plots for paper strength measurements) Paper is man
ufactured in continuous sheets several feet wide. Because of the orientation of fibers 
within the paper, it has a different strength when measured in the direction pro
duced by the machine than when measured across, or at right angles to, the machine 
direction. Table 1.2 shows the measured values of 

Xl = density (grams/cubic centimeter) 

X2 = strength (pounds) in the machine direction 

X3 = strength (pounds) in the cross direction 

A novel graphic presentation of these data appears in Figure 1.5, page' 16. The 
scatter plots are arranged as the off-diagonal elements of a covariance array and 
box plots as the diagonal elements. The latter are on a different scale with this 
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Table 1.2 Paper-Quality Measurements 

Strength 

Specimen Density Machine direction Cross direction 

1 .801 121.41 70.42 
2 .~24 127.70 72.47 
3 .841 129.20 78.20 
4 .816 131.80 74.89 
5 .840 135.10 71.21 
6 .842 131.50 78.39 
7 .820 126.70 69.02 
8 .802 115.10 73.10 
9 .828 130.80 79.28 

10 .819 124.60 76.48 
11 .826 118.31 70.25 
12 .802 114.20 72.88 
13 .810 120.30 68.23 
14 .802 115.70 68.12 
15 .832 117.51 71.62 
16 .796 109.81 53.10 
17 .759 109.10 50.85 
18 .770 115.10 51.68 
19 .759 118.31 50.60 
20 .772 112.60 53.51 
21 .806 116.20 56.53 
22 .803 118.00 70.70. 
23 .845 131.00 74.35 
24 .822 125.70 68.29 
25 .971 126.10 72.10 
26 .816 125.80 70.64 
27 .836 125.50 76.33 
28 .815 127.80 76.75 
29 .822 130.50 80.33 
30 .822 127.90 75.68 
31 .843 123.90 78.54 
32 .824 124.10 71.91 
33 .788 120.80 68.22 
34 .782 107.40 54.42 
35 .795 120.70 70.41 
36 .805 121.91 73.68 
37 .836 122.31 74.93 
38 .788 110.60 53.52 
39 .772 103.51 48.93 
40 .776 110.71 53.67 
41 .758 113.80 52.42 

Source: Data courtesy of SONOCO Products Company. 
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Figure 1.5 Scatter plots and boxplots of paper-quality data from Thble 1.2. 

software so we use only the overall shape to provide information on symme~ry 
and possible outliers for each individual characteristic. The scatter plots can be m
spected for patterns and unusual observations. In Figure 1.5, there is one unusual 
observation: the density of specimen 25. Some of the scatter plots have patterns 
suggesting that there are two separate clumps of observations. 

These scatter plot arrays are further pursued in our discussion of new software 

graphics in the next section. -

In the general multiresponse situation, p variables are simultaneously rec~rded 
items. Scatter plots should be made for pairs of important variables and, If the oon . 

task is not too great to warrant the effort, for all pairs. . 
Limited as we are to a three:dimensional world, we cannot always picture an 

entire set of data. However, two further geom7tri~ repres~nta~ions of t?e. data pro
vide an important conceptual framework for Vlewmg multIvanable statlstlc~l meth
ods. In cases where it is possible to capture the essence of the data m three 
dimensions, these representations can actually be graphed. 
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n Points in p Dimensions (p-Dimensional Scatter Plot). Consider the natural exten
sion of the scatter plot to p dimensions, where the p measurements 

on the jth item represent the coordinates of a point in p-dimensional space. The co
ordinate axes are taken to correspond to the variables, so that the jth point is Xjl 

units along the first axis, Xj2 units along the second, ... , Xjp units along the pth axis . 
The resulting plot with n points not only will exhibit the overall pattern of variabili
ty, but also will show similarities (and differences) among the n items. Groupings of 
items will manifest themselves in this representation. 

The next example illustrates a three-dimensional scatter plot. 

Example 1.6 (Looking for lower-dimensional structure) A zoologist obtained mea
surements on n = 25 lizards known scientifically as Cophosaurus texanus. The 
weight, or mass, is given in grams while the snout-vent length (SVL) and hind limb 
span (HLS) are given in millimeters. The data are displayed in Table 1.3. 

Although there are three size measurements, we can ask whether or not most of 
the variation is primarily restricted to two dimensions or even to one dimension. 

To help answer questions regarding reduced dimensionality, we construct the 
three-dimensional scatter plot in Figure 1.6. Clearly most of the variation is scatter 
about a one-dimensional straight line. Knowing the position on a line along the 
major axes of the cloud of poinfs would be almost as good as knowing the three 
measurements Mass, SVL, and HLS. 

However, this kind of analysis can be misleading if one variable has a much 
larger variance than the others. Consequently, we first calculate the standardized 
values, Zjk = (Xjk - Xk)/~' so the variables contribute equally to the variation 

Table 1.3 Lizard Size Data 

Lizard Mass SVL HLS Lizard Mass SVL HLS 

1 5.526 59.0 113.5 14 10.067 73.0 136.5 
2 10.401 75.0 142.0 15 10.091 73.0 135.5 
3 9.213 69.0 124.0 16 10.888 77.0 139.0 
4 8.953 67.5 125.0 17 7.610 61.5 118.0 
5 7.063 62.0 129.5 18 7.733 66.5 133.5 
6 6.610 62.0 123.0 19 12.015 79.5 150.0 
7 11.273 74.0 140.0 20 10.049 74.0 137.0 
8 2.447 47.0 97.0 21 5.149 59.5 116.0 
9 15.493 . 86.5 162.0 22 9.158 68.0 123.0 
10 9.004 69.0 126.5 23 12.132 75.0 141.0 
11 8.199 70.5 136.0 24 6.978 66.5 117.0 
12 6.601 64.5 116.0 25 6.890 63.0 117.0 
13 7.622 67.5 135.0 

Source: Data courtesy of Kevin E. Bonine. 
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Figure 1.8 repeats the scatter plot for the original variables but with males 
marked by solid circles and females by open circles. Clearly, males are typically larg
er than females. 
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Figure 1.8 3D scatter plot of male and female lizards. 

\oTl 
~ 

• 
p Points in n Dimensions. The n observations of the p variables can also be re
garded as p points in n-dimensional space. Each column of X determines one of the 
points. The ith column, 

consisting of all n measurements on the ith variable, determines the ith point. 
In Chapter 3, we show how the closeness of points in n dimensions can be relat

ed to measures of association between the corresponding variables . 

1.4 Data Displays and Pictorial Representations 
The rapid development of powerful personal computers and workstations has led to 
a proliferation of sophisticated statistical software for data analysis and graphics. It 
is often possible, for example, to sit at one's desk and examine the nature of multidi
mensional data with clever computer-generated pictures. These pictures are valu
able aids in understanding data and often prevent many false starts and subsequent 
inferential problems. 

As we shall see in Chapters 8 and 12, there are several techniques that seek to 
represent p-dimensional observations in few dimensions such that the original dis
tances (or similarities) between pairs of observations are (nearly) preserved. In gen
eral, if multidimensional observations can be represented in two dimensions, then 
outliers, relationships, and distinguishable groupings can often be discerned by eye. 
We shall discuss and illustrate several methods for displaying multivariate data in 
two dimensions. One good source for more discussion of graphical methods is [11]. 
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Linking Multiple Two-Dimensional Scatter Plots 

One of the more exciting new graphical procedures involves electronically connect
ing many two-dimensional scatter plots. 

Example 1.8 (Linked scatter plots and brushing) To illustrate linked two-dimensional 
scatter plots, we refer to the paper-quality data in Thble 1.2. These data represent 
measurements on the variables Xl = density, X2 = strength in the machine direction, 
and X3 = strength in the cross direction. Figure 1.9 shows two-dimensional scatter 
plots for pairs of these variables organized as a 3 X 3 array. For example, the picture 
in the upper left-hand corner of the figure is a scatter plot of the pairs of observations 
(Xl' X3)' That is, the Xl values are plotted along the horizontal axis, and the X3 values 
are plotted along the vertical axis. The lower right-hand corner of the figure contains a 
scatter plot of the observations (X3, Xl)' That is, the axes are reversed. Corresponding 
interpretations hold for the other scatter plots in the figure. Notice that the variables 
and their three-digit ranges are indicated in the boxes along the SW-NE diagonal. The 
operation of marking (selecting), the obvious outlier in the (Xl, X3) scatter plot of 
Figure 1.9 creates Figure 1.1O(a), where the outlier is labeled as specimen 25 and the 
same data point is highlighted in all the scatter plots. Specimen 25 also appears to be 
an outlierin the (Xl, X2) scatter plot but not in the (Xz, X3) scatter plot. The operation 
of deleting this specimen leads to the modified scatter plots of Figure 1.10(b). 

From Figure 1.10, we notice that some points in, for example, the (X2' X3) scatter 
plot seem to be disconnected from the others. Selecting these points, using the 
(dashed) rectangle (see page 22), highlights the selected points in all of the other 
scatter plots and leads to the display in Figure 1.ll(a). Further checking revealed 
that specimens 16-21, specimen 34, and specimens 38-41 were actually specimens 
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from an older roll of paper that was included in order to have enough plies in the 
cardboard being manufactured. Deleting the outlier and the cases corresponding to 
the older paper and adjusting the ranges of the remaining observations leads to the 
scatter plots in Figure 1.11 (b) . 

The operation of highlighting points corresponding to a selected range of one of 
the variables is called brushing. Brushing could begin with a rectangle, as in Figure 
l.U(a), but then the brush could be moved to provide a sequence of highlighted 
points. The process can be stopped at any time to provide a snapshot of the current 
situation. _ 

Scatter plots like those in Example 1.8 are extremely useful aids in data analy
sis. Another important new graphical technique uses software that allows the data 
analyst to view high-dimensional data as slices of various three-dimensional per
spectives. This can be done dynamically and continuously until informative views 
are obtained. A comprehensive discussion of dynamic graphical methods is avail
able in [1]. A strategy for on-line multivariate exploratory graphical analysis, moti
vated by the need for a routine procedure for searching for structure in multivariate 
data, is given in [32]. 

Example 1.9 (Rotated plots in three dimensions) Four different measurements of 
lumber stiffness are given in Table 4.3, page 186. In Example 4.14, specimen (board) 
16 and possibly specimen (board) 9 are identified as unusual observations. Fig
ures 1.12(a), (b), and (c) contain perspectives of the stiffness data in the XbX2, X3 

space. These views were obtained by continually rotating and turning the three
dimensional coordinate axes. Spinning the coordinate axes allows one to get a better 
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Figure 1.12 Three-dimensional perspectives for the lumber stiffness data. 
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understanding of the three-dimensional aspects of the data. Figure 1.12(d) gives 
one picture of the stiffness data in X2, X3, X4 space. Notice that Figures 1.12(a) and 
(d) visually confirm specimens 9 and 16 as outliers. Specimen 9 is very large in all 
three coordinates. A counterclockwiselike rotation of the axes in Figure 1.12(a) 
produces Figure 1.12(b), and the two unusual observations are masked in this view. 
A further spinning of the X2, X3 axes gives Figure 1.12(c); one of the outliers (16) is 
now hidden. 

Additional insights can sometimes be gleaned from visual inspection of the 
slowly spinning data. It is this dynamic aspect that statisticians are just beginning to 
understand and exploit. _ 

Plots like those in Figure 1.12 allow one to identify readily observations that do 
not conform to the rest of the data and that may heavily influence inferences based 
on standard data-generating models. 

Graphs of Growth Curves 

When the height of a young child is measured at each birthday, the points can be 
plotted and then connected by lines to produce a graph. This is an example of a 
growth curve. In general, repeated measurements of the same characteristic on the 
same unit or subject can give rise to a growth curve if an increasing, decreasing, or 
even an increasing followed by a decreasing, pattern is expected. 

Example 1.10 (Arrays of growth curves) The Alaska Fish and Game Department 
monitors grizzly bears with the goal of maintaining a healthy population. Bears are 
shot with a dart to induce sleep and weighed on a scale hanging from a tripod. Mea
surements of length are taken with a steel tape. Table 1.4 gives the weights (wt) in 
kilograms and lengths (lngth) in centimeters of seven female bears at 2,3,4, and 5 
years of age. . 

First, for each bear, we plot the weights versus the ages and then connect the 
weights at successive years by straight lines. This gives an approximation to growth 
curve for weight. Figure 1.13 shows the growth curves for all seven bears. The notice
able exception to a common pattern is the curve for bear 5. Is this an outlier or just 
natural variation in the population? In the field, bears are weighed on a scale that 

Table 1.4 Female Bear Data 

Bear Wt2 Wt3 Wt4 Wt5 Lngth2 Lngth3 Lngth4 Lngth5 

1 48 59 95 82 141 157 168 183 
2 59 68 102 102 140 168 174 170 
3 61 77 93 107 145 162 172 177 
4 54 43 104 104 146 159 176 171 
5 100 145 185 247 150 158 168 175 
6 68 82 95 118 142 140 178 189 
7 68 95 109 111 139 171 176 175 

Source: Data courtesy of H. Roberts. 
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Figure 1.13 Combined 
growth curves for weight 
for seven female grizzly 
bears. 

reads pounds. Further inspection revealed that, in this case, an assistant later failed to 
convert the field readings to kilograms when creating the electronic database. The 
correct weights are (45, 66, 84, 112) kilograms. 

B.ecause it can be difficult to inspect visually the individual growth curves in a 
c.ombmed. plot, the individual curves should be replotted in an array where similari
tIes an? dIfferences are easily observed. Figure 1.14 gives the array of seven curves 
for weIght. Some growth curves look linear and others quadratic. 
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Figure 1.14 Individual growth curves for weight for female grizzly bears. 
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Figure 1.15 gives a growth curve array for length. One bear seemed to get shorter 
from 2 to 3 years old, but the researcher knows that the steel tape measurement of 
length can be thrown off by the bear's posture when sedated. 
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figure 1.15 Individual growth curves for length for female grizzly bears. • 
We now turo to two popular pictorial representations of multivariate data in 

two dimensions: stars and Cherooff faces. 

Stars 
Suppose each data unit consists of .nonnegativ: observations on p. ~ 2.variables. In 
two dimensions, we can construct crrcles of a fixed (reference) radIUS WIth p equally 
spaced rays emanating from the center of the circle. The lengths of.the ra~s rep.resent 
the values of the variables. The ends of the rays can be connected With straight lmes to 
form a star. Each star represents a multivariate observation, and the stars can be 
grouped according to their (subjective) siniilarities. 

It is often helpful, when constructing the stars, to standardize the observations. 
In this case some of the observations will be negative. The observations can then be 
reexpressed so. that the center of the circle represents the smallest standardized 
observation within the entire data set. 

Example 1.11 (Utility data as stars) Stars representing the first 5 of the ~2 publi.c 
utility [rrms in Table 12.4, page 688, are shown in Figure 1.16. There are eight vafl
abIes; consequently, the stars are distorted octagons. 

Arizona Public Service (I) 

5 

Central Louisiana Electric Co. (3) 

5 
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Boston Edison Co. (2) 
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Commonwealtb Edison Co. (4) 
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5 

figure 1.16 Stars for the first five public utilities. 

. The observations on all variables were standardized. Among the first five utili
tIes, the smallest standardized observation for any variable was -1.6. TI-eating this 
value ~s ~er~, the variables are plotted on identical scales along eight equiangular 
rays ongmatmg from the center of the circle. The variables are ordered in a clock
wise direction, beginning in the 12 o'clock position. 

At first glance, none of these utilities appears to be similar to any other. However, 
beca~se of t~e way the stars are constructed, each variable gets equal weight in the vi
sualImpresslOn. If we concentrate on the variables 6 (sales in kilowatt-hour [kWh1 use 
per year) and 8 (total fuel costs in cents per kWh), then Boston Edison and Consoli
dated Edison are similar (small variable 6, large variable 8), and Arizona Public Ser
vice, Central Louisiana Electric, and Commonwealth Edison are similar (moderate 
variable 6, moderate variable 8). • 

Chernoff faces 

~eople react to faces. Cherooff [41 suggested representing p-dimensional observa
tIOns as a two-dimensional face whose characteristics (face shape, mouth curvature, 
nose length, eye size, pupil position, and so forth) are determined by the measure
ments on the p variables. 
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As originally designed, Chernoff faces can handle up to 18 variables. The assign
ment of variables to facial features is done by the experimenter, and different choic
es produce different results. Some iteration is usually necessary before satisfactory 
representations are achieved. 

Chernoff faces appear to be most useful for verifying (1) an initial grouping sug
gested by subject-matter knowledge and intuition or (2) final groupings produced 
by clustering algorithmS. 

Example 1.12 (Utility data as Cher!,!off faces) From the data in Table 12.4, the 22 
public utility companies were represented as Chernoff faces. We have the following 
correspondences: 

Variable Facial characteristic 

Xl: FIxed-charge coverage - Half-height of face 

X z: Rate of return on capital - Face width 

X3: Cost per kW capacity in place - Position of center of mouth 

X4 : Annual load factor - Slant of eyes 

X5: Peak kWh demand growth from 1974 (height) - Eccentricity width of eyes 

X6: Sales (kWh use per year) - Half-length of eye 

X7: Percent nuclear - Curvature of mouth 

Xs: Total fuel costs (cents per kWh) -Length of nose 

The Chernoff faces are shown in Figure 1.17. We have subjectively grouped 
"similar" faces into seven clusters. If a smaller number of clusters is desired, we 
might combine clusters 5,6, and 7 and, perhaps, clusters 2 and 3 to obtain four or five 
clusters. For our assignment of variables to facial features, the firms group largely 
according to geographical location. _ 

Constructing Chernoff faces is a task that must be done with the aid of a com
puter. The data are ordinarily standardized within the computer program as part of 
the process for determining the locations, sizes, and orientations of the facial char
acteristics. With some training, we can use Chernoff faces to communicate similari
ties or dissimilarities, as the next example indicates. 

Example 1.13 (Using Chernoff faces to show changes over time) Figure 1.18 illus
trates an additional use of Chernofffaces. (See [24].) In the figure, the faces are used 
to track the financial well-being of a company over time. As indicated, each facial 
feature represents a single financial indicator, and the longitudinal changes in these 
indicators are thus evident at a glance. _ 

r Data Displays and Pictorial Representations 29 

Cluster I Cluster 2 Cluster 3 Cluster 5 Cluster 7 

008wQ) 
465 7 

QQ)QCJ)Q) 
ID 3 22 21 15 

00 
13 9 Cluster 4 Cluster 6 

Q00CD 
20 14 8 2 

CD0CD 
18 11 !2 

00CD 
19 16 17 

Figure 1.17 Cherooff faces for 22 public utilities. 
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Figure 1.18 Cherooff faces over time. 
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Cherooff faces have also been used to display differences in m~ltivariate ob~er
vations in two dimensions. For example, the two-di~ensional coordInate ~xes ffilght 

resent latitude and longitude (geographical locatiOn), and the faces mIght repr~
::~t multivariate measurements on several U.S. cities. Additional examples of thiS 

1.5 

kind are discussed in [30]. .... . 
There are several ingenious ways to picture multIvanate data m two dimensiOns. 

We have described some of them. Further advance~ are possible and will almost 
certainly take advantage of improved computer graphICs. 

Distance 
Although they may at first appear formida?le, ~ost multiv~ate tec~niques are based 
upon the simple concept of distance. StraIght-~e, or Euclidean, d~stan~e sh~uld be 
familiar. If we consider the point P 0= (Xl ,.X2) III th~ plane, the straIght-lIne dIstance, 
d(O, P), from P to the origin 0 = (0,0) IS, accordmg to the Pythagorean theorem, 

d(O,p)=Vxi+x~ (1-9) 

The situation is illustrated in Figure 1.19. In general, if the point P has p coo:d.i
nates so that P = (x), X2, •.. ' x p ), the straight-line distance from P to the ongm 

0= (O,O, ... ,O)is 
d(O,P) 0= Vxr + x~ + ... + x~ (1-10) 

(See Chapter 2.) All points (Xl> X2, ... : xp) thatlie a constant squared distance, such 
as c2, from the origin satisfy the equatIon 

d2(O, P) = XI + x~ + ... + x~ = c2 (1-11) 

Because this is the equation of a hypersphere (a circle if p = 2), points equidistant 

from the origin lie on a hypersphere. .. .. 
The straight-line distance between two arbItra~y ~OInts P and Q WIth COordI-

natesP = (XI,X2, ... ,Xp ) andQ 0= (Yl>Y2,···,Yp)lsglVenby 

d(P,Q) = V(XI - YI)2 + (X2 - )'z)2 + ... + (xp - Yp)2 (1-12) 

Straight-line, or Euclidean, distance is unsatisfactory for most stat~stical purp~s
es. This is because each coordinate contributes equally to the calculatlOn of ~uchd
ean distance. When the coordinates r~prese~t .measurem~nts that ar~ subject t~ 
andom fluctuations of differing magmtudes, It IS often deslfable to weIght CO?rdl 
~ates subject to a great deal of variability less ~eavily than those that are not highly 
variable. This suggests a different measure ?f ~lst,~n~e. . 

Our purpose now is to develop a "staUstlcal distance that ac:counts for dIffer-
ences in variation and, in due course, the presence of correlatlOn. Because our 

Figure 1.19 Distance given 
by the Pythagorean theorem. 
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choice will depend upon the sample variances and covariances, at this point we use 
the term statistical distance to distinguish it from ordinary Euclidean distance. It is 
statistical distance that is fundamental to multivariate analysis. 

To begin, we take as fIXed the set of observations graphed as the p-dimensional 
scatter plOt. From these, we shall construct a measure of distance from the origin to 
a point P = (Xl, X2, ..• , xp). In our arguments, the coordinates (Xl> X2, ... , xp) of P 
can vary to produce different locations for the point. The data that determine dis
tance will, however, remain fixed. 

To illustrate, suppose we have n pairs of measurements on two variables each 
having mean zero. Call the variables Xl and X2, and assume that the Xl measurements 
vary independently of the X2 measurements, I In addition, assume that the variability 
in the X I measurements is larger than the variability in the X2 measurements. A scatter 
plot of the data would look something like the one pictured in Figure 1.20. 
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Figure 1.20 A scatter plot with 
greater variability in the Xl direction 
than in the X2 direction. 

Glancing at Figure 1.20, we see that values which are a given deviation from the 
origin in the Xl direction are not as "surprising" or "unusual" as ~re values equidis
tant from the origin in the X2 direction. This is because the inherent variability in the 
Xl direction is greater than the variability in the X2 direction. Consequently, large Xl 

coordinates (in absolute value) are not as unexpected as large X2 coordinates. It 
seems reasonable, then, to weight an X2 coordinate more heavily than an Xl coordi
nate of the same value when computing the "distance" to the origin. 
. One way to proceed is to divide each coordinate by the sample standard devia

tIOn. Therefore, upon division by the standard deviations, we have the "standard
ized" coordinates x; = xIi";;;; and x; = xz/vS;. The standardized coordinates 
are now on an equal footing with one another. After taking the differences in vari
ability into account, we determine distance using the standard EucIidean formula. 

Thus, a statistical distance of the point P = (Xl, X2) from the origin 0 = (0,0) can 
be computed from its standardized coordinates x~ = xIiVS;; and xi 0= X2/VS; as 

d(O, P) =V(xD2 + (x;)2 

= )( ~y + ( Js;y = 

(1-13) 

IAt this point, "independently" means that the Xz measurements cannot be predicted with any 
accuracy from the Xl measurements, and vice versa. 
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Comparing (1-13) with (1-9), we see that the difference between the two expres
sions is due to the weights kl = l/s11 and k2 = l/s22 attached to xi and x~ in (1-l3). 
Note that if the sample variances are the same, kl = k 2 , then xI and x~ will receive 
the same weight. In cases where the weights are the same, it is convenient to ignore the 
common divisor and use the usual Euc1idean distance formula. In other words, if 
the variability in the-xl direction is the same as the variability in the X2 direction, 
and the Xl values vary independently of the X2 values, Euc1idean distance is 
appropriate. 

Using (1-13), we see that all points which have coordinates (Xl> X2) and are a 
constant squared distance c2 from the origin must satisfy 

(1-14) . 

Equation (1-14) is the equation of an ellipse centered at the origin whose major and 
minor axes coincide with the coordinate axes. That is, the statistical distance in 
(1-13) has an ellipse as the locus of all points a constant distance from the origin. 
This general case is shown in Figure 1.21. 

--__ ~----------~4-----------~r_~~~X, 
cJs;: 

Figure 1.21 The ellipse of constant 
statistical distance 
d2(O,P) = xI!sll + X~/S22 = c2. 

Example 1.14 (Calculating a statistical distance) A set of paired measurements 
(Xl, X2) on two variables yields Xl = X2 = 0, Sll = 4, and S22 = 1. Suppose the Xl 

measurements are unrelated to the x2 measurements; that is, measurements within a 
pair vary independently of one another. Since the sample variances are unequal, we 
measure the square of the distance of an arbitrary point P = (Xl, X2) to the origin 
0= (0,0) by 

All points (Xl, X2) that are a constant distance 1 from the origin satisfy the equation 

x2 x2 
--.!.+2= 1 
4 1 

The coordinates of some points a unit distance from the origin are presented in the 
following table: 

Coordinates: (Xl, X2) 

(0,1) 

(0,-1) 

(2,0) 

(1, \/3/2) 

. XI x~ 
DIstance' -- + -- = 1 . 4 1 

02 12 
-+-= 1 
4 1 

02 (-1)2 
-+--=1 
4 1 

22 02 
-+ -=1 
4 1 

12 (\/3/2)2 
4" + 1 = 1 

Distance 33 

. A pl?t ?f the equation xt/4 + xVI = 1 is an ellipse centered at (0,0) whose 
major. aXIS he~ along the Xl coordinate axis and whose minor axis lies along the X2 
coordmate aXIS. The half-lengths of these major and minor axes are v'4 = 2 and 
VI = 1, :espectively. The ellipse of unit distance is plotted in Figure 1.22. All points 
on the ellIpse are regarded as being the same statistical distance from the origin-in 
this case, a distance of 1. • 

x, 

--_-z::r-----J'--------j-----L..---+----*x, 
-I Z 

Figure 1.22 Ellipse of unit 
. xi x~ 

distance, 4 + 1 = 1. -I 

The expression in (1-13) can be generalized to accommodate the calculation of 
statistical distance from an arbitrary point P = (Xl, X2) to any fIXed point 
Q = (YI, )'z). ~f we assume that .the coordinate variables vary independently of one 
another, the dIstance from P to Q is given by 

d(P, Q) = I (Xl - YI)2 + (X2 - )'z)2 

\.j Sl1 S22 
'(1-15) 

.The extension of this statistical distance to more than two dimensions is 
straIghtforward. Let the points P and Q have p coordinates such that 
P = (x~, X2,···, xp) and Q = (Yl,)'z, ... , Yp). Suppose Q is a fixed point [it may be 
the ongm 0 = (0,0, ... , O)J and the coordinate variables vary independently of one 
another. Let Su, s22,"" spp be sample variances constructed from n measurements 
on Xl, X2,"" xp, respectively. Then the statistical distance from P to Q is 

d(P,Q) = ~(XI - Yl? + (X2 - )'z)2 + ... + (xp - Yp)2 
sll s22 spp 

(1-16) 
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34 C Q r a hyperellipsoid All points P that are a constant squared distance from le on d' t es. We d at Q whose major and minor axes are parallel to the coor ma e ax centere . 
note th~ followmg: 
1. The distance of P to the origin 0 is obtained by setting Yl = )'2 = ... = YP = 0 

in (1-16). - . ). . t _ _ .,. = the Euclidean distance formula m (1-12 IS appropna e. Z If Sll - S22 - spp' 

• The distance in (1-16) still does not include most of the i~porta~cases ~erSphl~! 
f the assumption of independent coordmates. e sca e enc~unteri ~;c::;~~ a two-dimensional situation in which the xl ~easur~m~nts ~o io FIgure. . f h X measurements. In fact, the coordmates 0 t e p~Irs o.ot vary mdependently 0 t e

b
2

1 mall together and the sample correlatIOn ) h'b't a tendency to e arge or s' h (.~lf~~ie~ i~ ;ositive. Moreover, the variability in the X2 direction is larger than t e 
coe . d' f 
variability.m the Xl . Ifgfec ::~asure of distance when the variability in the Xl direc-What IS a meamn u d h . bles X and X . h variability in the X2 direction an t e vana 1 2 tion is dl~~r~~t :~~a:lye we can use what we have already intro~uced, provided t~at are corre a e... '. wa From Fi ure 1.23, we see that If we rotate the ong-
;,e lOO~:;i:I~g:;~:!: :~;~~gh ihe angle: while keeping the scatter fixed and ~~~:~ lOa) cO ~ d x the scatter in terms of the new axes looks very ~uc . the r?tat~d axe; ;0 c;. ou 2~ay wish to turn the book to place the Xl and X2 a.xes m tha~ 10 FIgure . ~sitions.) This suggests that we calculate the .sample vananc~s theIr cust~mar~ f coordinates and measure distance as in EquatIOn (1-13). That.Is, using the Xl an 2 h ~ d X axes we define the distance from the pomt 'th reference to t e Xl an 2 ' 
; =' (Xl, X2) to the origin 0 = (0,0) as 

d(O, P) = (1-17) 

~ denote the sample variances computed with the Xl arid X2 where Sl1 and sn 
measurements. 

X2 Xl 
~ 

1 

• 
.,:~ ., . 8 

• 
__ --------~~~~----~--~Xl •• 

• I . , .. 
• I. 

I 
1 

Figure 1.23 A scatter plot for 
positively correlated 
measurements and a rotated 
coordinate system. 
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The relation between the original coordinates (Xl' Xz) and the rotated coordinates (Xl, X2) is provided by 

Xl = Xl cos (0) + x2sin(0) 

X2= -Xl sin (8) + X2 cos (8) 
(1-18) 

Given the relations in (1-18), we can formally substitute for Xl and X2 in (1-17) 
and express the distance in terms of the original coordinates. 

After some straightforward algebraic manipulations, the distance from P = (Xl, X2) to the origin 0 = (0,0) can be written in terms of the original coordi
nates Xl and X2 of Pas 

d(O,P) = Val1x1 + 2al2xlx2 + a22x~ (1-19) 
where the a's are numbers such that the distance is nonnegative for all possible val
ues of Xl and X2. Here all, a12, and a22 are dete,rmined by the angle 8, and Sll, s12, and S22 calculated from the original data.2 The particular forms for all, a12, and a22 are not important at this point. What is important is the appearance of the cross
product term 2a12xlxZ necessitated by the nonzero correlation r12' 

Equation (1-19) can be compared with (1-13). The expression in (1-13) can be 
regarded as a special case of (1-19) with all = 1/sll , a22 = 1/s22 , and a12 = O. 

In general, the statistical distance ofthe point P = (x], X2) from the fvced point Q = (Yl,)'2) for situations in which the variables are correlated has the general 
form 

d(P,Q) = Val1(XI - yd + 2adxI - YI)(XZ - )'2) + azz(x2 -)'2? (1-20) 
and can always be computed once all, a12, and a22 are known. In addition, the coordinates of all points P = (Xl, X2) that are a constant squared distance c2 from Q satisfy 

al1(xl - yd2 + 2adxI - YI)(X2 - )'2) + a22(x2 - )'2)2 = c2 (1-21) 
By definition, this is the equation of an ellipse centered at Q. The graph of such an equation is displayed in Figure 1.24. The major (long) and minor (short) axes are in
dicated. They are parallel to the Xl and 1'2 axes. For the choice of all, a12, and a22 in footnote 2, the Xl and X2 axes are at an angle () with respect to the Xl and X2 axes. 

The generalization of the distance formulas of (1-19) and (1-20) to p dimensions is straightforward. Let P = (Xl,X2,""Xp ) be a point whose coordinates represent variables that are correlated and subject to inherent variability. Let 

2Specifically, 
cos2(8) sin2(6) 

all = coS1(O)SIl + 2sin(6)cos(/I)SI2 + sin2(O)s12 + cos2(8)S22 - 2sin(8)oos(8)sl2 + sin2(8}slI 
sin2(/I} oos2(8) 

a22 = cos2(8}SII + 2 sin(lI}cOS(8}SI2 + sin2(6)S22 + cos2(9)sn - 2sin(8)oos(/I}SI2 + sin2(8)sll 
and 

cos(lI) sin(/I} sin(6} oos(/I} 
al2 = cos2(II)SIl + 2 sin(8) cos(8)sl2 + sin2(8)~2 - cog2(/J)S22 - 2 sin(/J} ooS(6)812 + sin2(/I}sll 
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/ 

/ 

/ 

X2 

" " " " 

/ 

Figure 1.24 Ellipse of points 
a constant distance from the 
point Q. 

"fd o - (0 0 0) denote the origin, and let Q = (YI, Y2, ... , Yp) be a speC! le 
fix;d p~i~i.·Then the distances from P to 0 and from Pto Q have the general 

forms.~ ________________ ~ ________ ~ ______ ~ __ ~----~~ 

d(O,P) = 
allx1 + a22x~ + ... + appx~ + 2a12xlx2 + 2a13Xlx3 + ... + 2ap_l,pxp_IXp 

(1-22) 

d(P,Q) 

and 
[aJ1(xI - yd + a22(x2 - Y2)2 + .. , + app(xp Yp)2 + 2an(xI YI)(X2 __ Y2) 

+ 2a13(XI - YI)(X3 - Y:l) + ... + 2ap-l,p(xp-1 - Yp-I)(Xp Yp)] 
(1-23) 

. 3 
where the a's are numbers such that the distances are always nonnegatIve. . 

We note that the distances in (1-22) and (1-23) are completely dete~~llned by 
. .). - 1 2 k - 1 '2 P These coeffIcIents can the coeffiCIents (weIghts aik> I - , , ... , p, . - , , ... , . 

be set out in the rectangular array 

r ::: ::~ :::] (1-24) 

la]p a2p a:p 

h 
the a· 's with i * k are displayed twice, since they are multiplied by 2 in the 

were ,k . . h' 'fy the distance func distance formulas. Consequently, the entnes m t IS array specI -
. The a. 's cannot be arbitrary numbers; they must be such that the computed 

t1OnS. ,k . f . (S E . 110 ) 
distance is nonnegative for every paIr 0 pomts. ee xerclse . . 

Contours of constant distances computed from (1-22) a~d. \1-23) .are 

h 
ereIlipsoids. A hypereIIipsoid resembles a football when p = 3; It IS Impossible 

YP. . . 
to visualize in more than three dlmens~ons. 

lJbe 81 ebraic expressions for the squares of the distances in ,<1.22) .and (1.~) are known as qu~. 
. ~ gand in particular positive definite quadratic forms. It IS possible to display these quadrahc 

dratlCJorms" . S . 23 fCh t 2 
forms in a simpler manner using matrix algebra; we shall do so iD echon . 0 ap er . 

• • • •• . .. . . . ... .. . .. ... . 
•••••• 

®: 
•• • -... . .. 

• ••• •• . .... : .. - . 
• • •••• 

P@ ••• :.-. -•• 

• • • o 
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XI Figure 1.25 A cluster of points 
relative to a point P and the origin. 

The need to consider statistical rather than Euclidean distance is illustrated 
heuristically in Figure 1.25. Figure 1.25 depicts a cluster of points whose center of 
gravity (sample mean) is indicated by the point Q. Consider the Euclidean distances 
from the point Q to the point P and the origin O. The Euclidean distance from Q to 
P is larger than the Euclidean distance from Q to O. However, P appears to be more 
like the points in the cluster than does the origin. If we take into account the vari
ability of the points in the cluster and measure distance by the statistical distance in 
(1-20), then Q will be closer to P than to O. This result seems reasonable, given the 
nature of the scatter. 

Other measures of distance can be advanced. (See Exercise 1.12.) At times, it is 
useful to consider distances that are not related to circles or ellipses. Any distance 
measure d(P, Q) between two points P and Q is valid provided that it satisfies the 
following properties, where R is any other intermediate point: 

d(P, Q) = d(Q, P) 

d(P,Q) > OifP * Q 
d(P,Q) = OifP = Q 

d(P,Q) :5 d(P,R) + d(R,Q) 

(1-25) 

(triangle inequality) 

1.6 Final Comments 

Exercises 

We have attempted to motivate the study of multivariate analysis and to provide 
you with some rudimentary, but important, methods for organizing, summarizing, 
and displaying data. In addition, a general concept of distance has been introduced 
that will be used repeatedly in later chapters. 

1.1. Consider the seven pairs of measurements (x], X2) plotted in Figure 1.1: 

3 4 2 6 8 2 5 

X2 5 55 4 7 10 5 75 

Calculate the sample means Xl and x2' the sample variances S]l and S22, and the sample 
covariance Sl2 . 
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.1.2. A morning newspaper lists the following used-car prices for a foreign compact with age 
XI measured in years and selling price X2 measured in thousands of dollars: 

1 2 3 3 4 5 6 8 9 11 

18.95 19.00 17.95 15.54 14.00 12.95 8.94 7.49 6.00 3.99 

(a) Construct a scatter plot of the data and marginal dot diagrams. 

(b) Infer the sign of the sampkcovariance sl2 from the scatter plot. 

( c) Compute the sample means X I and X2 and the sample variartces SI I and S22' Com
pute the sample covariance SI2 and the sample correlation coefficient '12' Interpret 

these quantities. 
(d) Display the sample mean array i, the sample variance-covariance array Sn, and the 

sample correlation array R using (I-8). 

1.3. The following are five measurements on the variables Xl' X2, and X3: 

XI 9 2 6 5 8 

X2 12 8 6 4 10 

X3 3 4 0 2 

Find the arrays i, Sn, and R. 

1.4. The world's 10 largest companies yield the following data: 

The World's 10 Largest Companiesl 

Company 

Citigroup 
General Electric 
American Int! Group 
Bank of America 
HSBCGroup 
ExxonMobil 
Royal Dutch/Shell 
BP 
INGGroup 
Toyota Motor 

Xl = sales 
(billions) 

108.28 
152.36 
95.04 
65.45 
62.97 

263.99 
265.19 
285.06 
92.01 

165.68 

X2 = profits 
(billions) 

17.05 
16.59 
10.91 
14.14 
9.52 

25.33 
18.54 
15.73 
8.10 

11.13 

X3 = assets 
(billions) 

1,484.10 
750.33 
766.42 

1,110.46 
1,031.29 

195.26 
193.83 
191.11 

1,175.16 
211.15 

IFrom www.Forbes.compartiallybasedonForbesTheForbesGlobaI2000, 
April 18,2005. 

(a) Plot the scatter diagram and marginal dot diagrams for variables Xl and X2' Com
ment on the appearance of the diagrams. 

(b) Compute Xl> X2, su, S22, S12, and '12' Interpret '12' 

1.5. Use the data in Exercise 1.4. 
(a) Plot the scatter diagrams and dot diagrams for (X2, X3) and (x], X3)' Comment on 

thepattems. 

(b) Compute the i, Sn, and R arrays for (XI' X2, X3). 
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1.6. The data in Table 1.5 are 42 measurements on air-pollution variables recorded at 12:00 
noon in the Los Angeles area on different days. (See also the air-pollution data on the 
web at www.prenhall.com/statistics. ) 

(a) Plot the marginal dot diagrams for all the variables. 

(b) Construct the i, Sn, and R arrays, and interpret the entries in R. 

Table 1.5 Air-Pollution Data 

Solar 
Wind (Xl) radiation (X2) CO (X3) NO (X4) N02 (xs) 0 3 (X6) HC(X7) 

8 98 7 2 12 8 2 
7 107 4 3 9 5 3 
7 103 4 3 5 6 3 

10 88 5 2 8 15 4 
6 91 4 2 8 10 3 
8 90 5 2 12 12 4 
9 84 7 4 12 15 5 
5 72 6 4 21 14 4 
7 82 5 1 11 11 3 
8 64 5 2 13 9 4 
6 71 5 4 10 3 3 
6 91 4 2 12 7 , 3 
7 72 7 4 18 10 3 

10 70 4 2 11 7 3 
10 72 4 1 8 10 3 

9 77 4 1 9 10 3 
8 76 4 1 7 7 3 
8 71 5 3 16 4 4 
9 67 4 2 13 2 3 
9 69 3 3 9 5 3 

10 62 5 3 14 4 4 
9 88 4 2 7 6 3 
8 80 4 2 13 11 4 
5 30 3 3 5 2 3 
6 83 5 1 10 23 4 
8 84 3 2 7 6 3 
6 78 4 2 11 11 3 
8 79 2 1 7 10 3 
6 62 4 3 9 8 3 

10 37 3 1 7 2 3 
8 71 4 1 10 7 3 
7 52 4 1 12 8 4 
5 48 6 5 8 4 3 
6 75 4 1 10 24 3 

10 35 4 1 6 9 2 
8 85 4 1 9 10 2 
5 86 3 1 6 12 2 
5 86 7 2 13 18 2 
7 79 7 - 4 9 25 3 
7 79 5 2 8 6 2 
6 68 6 2 11 14 3 
8 40 4 3 6 5 2 

Source: Data courtesy of Professor O. C. Tiao. 
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1.7. You are given the following n = 3 observations on p = 2 variables: 

1.8. 

1.9. 

Variable 1: Xll = 2 X21 = 3 X31 = 4 

Variable 2: XI2 = 1 X22 = 2 X32 = 4 

(a) Plot the pairs of observations in the two-dimensional "variable space." That is, con
struct a two-dimensional scatter plot of the data. 

(b) Plot the data as two points in the three-dimensional "item space." 

Evaluate the distance of the point P = (-1, -1) to the point Q = (I,?) usin~ the Eu
clidean distance formula in (1-12) with p = 2 and using the statistic~1 dIstance m (1-20) 

'th - 1/3 a 2 = 4/27 and aI2'= 1/9. Sketch the focus of pomts that are a con-WI all - , 2 .' . 
stant squared statistical distance 1 from the pomt Q. 

Consider the following eight pairs of measurements on two variables XI and x2: 

XI -3 -2 2 5 6 8 

-3 -1 2 5 3 

(a) Plot the data as a scatter diagram, and compute SII, S22, and S12: ~ ~ 
(b) Using (1-18), calculate the corr~sponding measurements on vanables XI and ~' as: 

uming that the original coordmate axes are rotated through an angle of () - 26 
[given cos (260

) = .899 and sin (26 0
) = .438]. . 

(c) Using the Xl and X2 measurements from (b), compute the sample vanances Sll 

and S22' 
(d) Consider the new pair of measurements (Xl>X2) = (4, -2)- Transform these to 

easurements on xI and X2 using (1-18), and calculate the dIstance d(O, P) of the 
:ewpointP = (xl,~)from,.!heoriginO = (0,0) using (1-17). 
Note: You will need SIl and S22 from (c). 

(e) Calculate the distance from P = (4,.-2) to the origin 0 = (0,0) using (1-19) and 
the expressions for all' a22, and al2 m footnote 2. 
Note: You will need SIl, Sn, and SI2 from (a). . ~ ~ 
Compare the distance calculated here with the distance calculated USIng the XI and X2 

values in (d). (Within rounding error, the numbers should be the same.) 

1.10. Are the following distance functions valid for distance from the origin? Explain. 

(a) xi + 4x~ + XIX2 = (distance)2 

(b) xi - 2x~ = (distance)2 

Verify that distance defined by (1-20) with a 1.1 = 4'~22.= l,an~a.12 = -1 s~tisfiesthe 
1.11. first three conditions in (1-25). (The triangle mequahty IS more dIfficult to venfy.) 

1.12. DefinethedistancefromthepointP = (Xl> X 2) to the origin 0 = (0,0) as 

d(O, P) = max(lxd, I X21) 

(a) Compute the distance from P = (-3,4) to the origin. 

(b) Plot the locus of points whose squared distance from the origin is 1: 
(c) Generalize the foregoing distance expression to points in p dimenSIOns. 

I 13 A I ge city has major roads laid out in a grid pattern, as indicated in the following dia-
• • ar Streets 1 through 5 run north-south (NS), and streets A through E run east-west 

f~;-j. Suppose there are retail stores located at intersections (A, 2), (E, 3), and (C, 5). 

Exercises .41 

Assume the distance along a street between two intersections in either the NS or EW di
rection is 1 unit. Define the distance between any two intersections (points) on the grid 
to be the "city block" distance. [For example, the distance between intersections (D, 1) 
and (C,2), which we might call deeD, 1), (C, 2», is given by deeD, 1), (C, 2» 
= deeD, 1), (D, 2» + deeD, 2), (C, 2» = 1 + 1 = 2. Also, deeD, 1), (C, 2» = 
deeD, 1), (C, 1» + d«C, 1), (C, 2» = 1 + 1 = 2.] 

3 4 5 

A 

B 

c 

D 

E 

Locate a supply facility (warehouse) at an intersection such that the sum of the dis
tances from the warehouse to the three retail stores is minimized. 

The following exercises contain fairly extensive data sets. A computer may be necessary for 
the required calculations. 

1.14. Table 1.6 contains some of the raw data discussed in Section 1.2. (See also the multiple
sclerosis data on the web at www.prenhall.com/statistics.) Two different visual stimuli 
(SI and S2) produced responses in both the left eye (L) and the right eye (R) of sub
jects in the study groups. The values recorded in the table include Xl (subject's age); X2 

(total response of both eyes to stimulus SI, that is, SIL + SIR); X3 (difference between 
responses of eyes to stimulus SI, I SIL - SIR I); and so forth. 

(a) Plot the two-dimensional scatter diagram for the variables X2 and X4 for the 
multiple-sclerosis group. Comment on the appearance of the diagram. 

(b) Compute the X, Sn, and R arrays for the non-multiple-Sclerosis and multiple
sclerosis groups separately. 

1.15. Some of the 98 measurements described in Section 1.2 are listed in Table 1.7 (See also 
the radiotherapy data on the web at www.prenhall.com/statistics.)The data consist of av
erage ratings over the course of treatment for patients undergoing radiotherapy. Vari
ables measured include XI (number of symptoms, such as sore throat or nausea); X2 

(amount of activity, on a 1-5 scale); X3 (amount of sleep, on a 1-5 scale); X4 (amount of 
food consumed, on a 1-3 scale); Xs (appetite, on a 1-5 scale); and X6 (skin reaction, on a 
0-3 scale). 

(a) Construct the two-dimensional scatter plot for variables X2 and X3 and the marginal 
dot diagrams (or histograms). Do there appear to be any errors in the X3 data? 

(b) Compute the X, Sn, and R arrays. Interpret the pairwise correlations. 

1.16. At the start of a study to determine whether exercise or dietary supplements would slow 
bone loss in older women, an investigator measured the mineral content of bones by 
photon absorptiometry. Measurements were recorded for three bones on the dominant 
and nondominant sides and are shown in Table 1.8. (See also the mineral-content data 
on the web at www.prenhall.comlstatistics.) 

Compute the i, Sn, and R arrays. Interpret the pairwise correlations. 
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Table 1.6 Multiple-Sclerosis Data 

Non-Multiple-Sclerosis Group Data 

Subject Xl X2 X3 X4 X5 

number (Age) (SlL + SIR) IS1L - SlRI (S2L + S2R) IS2L - S2RI 
-1 18 152.0 1.6 198.4 .0 

2 19 138.0 .4 180.8 1.6 
3 20 144.0 .0 186.4 .8 
4 20 143.6 3.2 194.8 .0 
5 20 148.8 .0 217.6 .0 

65 67 154.4 2.4 205.2 6.0 
66 69 171.2 1.6 210.4 .8 
67 73 157.2 .4 204.8 .0 
68 74 175.2 5.6 235.6 .4 
69 79 155.0 1.4 204.4 .0 

Multiple-Sclerosis Group Data 

Subject 
number Xl X2 X3 X4 Xs 

1 23 148.0 .8 205.4 .6 
2 25 195.2 3.2 262.8 .4 
3 25 158.0 8.0 209.8 12.2 
4 28 134.4 .0 198.4 3.2 
5 29 190.2 14.2 243.8 10.6 

25 57 165.6 16.8 229.2 15.6 
26 58 238.4 8.0 304.4 6.0 
27 58 164.0 .8 216.8 .8 
28 58 169.8 . 0 219.2 1.6 
29 59 199.8 4.6 250.2 1.0 

Source: Data courtesy of Dr. G. G. Celesia. 

Table 1.7 Radiotherapy Data 

Xl X2 X3 X4 X5 X6 

Symptoms Activity Sleep Eat Appetite Skin reaction 

.889 1.389 1.555 2.222 1.945 1.000 
2.813 1.437 .999 2.312 2.312 2.000 
1.454 1.091 2.364 2.455 2.909 3.000 
.294 .94i 1.059 2.000 1.000 1.000 

2.727 2.545 2.819 2.727 4.091 .000 

4.100 1.900 2.800 2.000 2.600 2.000 
.125 1.062 1.437 1.875 1.563 .000 

6.231 2.769 1.462 2.385 4.000 2.000 
3.000 1.455 2.090 2.273 3.272 2.000 

. 889 1.000 1.000 2.000 1.000 2.000 

Source: Data courtesy of Mrs. Annette Tealey, R.N. Values of X2 and x3less than 1.0 are du~ to errors 
in the data-collection process. Rows containing values of X2 and X3 less than 1.0 may be omItted. 
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Table 1.8 Mineral Content in Bones 

Subject Dominant Dominant Dominant number radius Radius humerus Humerus ulna Ulna 
1 1.103 1.052 2.139 2.238 .873 .872 2 .842 .859 1.873 1.741 .590 .744 3 .925 .873 1.887 1.809 .767 .713 4 .857 .744 1.739 1.547 .706 .674 5 .795 .809 1.734 1.715 .549 .654 6 .787 .779 1.509 1.474 .782 .571 7 .933 .880 1.695 1.656 .737 .803 8 .799 .851 1.740 1.777 .618 .682 9 .945 .876 1.811 1.759 .853 .777 10 .921 .906 1.954 2.009 .823 .765 11 .792 .825 1.624 1.657 .686 .668 12 .815 .751 2.204 1.846 .678 .546 13 .755 .724 1.508 1.458 .662 .595 14 .880 .866 1.786 1.811 .810 .819 15 .900 .838 1.902 1.606 .723 .677 16 .764 .757 1.743 1.794 .586 .541 17 .733 .748 1.863 1.869 .672 .752 18 .932 .898 2.028 2.032 .836 .805 19 .856 .786 1.390 1.324 .578 .610 20 .890 .950 2.187 2.087 .758 .718 21 .688 .532 1.650 1.378 .533 .482 22 .940 .850 2.334 2.225 .757 .731 23 .493 .616 1.037 1.268 .546 .615 24 .835 .752 1.509 1.422 .618 .664 25 .915 .936 1.971 1.869 .869 .868 

Source: Data courtesy of Everett Smith . 

1.17. Some of the data described in Section 1.2 are listed in Table 1.9. (See also the national
track-records data on the web at www.prenhall.comJstatistics.) The national track 
records for women in 54 countries can be examined for the relationships among the run
ning eventl>- Compute the X, Sn, and R arrays. Notice the magnitudes of the correlation 
coefficients as you go from the shorter (lOO-meter) to the longer (marathon) ruHning 
distances. Interpret ihese pairwise correlations. 

1.18. Convert the national track records for women in Table 1.9 to speeds measured in meters 
per second. For example, the record speed for the lOO-m dash for Argentinian women is 
100 m/1l.57 sec = 8.643 m/sec. Notice that the records for the 800-m, 1500-m, 3000-m 
and marathon runs are measured in minutes. The marathon is 26.2 miles, or 42,195 
meters, long. Compute the X, Sn, and R arrays. Notice the magnitudes of the correlation 
coefficients as you go from the shorter (100 m) to the longer (marathon) running distances. 
Interpret these pairwise correlations. Compare your results with the results you obtained 
in Exercise 1.17 . 

1.19. Create the scatter plot and boxplot displays of Figure l.5 for (a) the mineral-content 
data in Table 1.8 and (b) the national-track-records data in Table 1.9. 
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Table 1.9 National Track Records for Women 

lOOm 200 m 400 m 800 m 1500 m 3000 m 
Country (s) (s) (s) (min) (min) (min) 

Argentina 11.57 22.94 52.50 2.05 4.25 9.19 
Australia 11.12 -22.23 48.63 1.98 4.02 8.63 
Austria 11.15 22.70 50.62 1.94 4.05 8.78 
Belgium 11.14 22.48 51.45 1.97 4.08 8.82 
Bermuda 11.46 23.05 53.30 2.07 4.29 9.81 
Brazil 11.17 22.60 50.62 1.97 4.17 9.04 
Canada 10.98 22.62 49.91- 1.97 4.00 8.54 

Chile 11.65 23.84 53.68 2.00 4.22 9.26 
China 10.79 22.01 49.81 1.93 3.84 8.10 
Columbia 11.31 22.92 49.64 2.04 4.34 9.37 
Cook Islands 12.52 25.91 61.65 2.28 4.82 11.10 
Costa Rica 11.72 23.92 52.57 2.10 4.52 9.84 
Czech Republic 11.09 21.97 47.99 1.89 4.03 8.87 
Denmark 11.42 23.36 52.92 2.02 4.12 8.71 
Dominican Republic 11.63 23.91 53.02 2.09 4.54 9.89 
Finland 11.13 22.39 50.14 2.01 4.10 8.69 
France 10.73 21.99 48.25 1.94 4.03 8.64 
Germany 10.81 21.71 47.60 1.92 3.96 8.51 
Great Britain 11.10 22.10 49.43 1.94 3.97 8.37 
Greece 10.83 22.67 50.56 2.00 4.09 8.96 
Guatemala 11.92 24.50 55.64 2.15 4.48 9.71 
Hungary 11.41 23.06 51.50 1.99 4.02 8.55 
India 11.56 23.86 55.08 2.10 4.36 9.50 
Indonesia 11.38 22.82 51.05 2.00 4.10 9.11 
Ireland 11.43 23.02 51.07 2.01 3.98 8.36 
Israel 11.45 23.15 52.06 2.07 4.24 9.33 

Italy 11.14 22.60 51.31 1.96 3.98 8.59 
Japan 11.36 23.33 51.93 2.01 4.16 8.74 
Kenya 11.62 23.37 51.56 1.97 3.96 8.39 
Korea, South 11.49 23.80 53.67 2.09 4.24 9.01 
Korea, North 11.80 25.10 56.23 1.97 4.25 8.96 
Luxembourg 11.76 23.96 56:07 2.07 4.35 9.21 
Malaysia 11.50 23.37 52.56 2.12 4.39 9.31 
Mauritius 11.72 23.83 54.62 2.06 4.33 9.24 
Mexico 11.09 23.13 48.89 2.02 4.19 8.89 
Myanmar(Burma) 11.66 23.69 52.96 2.03 4.20 9.08 
Netherlands 11.08 22.81 51.35 1.93 4.06 8.57 
New Zealand 11.32 23.13 51.60 1.97 4.10 8.76 
Norway 11.41 23.31 52.45 2.03 4.01 8.53 
Papua New Guinea 11.96 24.68 55.18 2.24 4.62 10.21 
Philippines 11.28 23.35 54.75 2.12 4.41 9.81 
Poland 10.93 22.13 49.28 1.95 3.99 8.53 
Portugal 11.30 22.88 51.92 1.98 3.96 8.50 
Romania 11.30 22.35 49.88 1.92 3.90 8.36 
Russia 10.77 21.87 49.11 1.91 3.87 8.38 
Samoa 12.38 25.45 56.32 2.29 5.42 13.12 

Marathon 
(min) 

150.32 
143.51 
154.35 
143.05 
174.18 
147.41 
148.36 
152.23 
139.39 
155.19 
212.33 
164.33 
145.19 
149.34 
166.46 
148.00 
148.27 
141.45 
135.25 
153.40 
171.33 
148.50 
154.29 
158.10 
142.23 
156.36 
143.47 
139.41 
138.47 
146.12 
145.31 
149.23 
169.28 
167.09 
144.06 
158.42 
143.43 
146.46 
141.06 
221.14 
165.48 
144.18 
143.29 
142.50 
141.31 
191.58 

(continues) 
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lOOm 200 m 400 m BOOm 1500 m 3000 m Marathon 
Country (s) (s) (s) (min) (min) (min) (min) 

Singapore 12.13 24.54 55.08 2.12 4.52 9.94 154.41 
Spain 11.06 22.38 49.67 1.96 4.01 8.48 146.51 
Sweden 11.16 22.82 51.69 1.99 4.09 8.81 150.39 
Switzerland 11.34 22.88 51.32 1.98 3.97 8.60 145.51 
Taiwan 11.22 22.56 52.74 2.08 4.38 9.63 159.53 

. Thailand 11.33 23.30 52.60 2.06 4.38 10.07 162.39 
Thrkey 11.25 22.71 53.15 2.01 3.92 8.53 151.43 
U.S.A. 10.49 21.34 48.83 1.94 3.95 8.43 141.16 

Source: IAAFIATFS T,ack and Field Ha])dbook fo, Helsinki 2005 (courtesy of Ottavio Castellini). 

1.20. Refer to the bankruptcy data in Table 11.4, page 657, and on the following website 
www.prenhall.com/statistics.Using appropriate computer software, 

(a) View the entire data set in Xl, X2, X3 space. Rotate the coordinate axes in various 
directions. Check for unusual observations. 

(b) Highlight the set of points corresponding to the bankrupt firms. Examine various 
three-dimensional perspectives. Are there some orientations of three-dimensional 
space for which the bankrupt firms can be distinguished from the nonbankrupt 
firins? Are there observations in each of the two groups that are likely to have a sig
nificant impact on any rule developed to classify firms based on the sample mearis, 
variances, and covariances calculated from these data? (See Exercise 11.24.) 

1.21. Refer to the milk transportation-cost data in Thble 6.10, page 345, and on the web at 
www.prenhall.com/statistics.Using appropriate computer software, 

(a) View the entire data set in three dimensions. Rotate the coordinate axes in various 
directions. Check for unusual observations. 

(b) Highlight the set of points corresponding to gasoline trucks. Do any of the gasoline
truck points appear to be multivariate outliers? (See Exercise 6.17.) Are there some 
orientations of Xl, X2, X3 space for which the set of points representing gasoline 
trucks can be readily distinguished from the set of points representing diesel trucks? 

1.22. Refer to the oxygen-consumption data in Table 6.12, page 348, and on the web at 
www.prehhall.com/statistics.Using appropriate computer software, 
(a) View the entire data set in three dimensions employing various combinations of 
. three variables to represent the coordinate axes. Begin with the Xl, X2, X3 space. 

(b) Check this data set for outliers. 

1.23. Using the data in Table 11.9, page 666, and on the web at www.prenhall.coml 
statistics, represent the cereals in each of the following ways. 
(a) Stars. 
(b) Chemoff faces. (Experiment with the assignment of variables to facial characteristics.) 

1.24. Using the utility data in Table 12.4, page 688, and on the web at www.prenhalI. 
cornlstatistics, represent the public utility companies as Chemoff faces with assign
ments of variables to facial characteristics different from those considered in Exam
ple 1.12. Compare your faces with the faces in Figure 1.17. Are different groupings 
indicated? 
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1.25. Using the data in Table 12.4 and on the web at www.prenhall.com/statistics.represent the 
22 public utility companies as stars. Visually group the companies into four or five 
clusters. 

1.26. The data in Thble 1.10 (see the bull data on the web at www.prenhaIl.com!statistics) are 
the measured characteristics of 76 young (less than two years old) bulls sold at auction. 
Also included in the taBle are the selling prices (SalePr) of these bulls. The column head
ings (variables) are defined as follows: 

{

I Angus 
Breed = 5 Hereford 

8 Simental 

FtFrBody = Fat free body 
(pounds) 

Frame = Scale from 1 (small) 
to 8 (large) 

SaleHt = Sale height at 
shoulder (inches) 

Y rHgt = Yearling height at 
shoulder (inches) 

PrctFFB = Percent fat-free 
body 

BkFat = Back fat 
(inches) 

SaleWt = Sale weight 
(pounds) 

(a) Compute the X, Sn, and R arrays. Interpret the pairwise correlations. Do some of 
these variables appear to distinguish one breed from another? 

(b) View the data in three dimensions using the variables Breed, Frame, and BkFat. Ro
tate the coordinate axes in various directions. Check for outliers. Are the breeds well 
separated in this coordinate system? 

(c) Repeat part b using Breed, FtFrBody, and SaleHt. Which-three-dimensionaI display 
appears to result in the best separation of the three breeds of bulls? 

Table 1.10 Data on Bulls 

Breed SalePr YrHgt FtFrBody PrctFFB Frame BkFat SaleHt SaleWt 

1 2200 51.0 1128 70.9 7 .25 54.8 1720 
1 2250 51.9 1108 72.1 7 .25 55.3 1575 
1 . 1625 49.9 1011 71.6 6 .15 53.1 1410 
1 4600 53.1 993 68.9 8 .35 56.4 1595 
1 2150 51.2 996 68.6 7 .25 55.0 1488 

: : 

8 1450 51.4 997 73.4 7 .10 55.2 1454 
8 1200 49.8 991 70.8 6 .15 54.6 1475 
8 1425 SO.O 928 70.8 6 .10 53.9 1375 
8 1250 50.1 990 71.0 6 .10 54.9 1564 
8 1500 51.7 992 70.6 7 .15 55.1 1458 

Source: Data courtesy of Mark EIIersieck. 

1.27. Table 1.11 presents the 2005 attendance (millions) at the fIfteen most visited national 
parks and their size (acres). 

(a) Create a scatter plot and calculate the correlliltion coefficient. 
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(b) Identify the park that is unusual. Drop this point andrecaIculate the correlation 
coefficient. Comment on the effect of this one point on correlation. 

(c) Would the correlation in Part b change if you measure size in square miles instead of 
acres? Explain. 

Table 1.11 Attendance and Size of National Parks 

N ationaI Park Size (acres) Visitors (millions) 

Arcadia 47.4 2.05 
Bruce Canyon 35.8 1.02 
Cuyahoga Valley 32.9 2.53 
Everglades 1508.5 1.23 
Grand Canyon 1217.4 4.40 
Grand Teton 310.0 2.46 
Great Smoky 521.8 9.19 
Hot Springs 5.6 1.34 
Olympic 922.7 3.14 
Mount Rainier 235.6 1.17 
Rocky Mountain 265.8 2.80 
Shenandoah . 199.0 1.09 
Yellowstone 2219.8 2.84 
Yosemite 761.3 3.30 
Zion 146.6 2.59 
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MATRIX ALGEBRA 

AND RANDOM VECTORS 

2.1 Introduction 
We saw in Chapter 1 that multivariate data can be conveniently displayed as an 
array of numbers. In general, a rectangular array of numbers with, for instance, n 
rows and p columns is called a matrix of dimension n X p. The study of multivariate 
methods is greatly facilitated by the use of matrix algebra. 

The matrix algebra results presented in this chapter will enable us to concisely 
state statistical models. Moreover, the formal relations expressed in matrix terms 
are easily programmed on computers to allow the routine calculation of important 
statistical quantities. 

We begin by introducing some very basic concepts that are essential to both our 
geometrical interpretations and algebraic explanations of subsequent statistical 
techniques. If you have not been previously exposed to the rudiments of matrix al
gebra, you may prefer to follow the brief refresher in the next section by the more 
detailed review provided in Supplement 2A. 

2.2 Some Basics of Matrix and Vector Algebra 

Vectors 

An array x of n real numbers Xl, X2, • •. , Xn is called a vector, and it is written as 

x = rx:.:n:J l or x' = (Xl> X2, ... , x ll ] 

where the prime denotes the operation of transposing a column to a row. 

49 
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2 _________________ ~ 
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I I 
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I : 

OI~~----------,i~3~1--~~ 
I I , 

l' __________________ ,,!,' 

Figure 2.1 The vector x' = [1,3,2]. 

A vector x can be represented geometrically as a directed line in n dimensions 
with component XI along the first axis, X2 along the second axis, .,. , and Xn along the 
nth axis. This is illustrated in Figure 2.1 for n = 3. 

A vector can be expanded or contracted by mUltiplying it by a constant c. In 
particular, we define the vector c x as 

[

CXI]' CX2 
cx = . 

CXn 

That is, cx is the vector obtained by multiplying each element of x by c. [See 
Figure 2.2(a).] 

2 

2 

(a) (b) 

Figure 2.2 Scalar multiplication and vector addition. 
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1\vo vectors may be added. Addition of x and y is defined as 

[
XI] [YI] [XI + YI] X2 Y2 X2 + Y2 

x+y= : + : = : . . . 

Xn Yn xn + Yn 

so that x + y is the vector with ith element Xi + Yi' 

The sum of two vectors emanating from the origin is the diagonal of the paral
lelogram formed with the two original vectors as adjacent sides. This geometrical 
interpretation is illustrated in Figure 2.2(b). 

A vector has both direction and length. In n = 2 dimensions, we consider the 
vector 

x = [:J 
The length of x, written L., is defined to be 

L. = v'xI + x~ 
Geometrically, the length of a vector in two dimensions can be viewed as the 
hypotenuse of a right triangle. This is demonstrated schematicaIly in Figure 2.3. 

The length of a vector x' = [XI, X2,"" xn], with n components, is defined by 

Lx = v'xI + x~ + ... + x~ (2-1) 

Multiplication of a vector x by a scalar c changes the length. From Equation (2-1), 

Le. = v'c2xt + c2X~ + .. , + c2x~ 

= I c I v' XI + x~ + ... + x~ = I c I Lx 

Multiplication by c does not change the direction of the vector x if c > O. 
However, a negative value of c creates a vector with a direction opposite that of x. 
From 

Lex = /elL. (2-2) 

it is clear that x is expanded if I cl> 1 and contracted -if 0 < I c I < 1. [Recall 
Figure 2.2(a).] Choosing c = L;I, we obtain the unit vector L;IX, which has length 1 
and lies in the direction of x. 

2 

Figure 2.3 

Length of x = v' xi + x~. 
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2 

x 

Figure 2.4 The angle 8 between 
x' = [xI,x21andy' = [YI,YZ)· 

A second geometrical conc~pt is angle. Consider. two vectors in a plane and the 
le 8 between them, as in Figure 2.4. From the figure, 8 can be represented. as 

ang difference between the angles 81 and 82 formed by the two vectors and the fITSt 
the . b d f· .. 

rdinate axis. Since, y e ImtJon, coo 

YI 
COS(02) = L 

y 

sin(02) = ~ 
y 

and 
cos(o) = cos(Oz - °1) = cos (82) cos (01) + sin (02) sin (oil 

gle ° between the two vectors x' = [Xl> X2) and y' = [Yl> Y2] is specified by 
the an 

cos(O) = cos (02 - oil = (rJ (~J + (Z) (Z) = XIY~:L:2Y2 (2-3) 

We find it convenient to introduce the inner product of two vectors. For n = 2 
dimensions, the inner product of x and y is 

x'y = XIYl + XzY'2 

With this definition and Equation (2-3), 

x'y x'y 
Lx = Wx cos(O) = L L =. ~. ~ 

x.y vx'x vy'y 

Since cos(900) = cos (270°) = 0 and cos(O) = 0 only if x'y = 0, x and y are 
e endicular when x'y = O. . 

P rpFor an arbitrary number of dimensions n, we define the Inner product of x 

andyas 

x/y = XIYI + XzY2 + ... + xnYn (2-4) 

1be inner product is denoted by either x'y or y'x. 
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Using the inner product, we have the natural extension of length and angle to 
vectors of n components: 

Lx = length ofx = ~ (2-5) 

x'y x/y 
cos (0) = -- = -=-cc-=-~ 

LxLy W; -vy;y (2-6) 

Since, again, cos (8) = 0 only if x/y = 0, we say that x and y are perpendicular 
whenx/y = O. 

Example 2.1 (Calculating lengths of vectors and the angle between them) Given the 
vectors x' = [1,3,2) and y' = [-2,1, -IJ, find 3x and x + y. Next, determine 
the length of x, the length of y, and the angle between x and y. Also, check that 
the length of 3x is three times the length of x. 

First, 

Next, x'x = l z + 32 + 22 = 14, y'y = (-2)Z + 12 + (-1)2 = 6, and x'y = 

1(-2) + 3(1) + 2(-1) = -1. Therefore, 

Lx = Wx = v'I4 = 3.742 Ly = -vy;y = V6 = 2.449 

and 
x'y -1 

cos(O) = -- = . = -.109 
LxLy 3.742 X 2.449 

so 0 = 96.3°. Finally, 

L 3x = V32 + 92 + 62 = v126 and 3Lx = 3 v'I4 = v126 
showing L 3x = 3Lx. • 

A pair of vectors x and y of the same dimension is said to be linearly dependent 
if there exist constants Cl and C2, both not zero, such that 

CIX + C2Y = 0 

A set of vectors Xl, Xz, ... , Xk is said to be linearly dependent if there exist constants 
Cl, Cz, ... , Cb not all zero, such that 

(2-7) 

Linear dependence implies that at least one vector in the set can be written as a 
linear combination of the other vectors. Vectors of the same dimension that are not 
linearly dependent are said to be linearly independent. 
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Example 2.2 (Identifying linearly independent vectors) Consider the set of vectors 

Setting 

implies that 
Cl': C2 + C3 = 0 

2Cl - 2C3 = 0 

Cl - C2 + C3 = 0 

with the unique solution Cl = C2 = C3 = O. As we cannot find three constants Cl, C2, 

and C3, not all zero, such that Cl Xl + C2 X2 + C3 x3 = 0, the vectors Xl, x2, and X3 are 

linearly independent. • 

The projection (or shadow) of a vector x on a vector y is 

(x'y) (x'y) 1 
Projectionofxony = -,-y = -L -L Y 

Y Y y y 

(2-8) 

where the vector L~ly has unit length. The length of the projection is 

.. I x'y I I x'y I Length of projectIOn = --z:- = Lx L L = Lxi cos (B) I 
y x y 

(2-9) 

where B is the angle between x and y. (See Figure 2.5.) 

• y 

G:~)Y 
1--4 cos (9)--l Figure 2.5 The projection of x on y. 

Matrices 
A matrix is any rectangular array of real numbers. We denote an arbitrary array of n 

rows and p columns by 

[

all a12 

a21 a22 
A = . . 

(nXp) : : 

anI a n2 

alP] 
a2p 

'" anp 
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Many of the vector concepts just introduced have direct generalizations to matrices. 
The transpose operation A' of a matrix changes the columns into rows, so that 

the first column of A becomes the first row of A', the second column becomes the 
second row, and so forth. 

Example 2.3 (The transpose of a matrix) If 

A _ [3 
(2X3) 1 

-1 2J 
5 4 

then 

A' = [-~ ~] 
(3X2) 2 4 • 

A matrix may also be multiplied by a constant c. The product cA is the matrix 
that results from multiplying each element of A by c. Thus 

[

call ca12 ... calP] 
cA = C~2l C~22 •..• C~2P 

(nXp) : : '. : 

can 1 can 2 ... canp 

1\vo matrices A and B of the same dimensions can be added. The sum A + B has 
(i,j)th entry aij + bij . 

Example 2.4 (The sum of two matrices and multiplication of a matrix by a constant) 
If 

A _ [0 3 ~J B _ [1 
-2 -~J (2X3) 1 -1 

and 
(2X3) 2 5 

then 

4A = [0 
12 

:J 
and 

(2X3) 4 -4 

A + B = [0 + 1 
3-2 1-3J=[11 -~J (2X3) (2X3) 1 + 2 -1 + 5 1 + 1 3 4 • 

It is also possible to define the multiplication of two matrices if the dimensions 
of the matrices conform in the following manner: When A is (n X k) and B is 
(k X p), so that the number of elements in a row of A is the same as the number of 
elements in a column of B, we can form the matrix product AB. An element of the 
new matrix AB is formed by taking the inner product of each row of A with each 
column ofB. 
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or 

The matrix product AB is 

A B = the (n X p) matrix whose entry in the ith row 
(nXk)(kXp) and jth column is the inner product of the ith row 

of A and the jth column of B 

k 

(i,j) entry of AB = ailblj + ai2b2j + ... + aikbkj = L a;cbtj 
t=1 

(2-10) 

When k = 4, we have four products to add for each· entry in the matrix AB. Thus, 

[a" 
a12 a13 

al
b ... b1j 

~'l 
. 11 

a; 4) ~: 
... b2j b2p 

A B = (at! a,2 ai3 
(nx4)(4Xp) : b3j 

... b3p 

b 41 b 4j 
... b4p 

anI a n 2 a n3 a n4 

Column 
j 

~ Row {- . (a" ~I + a,,1>,1 + a,,1>,1 + a"b, J .. -] 

Example 2.5 (Matrix multiplication) If 

then 

and 

[
3 -1 2J 

A= 1 54' 

[
3 -1 

A B = 
(2X3)(3Xl) 1 5 

2J [-2] = [3(-2) + (-1)(7) + 2(9)J 
4 ~ 1( -2) + 5(7) + 4(9) 

(2~2)(2~3) - G -~ J [~ -! ! J 
= [2(3) + 0(1) 2(-1) + 0(5) 

1(3) - 1(1) 1(-1) - 1(5) 

= [~ -2 4J 
-6 -2 
(2x3) 

2(2) + 0(4)J 
1(2) - 1(4) 

• 
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When a matrix B consists of a single column, it is customary to use the lower
case b vector notation. 

Example 2.6 (Some typical products and their dimensions) Let 

Then Ab,bc',b'c, and d'Ab are typical products. 

The product A b is a vector with dimension equal to the number of rows of A. 

b', ~ [7 -3 6) [ -!J ~ 1-13) 

The product b' c is a 1 X 1 vector or a single number, here -13. 

[ 7] [35 56 -28] 
bc' = -3 [5 8 -4] = -15 -24 12 

6 30 48 -24 

The product b c' is a matrix whose row dimension equals the dimension of band 
whose column dimension equals that of c. This product is unlike b' c, which is a 
single number. 

The product d' A b is a 1 X 1 vector or a single number, here 26. • 
Square matrices will be of special importance in our development of statistical 

methods. A square matrix is said to be symmetric if A = A' or aij = aji for all i 
andj. 
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Example 2.1 (A symmetric matrix) The matrix 

is symmetric; the matrix 

is not symmetric. • 
When two square matrices A and B are of the same dimension, both products 

AB and BA are defined, although they need not be equal. (See Supplement 2A.) 
If we let I denote the square matrix with ones on the diagonal and zeros elsewhere, 
it follows from the definition of matrix multiplication that the (i, j)th entry of 
AI is ail X 0 + ... + ai.j-I X 0 + aij X 1 + ai.j+1 X 0 + .. , + aik X 0 = aij, so 
AI = A. Similarly, lA = A, so 

I A = A I = A for any A (2-11) 
(kXk)(kxk) (kxk)(kXk) (kXk) (kxk) 

The matrix I acts like 1 in ordinary multiplication (1· a = a '1= a), so it is 
called the identity matrix. 

The fundamental scalar relation about the existence of an inverse number a-I 

such that a-la = aa-I = 1 if a =f. 0 has the following matrix algebra extension: If 
there exists a matrix B such that 

BA=AB=I 
(kXk)(kXk) (kXk)(kXk) (kXk) 

then B is called the inverse of A and is denoted by A-I. 
The technical condition that an inverse exists is that the k columns aI, a2, ... , ak 

of A are linearly indeperident. That is, the existence of A-I is equivalent to 

(2-12) 

(See Result 2A.9 in Supplement 2A.) 

Example 2.8 (The existence of a matrix inverse) For 

A=[! ~J 
you may verify that 

[
-.2 .4J [3 2J = [(-.2)3 + (.4)4 (-.2)2 + (.4)1 J 

.8 -.6 4 1 (.8)3 + (-.6)4 (.8)2 + (-.6)1 

= [~ ~J 
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so 

[
-.2 .4J 

.8 -.6 

is A-I. We note that 

implies that Cl = C2 = 0, so the columns of A are linearly independent. This 
confirms the condition stated in (2-12). • 

A method for computing an inverse, when one exists, is given in Supplement 2A. 
The routine, but lengthy, calculations are usually relegated to a computer, especially 
when the dimension is greater than three. Even so, you must be forewarned that if 
the column sum in (2-12) is nearly 0 for some constants Cl, .•. , Ck, then the computer 
may produce incorrect inverses due to extreme errors in rounding. It is always good 
to check the products AA-I and A-I A for equality with I when A-I is produced by a 
computer package. (See Exercise 2.10.) 

Diagonal matrices have inverses that are easy to compute. For example, 

[1 

0 0 0 

~ 1 h~mvm' 0 0 a22 

0 a33 0 
0 0 a44 

0 0 0 a55 

if all the aH =f. O. 

1 
0 

all 

0 
1 

a22 

0 0 

0 0 

o o 

o 

o 

1 

o 

o 

o 

o 

o 

1 

o 

o 

o 

o 

o 

1 

Another special class of square matrices with which we shall become familiar 
are the orthogonal matrices, characterized by 

QQ' = Q'Q = I or Q' = Q-I (2-13) 

The name derives from the property that if Q has ith row qi, then QQ' = I implies 
that qiqi ;: 1 and qiqj = 0 for i =f. j, so the rows have unit length and are mutually 
perpendicular (orthogonal).According to the condition Q'Q = I, the columns have 
the same property. 

We conclude our brief introduction to the elements of matrix algebra by intro
ducing a concept fundamental to multivariate statistical analysis. A square matrix A 
is said to have an eigenvalue A, with corresponding eigenvector x =f. 0, if 

Ax = AX (2-14) 
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Ordinarily, we normalize x so that it has length unity; that is, 1 = x'x. It is 
convenient to denote normalized eigenvectors bye, and we do so in what follows. 
Sparing you the details of the derivation (see [1 D, we state the following basic result: 

Let A be a k X k square symmetric matrix. Then A has k pairs of eigenvalues 
and eigenvectors-namely, 

(2-15) 

The eigenvectors can be chosen to satisfy 1 = e; el = ... = e"ek and be mutually 
perpendicular. The eigenvectors· are unique unless two or more eigenvalues 
are equal. 

Example 2.9 (Verifying eigenvalues and eigenvectors) Let 

-[1 -5J A - -. 
-5 1 

Then, since 

Al = 6 is an eigenvalue, and 

is its corresponding normalized eigenvector. You may wish to show that a second 
eigenvalue--eigenvector pair is ..1.2 = -4, ez = [1/v'2,I/\I2]. • 

A method for calculating the A's and e's is described in Supplement 2A. It is in
structive to do a few sample calculations to understand the technique. We usually rely 
on a computer when the dimension of the square matrix is greater than two or three. 

2.3 Positive Definite Matrices 
The study of the variation and interrelationships in multivariate data is often based 
upon distances and the assumption that the data are multivariate normally distributed. 
Squared distances (see Chapter 1) and the multivariate normal density can be 
expressed in terms of matrix products called quadratic forms (see Chapter 4). 
Consequently, it should not be surprising that quadratic forms play a central role in 
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multivariate analysis. In this section, we consider quadratic forms that are always 
nonnegative and the associated positive definite matrices. 

Results involving quadratic forms and symmetric matrices are, in many cases, 
a direct consequence of an expansion for symmetric matrices known as the 
spectral decomposition. The spectral decomposition of a k X k symmetric matrix 
A is given by1 

A = Al e1 e; + ..1.2 e2 ez + ... + Ak ek eA: 
(kXk) (kX1)(lxk) (kX1)(lXk) (kx1)(lXk) 

(2-16) 

where AI, A2, ... , Ak are the eigenvalues of A and el, e2, ... , ek are the associated 
normalized eigenvectors. (See also Result 2A.14 in Supplement 2A). Thus, eiei = 1 
for i = 1,2, ... , k, and e:ej = 0 for i * j. 

Example 2.1 0 (The spectral decomposition of a matrix) Consider the symmetric matrix 

[ 
13 -4 2] 

A = -4 13 -2 
2 -2 10 

The eigenvalues obtained from the characteristic equation I A - AI I = 0 are 
Al = 9, A2 = 9, and ..1.3 = 18 (Definition 2A.30). The corresponding eigenvectors 
el, e2, and e3 are the (normalized) solutions of the equations Aei = Aiei for 
i = 1,2,3. Thus, Ael = Ae1 gives 

or 

13ell - 4e21 + 2e31 = gel1 

- 4ell + 13e21 - 2e31 = ge21 

2el1 - 2e21 + 10e31 = ge31 

Moving the terms on the right of the equals sign to the left yields three homogeneous 
equations in three unknowns, but two of the equations are redundant. Selecting one of 
the equations and arbitrarily setting el1 = 1 and e21 = 1, we find that e31 = O. Con

sequently, the normalized eigenvector is e; = [1/VI2 + 12 + 02, I/VI2 + 12 + 02, 

0/V12 + 12 + 02] = [1/\12, 1/\12,0], since the sum of the squares of its elements 
is unity. You may verify that ez = [1/v18, -1/v'I8, -4/v'I8] is also an eigenvector 
for 9 = A2 , and e3 = [2/3, -2/3, 1/3] is the normalized eigenvector corresponding 
to the eigenvalue A3 = 18. Moreover, e:ej = 0 for i * j. 

lA proof of Equation (2-16) is beyond the scope ofthis book. The interested reader will find a proof 
in [6), Chapter 8. 
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The spectral decomposition of A is then 

A = Alelel + Azezez + A3e3e3 
or 

[
13 -4 2

J 
[~l [ 1 -4 13 -2 = 9 _1_ Vi 

2 -2 10 Vi 
o 
1 

VIS 
-1 [~ -1 

+9 
VIS VIS 
-4 

VIS 

1 
18 
1 

18 
4 

18 

as you may readily verify. 

-4 ] vT8 + 18 

2 
3 
2 
3 
1 
3 

1 4 --
18 18 
1 ~ 4 -
18 18 
4 16 

-
18 18 

+ 18 

[~ 

4 4 2 
- -- -
9 9 9 

4 4 2 
--

9 9 9 

2 2 1 
-
9 9 9 

• 
The spectral decomposition is an important analytical tool. With it, we are very 

easily able to demonstrate certain statistical results. The first of these is a matrix 
explanation of distance, which we now develop. 

Because x/ Ax has only squared terms xt and product terms XiXb it is caIled a 
quadratic form. When a k X k symmetric matrix A is such that 

Os x/A x (2-17) 

for all x/ = (XI' Xz, ... , xd, both the matrix A and the quadratic form are said to be 
nonnegative definite. If equality holds in (2-17) only for the vector x/ = (0,0, ... ,0], 
then A or the quadratic form is said to be positive definite. In other words, A is 
positive definite if 

0< x/Ax (2-18) 

for all vectors x ~ O. 
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Example 2.11 (A positive definite matrix and quadratic form) Show that the matrix 
for the following quadratic form is positive definite: 

3xI + 2x~ - 2Vi XlxZ 

To illustrate the general approach, we first write the quadratic form in matrix 
notation as 

(XI XZ{ -vJ -V;] [;J = x/Ax 

By Definition 2A.30, the eigenvalues of A are the solutions of the equation 
I A - AI I = 0, or (3 - A)(2 - A) - 2 = O. The solutions are Al = 4 and Az = l. 
Using the spectral decomposition in (2-16), we can write 

A = Aiel ej + Azez ei 
(ZXZ) (2XIJ(IXZ) (ZXIJ(JXZ) 

= 4el e; + e2 ei 
(ZXI)(IX2) (ZXIJ(IXZ) 

where el and e2 are the normalized and orthogonal eigenvectors associated with the 
eigenvalues Al = 4 and Az = 1, respectively. Because 4 and 1 are scalars, premuIti
plication and postmultiplication of A by x/ and x, respectively, where x/ = (XI' xz] is 
any non zero vector, give 

x/ A x = 4x' el ej x + ·x/ ez ei x 
(I XZ)(2xZ)(ZXI) (I XZ)(ZXI)(I X2)(ZX 1) (IXZ)(2XI)(1 X2)(ZXI) 

= 4YI + y~;:,: 0 

with 

YI = x/el = ejx and Yz = x/ez = eix 

We now show that YI and Yz are not both zero and, consequently, that 
x/ Ax = 4YI + y~ > 0, or A is positive definite. 

From the definitions of Y1 and Yz, we have 

or 

y = E X 
(ZXI) (ZX2)(ZXI) 

Now E is an orthogonal matrix and hence has inverse E/. Thus, x = E/y. But x is a 
nonzero vector, and 0 ~ x = E/y implies that y ~ O. • 

Using the spectral decomposition, we can easily show that a k X k symmetric 
matrix A is a positive definite matrix if and only if every eigenvalue of A is positive. 
(See Exercise 2.17.) A is a nonnegative definite matrix if and only if all of its eigen
values are greater than or equal to zero. 

Assume for the moment that the p elements XI, Xz, ... , X p of a vector x are 
realizations of p random variables XI, Xz, ... , Xp. As we pointed out in Chapter 1, 
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we can regard these elements as the coordinates of a point in p-dimensional space, 
and the "distance" of the point [XI> X2,···, xpJ' to the origin can, and in this case 
should, be interpreted in terms of standard deviation units. In this way, we can 
account for the inherent uncertainty (variability) in the observations. Points with the 
same associated "uncertainty" are regarded as being at the same distance from 
the origin. 

If we use the distance formula introduced in Chapter 1 [see Equation (1-22»), 
the distance from the origin satisfies the general formula 

(distance)2 = allxI + a22x~ + ... + appx~ 
+ 2(a12xlx2 + a13xlx3 + ... + ap-1.pxp-lXp) 

provided that (distance)2 > 0 for all [Xl, X2,···, Xp) ~ [0,0, ... ,0). Setting a·· = ti·· 
. ..' I) Jl' 
I ~ J, I = 1,2, ... ,p, ] = 1,2, ... ,p, we have 

alP] [Xl] a2p X2 . . . . . . . . . 
... app Xp 

or 
0< (distancef = x'Ax forx ~ 0 (2-19) 

From (2-19), we see that the p X P symmetric matrix A is positive definite. In 
sum, distance is determined from a positive definite quadratic form x' Ax. Con
versely, a positive definite quadratic form can be interpreted as a squared distance. 

Com~~nt. L~t the squ~re of the dista~ce from the point x' = [Xl, X2, ... , X p) 
to the ongm be gIven by x A x, where A IS a p X P symmetric positive definite 
matrix. Then the square of the distance from x to an arbitrary fixed point 
po I = [p.1> P.2, ... , p.p) is given by the general expression (x - po)' A( x - po). 

Expressing distance as the square root of a positive definite quadratic form al
lows us to give a geometrical interpretation based on the eigenvalues and eigenvec
tors of the matrix A. For example, suppose p = 2. Then the points x' = [XI, X2) of 
constant distance c from the origin satisfy 

x' A x = a1lx1 + a22~ + 2a12xIX2 = 2 

By the spectr,al decomposition, as in Example 2.11, 

A = Alelei + A2e2ez so x'Ax = AI(x'el)2 + A2(x'e2)2 

Now, c2 = AIYI + A2Y~ is an ellipse in YI = x'el and Y2 = x'e2 because AI> A2 > 0 
when A is positive definite. (See Exercise 2.17.) We easily verify that x = cAI l/2el 

. f· 'A '(' -1/2' )2 2 S· iI I -1/2· satIs Ies x x = "l Clll elel = . Im ar y, x = cA2 e2 gIves the appropriate 
distance in the e2 direction. Thus, the points at distance c lie on an ellipse whose axes 
are given by the eigenvectors of A with lengths proportional to the reciprocals of 
the square roots of the eigenvalues. The constant of proportionality is c. The situa
tion is illustrated in Figure 2.6. 
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Figure 2.6 Points a 
constant distance c 
from the origin 
(p = 2, 1 S Al < A2)· 

Ifp > 2, the points x' = [XI,X2,.·.,Xp ) a constant distancec = v'x'Axfrom 
the origin lie on hyperellipsoids c2 = AI(x'el)2 + ... + A (x'e )2 whose axes are 
. b . PP' 

gIven y the elgenvectors of A. The half-length in the direction e· is equal to cl Vi 
. 1 ." I = ,2, ... , p, where AI, A2, ... , Ap are the eigenvalues of A. 

2.4 A Square-Root Matrix 
The spect.ral ~ecomposition allows us to express the inverse of a square matrix in 
term~ of Its elgenvalues and eigenvectors, and this leads to a useful square-root 
~~ . 

Let A be a k X k positive definite matrix with the spectral decomposition 
k 

A = 2: Aieie;. Let the normalized eigenvectors be the columns of another matrix 
.=1 

P = [el, e2,.'·' ed. Then 

k 

A 2: Ai ei ej = P A pI 
(kXk) ;=1 (kxl)(lXk) (kXk)(kXk)(kXk) 

(2-20) 

where PP' = P'P = I and A is the diagonal matrix 

0J o 

•• : ~k 
with A; > 0 
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Thus, 

(2-21) 

since (PA-Ip')PAP' = PAP'(PA-Ip') = PP' = I. 

Next, let A 1/2 denote the diagonal matrix with VX; as the ith diagonal element. 
k . 

The matrix L VX; eje; = P A l/2p; is called the square root of A and is denoted by 
j=1 

AI/2. 

The square-root matrix, of a positive definite matrix A, 

k 
AI/2 = 2: VX; eje; = P A l/2p' 

i=1 

has the following properties: 

1. (N/2)' = AI/2 (that is, AI/2 is symmetric). 

2. AI/2 AI/2 = A. 

(2-22) 

3. (AI/2) -I = ± . ~ eiej = P A -1/2p', where A -1j2 is a diagonal matrix with 
j=1 vA j 

1/ VX; as the ith diagorial element. 

4. AI/2A-I/2 = A-I/2AI/2 = I, and A-I/2A-I/2 = A-I, where A-I/2 = (AI/2rl. 

2.5 Random Vectors and Matrices 
A random vector is a vector whose elements are random variables. Similarly, a 
random matrix is a matrix whose elements are random variables. The expected value 
of a random matrix (or vector) is the matrix (vector) consisting of the expected 
values of each of its elements. Specifically, let X = {Xij} be an n X P random 
matrix. Then the expected value of X, denoted by E(X), is the n X P matrix of 
numbers (if they exist) 

E(Xd 

E(XIP)] 
E(X2p ) 

E(Xnp) 

(2-23) 
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where, for each element of the matrix,2 

E(X;j) = ! 
1: Xij/ij(Xij) dxij 

L Xi/Pi/(Xi/) 
aJlxij 

if Xij is a continuous random variable with 
probability density functionfu(xij) 

if Xij is a discrete random variable with 
probability function Pij( Xij) 

Example 2.12 (Computing expected values for discrete random variables) Suppose 
P = 2 and,! = 1, and consider the random vector X' = [XI ,X2]. Let the discrete 
random vanable XI have the following probability function: 

o 1 
.3 .4 

ThenE(XI) = L xIPI(xd = (-1)(.3) + (0)(.3) + (1)(.4) ==.1. 
a!lx! 

Similarly, let the discrete random variable X 2 have the probability function 

Then E(X2) == L X2P2(X2) == (0) (.8) + (1) (.2) == .2. 
all X2 

Thus, 

• 
'!Wo results involving the expectation of sums and products of matrices follow 

directly from the definition of the expected value of a random matrix and the univariate 
properties of expectation, E(XI + Yj) == E(XI) + E(Yj) and E(cXd = cE(XI)' 
Let X and Y be random matrices of the same dimension, and let A and B be 
conformable matrices of constants. Then (see Exercise 2.40) 

E(X + Y) == E(X) + E(Y) 

E(AXB) == AE(X)B 

(2-24) 

2If you are unfamiliar with calculus, you should concentrate on the interpretation of the expected 
value and, ~ventu~lIy, variance. Our development is based primarily on the properties of expectation 
rather than Its partIcular evaluation for continuous or discrete random variables. 
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2.6 Mean Vectors and Covariance Matrices 
SupposeX' = [Xl, x2, .. ·, Xp] isap x 1 random vector.TheneachelementofXisa 
random variable with its own marginal probability distripution; (See Example 2.12.) The 
marginal means JLi and variances (Tf are defined as JLi = E (X;) and (Tt = E (Xi - JLi)2, 
i = 1, 2, ... , p, respectively. Specifically, 

-00 '" 'density function fi( x;) ! 1
00 x. [.( x-) dx. if Xi is a continuous random variable with probability 

~= . 
if Xi is a discrete random variable with probability 

L XiPi(Xi) function p;(x;) 
aUXi 

! 1
00 (x. - JLlt..(x-) dx. if Xi is a continuous random vari.able 

-00' '" 'with probability density function fi(Xi) 
(Tf = 

if Xi is a discrete random variable 
L (x; - JL;)2 p;(x;) with probability function P;(Xi) 
alIxj 

(2-25) 

It will be convenient in later sections to denote the marginal variances by (T;; rather 
than the more traditional ut, and consequently, we shall adopt this notation .. 

The behavior of any pair of random variables, such as X; and Xb is described by 
their joint probability function, and a measure of the linear association between 
them is provided by the covariance 

(Tik = E(X; - JL;)(Xk - JLk) 

L L (X; - JLi)(Xk - JLk)Pik(Xi, Xk) 
all Xi all xk 

if X;, X k are continuous 
random variables with 
the joint density 
functionfik(x;, Xk) 

if X;, X k are discrete 
random variables with 
joint probability 
function Pike Xi, Xk) 

(2-26) 

and JL; and JLk, i, k = 1,2, ... , P, are the marginal means. When i = k, the covari
ance becomes the marginal variance. 

More generally, the collective behavior of the P random variables Xl, X 2, ... , Xp 
or, equivalently, the random vector X' = [Xl, X 2, ... , Xp], is described by a joint 
probability density function f(XI' X2,.'" xp) = f(x). As we have already noted in 
this book,f(x) will often be the multivariate normal density function. (See Chapter 4.) 

If the joint probability P[ Xi :5 X; and X k :5 Xk] can be written as the product of 
the corresponding marginal probabilities, so that 

(2-27) 
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for all pairs of values xi, Xk, then X; and Xk are said to be statistically independent. 
When X; and X k are continuous random variables with joint density fik(Xi, xd and 
marginal densities fi(Xi) and fk(Xk), the independence condition becomes 

fik(Xi, Xk) = fi(Xi)fk(Xk) 

for all pairs (Xi, Xk)' 
The P continuous random variables Xl, X 2, ... , Xp are mutually statistically 

independent if their joint density can be factored as 

(2-28) 

for all p-tuples (Xl> X2,.'" xp). 
Statistical independence has an important implication for covariance. The 

factorization in (2-28) implies that Cov (X;, X k ) = O. Thus, 

if X; and X k are independent (2-29) 

The converse of (2-29) is not true in general; there are situations where 
Cov(Xi, X k) = 0, but X; and X k are not independent. (See [5].) 

The means and covariances of the P X 1 random vector X can be set out as 
matrices. The expected value of each element is contained in the vector of means 
/L = E(X), and the P variances (T;i and the pep - 1)/2 distinct covariances 
(Tik(i < k) are contained in the symmetric variance-covariance matrix 
.I = E(X - /L)(X - /L)'. Specifically, 

E(X) = E(~2) = ~2 = /L 

[

E(XI)] [JLI] 
(2-30) 

and 

[

(Xl - JLd2 

= E (X2 - 1Lz):(XI - JLI) 

(Xp - JLp)(XI - JLI) 

E(X2 - ILz)(XI - ILl) 

[ 

E(XI - JLI)2 

= E(Xp - JLP:) (Xl - JLI) 

E(Xp) JLp 

(Xl - JLI)(X2 - JL2) 
(X2 - JL2)2 

(Xp - JLp)(X2 - JL2) 

E(XI - JLI)(X2 - JL2) 
E(Xz - JLz)Z 

.. , (Xl - JLI)(Xp - JLP)] 

.... (X2 - JL2);(Xp ~ JLp) 

(Xp - JLp) 

E(XI - JLl)(Xp - JLP)] 
E(X2 - ILz)(Xp - JLp) 

E(Xp - JLp)2 
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or 

[

1T11 

l: = COV(X) = IT~I 

ITpl 

(2-31) 

Example 2.13 (Computing the covariance matrix) Find the covariance matrix for 
the two random variables XI and X 2 introduced ill Example 2.12 when their joint 
probability function pdxJ, X2) "is represented by the entries in the body of the 
following table: 

>z XI 0 1 Pl(xd 

-1 .24 .06 .3 
0 .16 .14 .3 
1 .40 .00 .4 

P2(X2) .8 .2 1 

We have already shown that ILl = E(XI) = .1 and iL2 = E(X2) = .2. (See Exam
ple 2.12.) In addition, 

1T11 = E(XI - ILl? = 2: (XI - .1)2pl(xd 
all Xl 

= (-1 - .1)2(.3) + (0 - .1)2(.3) + (1 - .1)\.4) = .69 

1T22 = E(X2 - IL2)2 = 2: (X2 - .2)2pix2) 
all X2 

= (0 - .2)2(.8) + (1 - .2f(.2) 

= .16 

1T12 = E(XI - ILI)(X2 - iL2) = 2: (Xl - .1)(x2 - .2)PdXI' X2) 
all pairs (x j, X2) 

= (-1 - .1)(0 - .2)(.24) + (-1 - .1)(1 - .2)(.06) 

+ .. , + (1 - .1)(1 - .2)(.00) = -.08 

1T21 = E(X2 - IL2)(Xl - iLl) = E(XI - ILI)(X2 - iL2) = 1T12 = -.08 

-
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'Consequently, with X' = [Xl, X21, 

J-L = E(X) = [E(XdJ = [ILIJ = [.lJ 
E(X2) IL2 .2 

and 

l: = E(X - J-L)(X - J-L)' 

- E[(Xl - J-Llf (XI - J-LI)(X2 - f-L2)] 
- (X2 - f-L2)(XI - J-Ld (X2 - f-L2)2 

[
E(Xl - J-Llf E(Xl - J-Ll) (X2 - f-L2)] 

= E(X2 - J-L2)(XI - J-Ld E(X2 - J-L2)2 

= [ITIl IT12J = [ .69 -.08J 
1T21 1T22 - .08 .16 • 

We note that the computation of means, variances, and covariances for discrete 
random variables involves summation (as in Examples 2.12 and 2.13), while analo
gous computations for continuous random variables involve integration. 

Because lTik = E(Xi - J-Li) (Xk - J-Lk) = ITki, it is convenient to write the 
matrix appearing in (2-31) as 

[UU 1T12 ... 

u" l l: = E(X - J-L)(X - J-L)' = ITt2 1T22 .,. 1T2p (2-32) 

ITlp 1T2p ITpp 

We shall refer to J-L and l: as the population mean (vector) and population 
variance-covariance (matrix), respectively. 

The multivariate normal distribution is completely specified once the mean 
vector J-L and variance-covariance matrix l: are given (see Chapter 4), so it is not 
surprising that these quantities play an important role in many multivariate 
procedures. 

It is frequently informative to separate the information contained in vari
ances lTii from that contained in measures of association and, in particular, the 
measure of association known as the population correlation coefficient Pik' The 
correlation coefficient Pik is defined in terms of the covariance lTik and variances 
IT ii and IT kk as 

lTik 
Pi k = ---,=-:.::..",= 
~~ 

(2-33) 

The correlation coefficient measures the amount of linear association between the 
random variables Xi and X k. (See,for example, [5].) 



72 Chapter 2 Matrix Algebra and Random Vectors 

Let the population correlation matrix be the p X P symmetric matrix 

0"11 0"12 

~~ ~Yu; 
0"12 0"22 

p= ~Yu; vU;Yu; 

O"lp 0"2p 

~~ Yu;YU;; 

(2-34) 

and let the p X P standard deviation matrix be 

jJ (2-35) 

Then it is easily verified (see Exercise 2.23) that 

(2-36) 

and 

(2-37) 

Th t · "can be obtained from Vl/2 and p, whereas p can be obtained from l:. a IS,..... . . ' II 
Moreover, the expression of these relationships in terms of matrIX operatIOns a ows 
the calculations to be conveniently implemented on a computer. 

Example 2.14 (Computing the correlation matrix from the covariance matrix) 

Suppose 

~ -~] = [::~ 
-3 25 0"13 

Obtain Vl/2 and p. 
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Here 

[
vu:;-; 

Vl/2 = ~ 
o 
~ 

o 
0] [2 0-0 

Vo); 0 H] 
and 

Consequently, from (2-37), the correlation matrix p is given by 

o 0] [4 ! 0 1 
3 
o 1 2 

5 

Partitioning the Covariance Matrix 

1 
9 

-3 

2] [! 0 0] 
-3 ~ ~ 0 
25 0 0 ~ 

• 

Often, the characteristics measured on individual trials will fall naturally into two 
or more groups. As examples, consider measurements of variables representing 
consumption and income or variables representing personality traits and physical 
characteristics. One approach to handling these situations is to let the character
istics defining the distinct groups be subsets of the total collection of characteris
tics. If the total collection is represented by a (p X 1)-dimensional random 
vector X, the subsets can be regarded as components of X and can be sorted by 
partitioning X. 

In general, we can partition the p characteristics contained in the p X 1 random 
vector X into, for instance, two groups of size q and p - q, respectively. For exam
ple, we can write 
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From the definitions of the transpose and matrix multiplication, 

== [~: ~ ~:] [Xq+l'- JLq+l> Xq+2 - JLq+2,"" Xp - JLp) 

Xq - JLq 

[

(XI - JLd(Xq+1 - JLq+d (XI = JLI)(Xq+2 = JLq·d ::: (X:I = JLI)(Xp = JLP)] (X2 - JL2)(Xq+1 - JLq+l) (X2 JL2)(Xq+2 ILq+2) (X2 IL2) (Xp JLp) ==: :': 
(Xq - JLq)(Xq+1 - JLq+l) (Xq - JLq)(Xq+2 - ILq+2) (Xq - JLq)(Xp - JLp) 

Upon taking the expectation of the matrix (X(I) - JL(I»)(X(2) - ,.,.(2»', we get 

[

UI,q+1 lTI,q+2 ... lTIP] 
E(X(l) - JL(I»)(X(Z) - JL(Z»' = UZt 1 lTZtZ :.. lT~p = 1:IZ (2-39) 

U q,q+l IT q,q+2 IT q P 

which gives al1 the covariances,lTi;, i = 1,2, ... , q, j = q + 1, q + 2, ... , p, between a component of X(!) and a component of X(2). Note that the matrix 1:12 is not 
necessarily symmetric or even square. 

Making use of the partitioning in Equation (2-38), we can easily demonstrate that 
(X - JL)(X - ,.,.)' 

(X(I) - r(!»(X(Z) - JL(2))'J 
(qxl (IX(p-q» 

(X(2) - ,.,.(2) (X(Z) - JL (2»), 
((p-q)XI) (IX(p-q» 

and consequently, 
q p-q 

1: = E(X - JL)(X - JL)' = q [_~.1.! .... +_ .. ~.~~l 
(pxp) p-q 1:21 ! 1:22J 

(pxp) 

Uu lTl q i Ul,~+1 lTlp 
l : 

Uql Uqq ! Uq,q+1 lTqp 
------------------------------------1"-------------------.--.---.--.------. 

lTq+I,1 Uq+l,q (q+l,q+l lTq+l,p 

lTpl lTpq j Up,q+1 lTpp 

Mean Vectors and Covariance Matrices 75 

Note that 1:1z = 1:21 , The covariance matrix of X(I) is 1:11 , that of X(2) is 1:22 , and that of elements from X(!) and X(Z) is 1:12 (or 1:21), 
It is sometimes convenient to use the COy (X(I), X(Z» notation where 

COy (X(I),X(2) = 1:12 
is a matrix containing all of the covariances between a component of X(!) and a component of X(Z). 

The Mean Vector and Covariance Matrix 
for linear Combinations of Random Variables 
Recal1 that if a single random variable, such as XI, is multiplied by a constant c, then 

E(cXd = cE(Xd = CJLI 
and 

If X 2 is a second random variable and a and b are constants, then, using additional properties of expectation, we get 

Cov(aXI ,bX2) = E(aXI - aILIl(bXz - bILz) 
=abE(XI - JLI) (X2 - JLz) 
= abCov(XI,Xz) = ablT12 

Finally, for the linear combination aX1 + bXz, we have 

E(aXI + bXz) = aE(XI ) + bE(X2) = aJLI + bJL2 
Yar(aXI + bX2) = E[(aXI + bX2) - (aJLI + bIL2»)2 

, I ' I 

= E[a(XI - JLI) + b(Xz - JLZ)]2 
= E[aZ(XI - JLI)2 + bZ(Xz - ILZ)2 + 2ab(XI - JLd(X2 - JL2)] 
= a2Yar(XI ) + bZYar(Xz) + 2abCov(X1,XZ) 
= a2lTl1 + b2lT22 + 2ablT12 (2-41) 

With e' = [a, b], aXI + bX2 can be written as 

[a b) [~~J = e'X 

Similarly, E(aXl + bX2) = aJLI + bJL2 can be expressed as 

[a b] [~~J = e',.,. 

If we let 
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be the variance-covariance matrix o~X, Equation (2-41) becomes 

Var(aXl + bX2) = Var(c'X) = c'l:c 

since 

c'l:c = [a b] [all al2] [a] = a2all + 2abul2 + b2un 
al2 a22 b 

(2-42) 

The preceding results can be extended to a linear combination of p random variables: 

The linear combination c'X·= CIXI + '" + c~Xp has 

mean = E( c'X) = c' P

variance = Var(c'X) = c'l:c 

where p- == E(X) and l: == Cov (X). 

(2-43) 

In general, consider the q mear 1· combinations of the p random variables 
Xj, ... ,Xp: 

or 

ZI = C!1X1 + C12X2 + .,. + CjpXp 

Z2 = C21Xl + CnX2 + .:. + C2pXp 

Cq 2 
(qXp) 

The linear combinations Z = CX have 

P-z = E{Z) == E{CX) = Cp-x 

l:z = Cov(Z) = Cov(CX) = Cl:xC' 

(2-44) 

(2-45) 

h and l: are the mean vector and variance-covar~ance matrix o~ Xc~sr:;,c)-v: ere P-x x. 228 for the computation of the off-diagonal terms m x. 
tIvel~~s~ea~;:;;I~:a~ilY on the result in (2-45) in our discussions of principal com
ponents and factor analysis in Chapters 8 and 9. 

E l 2 IS (Means and covariances of linear combinations) Let X'. = [Xl> X~} 
xamp e· . , _ [ } and variance-covanance matrIX be a random vector with mean vector P-x - /-LI, p,z 

l:x = [:~: :::J 

------------.... 
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Find the mean vector and covariance matrix for the linear combinations 

or 

ZI = XI - X 2 

Zz = XI + X 2 

in terms of P-x and l:x. 
Here 

P-z = E(Z) = Cp..x = C -1J .[J-LIJ = [/-LI - J-L2] 
1 J-L2 J-LI + J.L2 

and 

l:z = Cov(Z) = C:txC' = n -lJ [a11 
a

l2J [ 1 1J 
1 al2 a22 -1 1 

Note that if all = a22 -that is, if Xl and X 2 have equal variances-theoff-diagona} 
terms in :tz vanish. This demonstrates the well-known result that the sum and differ
ence of two random variables with identical variances are uncorrelated. , • 

Partitioning the Sample Mean Vector 
and Covariance Matrix 

Many of the matrix results in this section have been expressed in terms of population 
means and variances (covariances). The results in (2-36), (2-37), (2-38), and (2-40) 
also hold if the population quantities are replaced by their appropriately defined 
sample counterparts. 

Let x' = [XI, X2,"" xp] be the vector of sample averages constructed from 
n observations on p variables XI, X2 , •.. , X

p
, and let . 

1 n 1 .•. -n L (Xjl - Xl) (Xjp - Xp) 
J~l . . . . . . 

1 ~ ( _ )2 
- .£J xJP - xp 
n j=l 

be the corresponding sample variance-covariance matrix. 
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The sample mean vector and the covariance matrix can be partitioned in order 
to distinguish quantities corresponding to groups of variables. Thus, 

and 

SIl = 
(pxp) 

X 
(pXl) 

J!L 
Xq+l 

SI.q+1 Sip 

Sql Sqq : Sq.q+1 Sqp . 

':::;':::;['::;,~:;':::; 

(2-46) 

(2-47) 

where x(1) and x(Z) are the sample mean vectors constructed from observations 
x(1) = [Xi>"" xq]' and x(Z) = [Xq+b"" .xp]', re~pective!y; SII is the sample c~vari
ance matrix computed from observatIOns x( ); SZ2 IS the sample covanance 
matrix computed from observations X(2); and S12 = S:n is the sample covariance 
matrix for elements of x(I) and elements of x(Z). 

2.1 Matrix Inequalities and Maximization 
Maximization principles play an important role in several multivariate techniques. 
Linear discriminant analysis, for example, is concerned with allocating observations 
to predetermined groups. The allocation rule is often a linear function of measure
ments that maximizes the separation between groups relative to their within-group 
variability. As another example, principal components are linear combinations of 
measurements with maximum variability. 

The matrix inequalities presented in this section will easily allow us to derive 
certain maximization results, which will be referenced in later chapters. 

Cauchy-Schwarz Inequality. Let band d be any two p X 1 vectors. Then 

(b'd)2 $ (b'b)(d'd) 

with equality if and only if b = cd (or d = cb) for some constant c. 

(2-48) 
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Proof. The inequality is obvious if either b = 0 or d = O. Excluding this possibility, 
consider the vector b - X d, where x is an arbitrary scalar. Since the length of 
b - xd is positive for b - xd *- 0, in this case 

o < (b - xd)'(b - xd) = b'b - xd'b - b'(xd) + x 2d'd 

= b'b - 2x(b'd) + x2(d'd) 

The last expression is quadratic in x. If we complete the square by adding and 
subtracting the scalar (b'd)2/d 'd, we get 

(b'd)2 (b'd)2 
0< b'b - -- + -- - 2 (b'd) + 2(d'd) d'd d'd x x 

(b'd)2 (b'd)2 
= b'b - -- + (d'd) x - -

d'd d'd 

The term in brackets is zero if we choose x = b'd/d'd, so we conclude that 

(b'd)2 
O<b'b--

d'd 

or (b'd)2 < (b'b)( d' d) if b *- xd for some x. 
Note that if b = cd, 0 = (b - cd)'(b - cd), and the same argument produces 

(b'd)2 = (b'b)(d'd). • 

A simple, ~ut important, extension of the Cauchy-Schwarz inequality follows 
directly. 

Extended Cauchy-Schwarz Inequality. Let band d be any two vectors, and 
let B be a positive definite matrix. Then (pXl) (pXI) 

(pxp) 

(b'd/ $ (b'B b)(d'B-1d) (2-49) 

with equality if and only if b = c B-1 d (or d = cB b) for some constant c. 

Proof. The inequality is obvious when b = 0 or d = O. For cases other than these, 
consider the square-root matrix Bl/2 defined in terms of its eigenvalues A; and 

p 

the normalized eigenvectors e; as B1/2 = 2: VX; e;ej. If we set [see also (2-22)] 
;=1 

it follows that 

B-1/ Z = ± _1_ e.e~ 
;=1 VX; I I 

b'd = b'Id = b'Blf2B-1/2d = (Bl/2b)' (B-1/2d) 

and the proof is completed by applying the Cauchy-Schwarz inequality to the 
vectors (Bl/2b) and (B-1/2d). • 

The extended Cauchy-Schwarz inequality gives rise to the following maximiza
tion result. 
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Maximization Lemma. Let B be positive definite and d be a given vector. (pxp) (pXI) 
Then, for an arbitrary nonzero vector x , (pXl) 

( 'd)2 max 2.....- = d' B-1d (2-50) 
x>,o x'Bx 

with the maximum attained when x = cB-
1 

d for any constant c * O. (pXI) (pxp)(pxl) 

proof. By the extended Cauchy-Schwarz inequality, (x'd)2 $: (x'Bx) (d'B-Id). 
Because x * 0 and B is positive definite, x'Bx > O. Dividing both sides of the 
inequality by the positive scalar x'Bx yields the upper bound 

( 'd)2 _x __ ::; d'B-1d 
x'Bx 

Taking the maximum over x gives Equation (2-50) because the bound is attained for 
x = CB-Id. • 

A [mal maximization result will provide us with an interpretation of eigenvalues. 

Maximization of Quadratic Forms for Points on the Unit Sphere. Let B be a (pXp) 
positive definite matrix with eigenvalues Al ~ A2 ~ ... ~ Ap ~ 0 and associated 
normalized eigenvectors el, e2,' .. , e po Then 

x'Bx 
max-,- == Al 
x>'O x.x 

x'Bx 
min--=A 
x>'o x'x p 

(attained when x = ed 

(attained when x <= ep ) 

(2-51) 

Moreover, 
x'Bx 

max -, - = Ak+1 
x.LeJ,.·.' ek X X 

(attained when x = ek+1, k = 1,2, ... , P - 1) (2-52) 

where the symbol .1 is read "is perpendicular to." 

Proof. Let P be the orthogonal matrix whose columns are the eigenvectoIS 
(pxp) el, e2,"" e
p 

and A be the diagonal matrix with eigenvalues AI, A2,···, Ap along the 
main diagonal. Let Bl/2 = PA1/2P' [see (2-22)] and v = P' x. (plO) (pxp)(pxl) 

Consequently, x#,O implies Y * O. Thus, 
x'Bx x'B1(2B1/2x x'PA1/2P'PA1(2P'x y' Ay =--

y'y y'y x'x x'pP'x 
--,...J 

I 
(pxp) 

p p 

~ A;yf 2: YT 
i=l <: ,i=l - \ = p- _ AI-p-- - "l 

~yf 2:YT 
i=l ;=1 

------------..... 
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Setting x = el gives 

since 

, {I, ekel == 
0, k * 1 

k = 1 

For this choice ofx, we have y' Ay/y'y = Al/l = AI' or 

e;Uel 
eiel == e;Ue1 = Al (2-54) 

A similar ar~ument produces the second part of (2-51). 
Now, x - Py == Ylel + Y2e + ... + . 2 ypep, so x .1 eh-'" ek Implies 

o = e~x == ye'e + ' I 1 i 1 Y2e;e2 + ... + ypejep == Yi, i $: k 

Therefore, for x perpendicular to the first k . inequality in (2-53) becomes elgenvectors e;, the left-hand side of the 

p 

x'Bx .2: A;Y'f 
~_ = l=k+l 
x'x p 

L YT 
i=k+l 

TakingYk+I=IYk - - O· , +2 - .. , - Yp == gIVes the asserted maximum. • 
For a fixed x * 0 x' B / I x' == xo/Vx&xo is ~f u~it l~n x~ x~o has the same .value as x'Bx, where largest eigenvalue A I'S the gt: onsequently, EquatIOn (2-51) says that the . ' 1, maXImum value of th d' pomts x whose distance from the ori in i . .. e qua rahc form x'Bx for all the quadratic form for all pOI'nts g s. ufmty. SImIlarly, Ap is the smallest value of . x one umt rom the ori' Th I elgenvalues thus represent extreme values f I gm.. e argest and smallest The "intermediate" eigenvalues of the X 0 x ~ x for ~~mts on the unit sphere. interpretation as extreme values hP. f pOSItIve d~flmte matrix B also have an the earlier choices. w en x IS urther restncted to be perpendicular to 
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VECTORS AND MATRICES: 
BASIC CONCEPTS 

Vectors 
Many concepts, such as a person's health, intellectual abilities, or p~rsonality, cannot 
be adequately quantified as a single number. Rather, several different measure
ments Xl' Xz,· .. , Xm are required. 

Definition 2A.1. An m-tuple of real numbers (Xl> Xz,·.·, Xi,"" Xm) arranged in a 
column is called a vector and is denoted by a boldfaced, lowercase letter. 

Examples of vectors are 

Vectors are said to be equal if their corresponding entries are the same . 

. Definition 2A.2 (Scalar multiplication). Let c be an arbitrary scalar. Then the 
product cx is a vector with i~h ~ntr.y CXi' 

To illustrate scalar multiplIcatiOn, take Cl = Sand Cz = -1.2. Then 

CIY=S[ ~]=[ 1~] and CZY=(-1.2)[ ~]=[=~:~] 
-2 -10 -2 2.4 
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Definition 2A.3 (Vector addition). The sum of two vectors x and y, each having the 
same number of entries, is that vector 

z = x + Y with ith entry Zi = Xi + Yi 

Thus, 

x + y z 

Taking the zero vector, 0, to be the m-tuple (0,0, ... ,0) and the vector -x to be the 
m-tuple (-Xl, - X2, ... , - xm), the two operations of scalar multiplication and 
vector addition can be combined in a useful manner. 

Definition 2A.4. The space of all real m-tuples, with scalar multiplication and 
vector addition as just defined, is called a vector space. 

Definition 2A.S. The vector y = alxl + azxz + ... + akXk is a linear combination of 
the vectors Xl, Xz, ... , Xk' The set of all linear combinations of Xl, Xz, ... ,Xk, is called 
their linear span. 

Definition 2A.6. A set of vectors xl, Xz, ... , Xk is said to be linearly dependent if 
there exist k numbers (ai, az, ... , ak), not all zero, such that 

alxl + a2x Z + ... + akxk = 0 

Otherwise the set of vectors is said to be linearly independent. 

If one of the vectors, for example, Xi, is 0, the set is linearly dependent. (Let ai be 
the only nonzero coefficient in Definition 2A.6.) 

The familiar vectors with a one as an entry and zeros elsewhere are lirIearly 
independent. For m = 4, 

so 

implies that al = a2 = a3 = a4 = O. 
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As another example, let k = 3 and m = 3, and let 

Then 
2xI - X2 + 3x3 = 0 

Thus, x I, x2, x3 are a linearly dependent set of vectors, since anyone can be written 
as a linear combination of the others (for example, x2 = 2xI + 3X3)· 

Definition 2A.T. Any set of m linearly independent vectors is called a basis for the 
vector space of all m-tuples of real numbers. 

Result 2A.I. Every vector can be expressed as a unique linear combination of a 

fixed basis. -

With m = 4, the usual choice of a basis is 

These four vectors were shown to be linearly independent. Any vector x can be 

uniquely expressed as 

A vector consisting of m elements may be regarded geometrically as a point in 
m-dimensional space. For example, with m = 2, the vector x may be regarded as 
representing the point in the plane with coordinates XI and X2· 

Vectors have the geometrical properties of length and direction. 

2 • 

X2 -------- I x =[~~J , , , , , 
x, 

Definition 2A.S. The length of a vector of m elements emanating from the origin is 
given by the Pythagorean formula: 

lengthofx = Lx = VXI + x~ + ... + x~ 

--~--------..... 
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Definition 2A.9. Th I e ang e () between two vectors x and y both h . .. defined from . , avmg m entfles, IS 

cos«() = (XIYI + X2)'2 + ... + XmYm) 

LxLy 

where Lx = length of x and L = len th of 
and YI, )'2, ... , Ym are the elem:nts Of:' y, xl, X2, ... , Xm are the elements of x, 

Let 

Then the length of x, the len th of d . vectors are g y, an the cosme of the angle between the two 

and 

length ofx = V( _1)2 + 52 + 22 + (_2)2 = V34 = 5.83 

lengthofy = V42 + (-3)2 + 02 + 12 = v26 = 5.10 

1 1 
= V34 v26 [(-1)4 + 5(-3) + 2(0) + (-2)lJ 

1 
= 5.83 X 5.10 [-21J = -.706 

Consequently, () = 135°. 

pefinition 2A.IO. The inner (or dot) d 
number of entries is defined as the pro

f 
uct of two vectors x and y with the same 

sum 0 component products: 

XIYI + x2Y2 + ... + xmYm 

We use the notation x'y or y'x to denoteth· . d IS mner pro uct. 

With the x'y notation we ma th 
the angle between two vedtors as y express e length ?f a vector and the cosine of 

Lx = length of x = V xI + x~ + ... + x~ = ~ 

cos«() = x'y 
~vy;y 



86 Chapter 2 Matrix Algebra and Random Vectors 

Definition 2A.II. When the angle between two vectors x, y is 8 = 9(}" or 270°, we 
say that x and y are perpendicular. Since cos (8) = 0 only if 8 = 90° or 270°, the 
condition becomes 

x and Y are perpendicular if x' Y = 0 

We write x .1 y. ~ 

The basis vectors 

are mutually perpendicular. Also, each has length unity. The same construction 
holds for any number of entries m. 

Result 2A.2. 

(a) z is perpendicular to every vector if and only if z = O. 

(b) If z is perpendicular to each vector XI, X2,"" Xb then Z is perpendicular to 
their linear span. 

(c) Mutually perpendicular vectors are linearly independent. _ 

Definition 2A.12. The projection (or shadow) of a vector x on a vector y is 

(x'y) 
projection ofx on y = -2- Y 

Ly 

If Y has unit length so that Ly = 1, 
, 

projection ofx on Y = (x'y)y 

If YJ, Y2, ... , Yr are mutually perpendicular, the projection (or shadow) of a vector x 
on the linear span ofYI> Y2, ... , Yr is 

(X'YI) (X'Y2) + (x'Yr) 
-,-YI + -,-Y2 + .,. -,-Yr 

YIYI Y2Y2 YrYr 

Result 2A.l (Gram-Schmidt Process). Given linearly independent vectors Xl, 

X2, ... , Xk, there exist mutually perpendicular vectors UI, U2, ... , Uk with the same 
linear span. These may be constructed sequentially by setting 

UI = XI 

Matrices 
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We can also convert the u's to unit length by setting Zj = Uj/~. In this 
k-l 

construction, (xiczj) Zj is the projection of Xk on Zj and L (XkZj)Zj is the projection 
j=1 

of Xk on the linear span of Xl , X2, ... , Xk-l' • 
For example, to construct perpendicular vectors from 

and 

we take 

so 

and 

XZUl = 3(4) + 1(0) + 0(0) - 1(2) = 10 

Thus, 

Definition 2A.ll. An m X k matrix, generally denoted by a boldface uppercase 
letter such as A, R, l;, and so forth, is a rectangular array of elements having m rows 
and k columns. 

Examples of matrices are 

[-7 '] B = [: 1/~ J. I ~ [i 0 n A = ~ ~ , 
3 

-2 1 
0 

~ ~ [ .~ .7 -.3] 
2 1 , E = [ed 

-.3 1 8 
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In our work, the matrix elements will be real numbers or functions taking on values 
in the real numbers. 

Definition 2A.14. The dimension (abbreviated dim) of an rn x k matrix is the ordered 
pair (rn, k); "m is the row dimension and k is the column dimension. The dimension of a 
matrix is frequentIy-indicated in parentheses below the letter representing the matrix. 
Thus, the rn X k matrix A is denoted by A . 

(mXk) 

In the preceding examples, the dimension of the matrix I is 3 X 3, and this 
information can be conveyed by wr:iting I . 

(3X3) 

An rn X k matrix, say, A, of arbitrary constants can be written 

A = r:;~ :;: 
(mxk) : : 

amI a m2 

... alkl 

.•. a2k 

amk 

or more compactly as A = {aij}, where the index i refers to the row and the 
(mxk) 

index j refers to the column. 
An rn X 1 matrix is referred to as a column vector. A 1 X k matrix is referred 

to as a row vector. Since matrices can be considered as vectors side by side, it is nat
ural to define multiplication by a scalar and the addition of two matrices with the 
same dimensions. 

Definition2A.IS.1Womatrices A = {a;j} and B = {bij} are said to be equal, 
(mXk) (mXk) 

written A = B,ifaij = bij,i = 1,2, ... ,rn,j = 1,2, ... ,k.Thatis,two matrices are 
equal if 
(a) Their dimensionality is the same. 
(b) Every corresponding element is the same. 

Definition 2A.16 (Matrix addition). Let the matrices A and B both be of dimension 
rn X k with arbitrary elements aij and bij , i = 1,2, ... , rn, j = 1,2, ... , k, respec
tively. The sum of the matrices A and B is an m X k matrix C, written C = A + B, 
such that the arbitrary element of C is given by 

i = 1,2, ... , m, j = 1,2, ... , k 

Note that the addition of matrices is defined only for matrices of the same 
dimension. 

For example; 

[~ ~ 1~ ] 
A + B C 
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Definition 2A.17 (Scalar multiplication). Let c be an arbitrary scalar and A .= {aij}. 
(mXk) 

Then cA = Ac = B = {bij}, where bij = Caij = ail'c, i = 1,2, ... , m, 
(mXk) (mXk) (mXk) 

j = 1,2, ... , k. 

Multiplication of a matrix by a scalar produces a new matrix whose elements are 
the elements of the original matrix, each multiplied by the scalar. 

For example, if c = 2, 

-4] [3 -4] [6 -8] 6 2 6 2 4 12 
5 0 5 0 10 

cA Ac B 

Definition 2A.18 (Matrix subtraction). Let A = {ai -} and B = {bi -} be two 
(mXk) I (mxk) I 

matrices of equal dimension. Then the difference between A and B, written A - B, 
is an m x k matrix C = {c;j} given by 

C = A - B = A + (-1)B 

Thatis,cij = a;j + (-I)bij = aij - bij,i = 1,2, ... ,m,j = 1,2, ... ,k. 

Definition 2A.19. Consider the rn x k matrix A with arbitrary elements aij, i = 1, 
2, ... , rn, j = 1, 2, ... , k. The transpose of the matrix A, denoted by A', is 
the k X m matrix with elements aji, j = 1,2, ... , k, i = 1,2, ... , rn. That is, the 
transpose of the matrix A is obtained from A by interchanging the rows and 
columns. 

As an example, if 

A _ [2 
(2X3) 7 

1 3J [2 7] 4 6 ' then A' = 1 -4 
- (3X2) 3 6 

Result 2A.4. For all matrices A, B, and C (of equal dimension) and scalars c and d, 
the following hold: 

(a) (A + B) + C = A + (B + C) 

(b) A + B = B + A 

(c) c(A + B) = cA + cB 

(d) (c + d)A = cA + dA 

(e) (A + B)' = A' + B' 

(f) (cd)A = c(dA) 

(g) (cA)' = cA' 

(That is, the transpose of the sum is equal to the 
sum of the transposes.) 

• 
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Definition 2A.20. If an arbitrary matrix A has the same number of rows and columns, 
then A is called a square matrix. The matrices l;, I, and E given after Definition 2A.13 
are square matrices. 

Definition 2A.21. Let A be a k X k (square) matrix. Then A is said to be symmetric 
if A = A'. That is:A is symmetric if aij = aji, i = 1,2, ... , k, j = 1,2, ... , k. 

Examples of symmetric matrices are 

[
1 0 0] 

1=010, 
(3X3) 0 0 1 

B -[: ~ ; ~:J 
(4X4) fe g c 

d a 

Definition 2A.22. The k X k identity matrix, denoted by 1 ,is the square matrix 
(kXk) 

with ones on the main (NW-SE) diagonal and zeros elsewhere. The 3 X 3 identity 
matrix is shown before this definition. 

Definition 2A.23 (Matrix multiplication). The product AB of an m X n matrix 
A = {aij} and an n X k matrix B = {biJ is the m X k matrix C whose elements 
are 

n 

Cij = :2: aiebej 
(=1 

i ='l,2" .. ,m j = 1,2, ... ,k 

Note that for the product AB to be defined, the column dimension of A must 
equal the row dimension of B. If that is so, then the row dimension of AB equals 
the row dimension of A, and the column dimension of AB equals the column 
dimension of B. 

For example, let 

[
3 A -

(2X3) 4 -0
1 

5
2J and B = [! -~] 

(3X2) 4 3 

Then 

[! -~ 2J [~ -~] = [11 20J = [c. 11 
5 4 3 32 31 C21 

C12 ] 
C22 

(2X3) (3X2) (2X2) 
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where 

Cll = (3)(3) + (-1)(6) + (2)(4) = 11 

C12 = (3)(4) + (-1)(-2) + (2)(3) = 20 

C21 = (4)(3) + (0)(6) + (5)(4) = 32 

C22 = (4)(4) + (0)(-2)+ (5)(3) = 31 

As an additional example, consider the product of two vectors. Let 

Then x' = [1 0 -2 3J and 

Note that the product xy is undefined, since x is a 4 X 1 matrix and y is a 4 X 1 ma
trix, so the column dim of x, 1, is unequal to the row dim of y, 4. If x and y are vectors 
of the same dimension, such as n X 1, both of the products x'y and xy' are defined. 
In particular, y'x = x'y = XIYl + X2Y2 + '" + XnY,,, and xy' is an n X n matrix 
with i,jth element XiYj' 

Result 2A.S. For all matrices A, B, and C (of dimensions such that the indicated 
products are defined) and a scalar c, 

(a) c(AB) = (c A)B 

(b) A(BC) = (AB)C 

(c) A(B + C) = AB + AC 

(d) (B + C)A = BA + CA 

(e) (AB)' = B'A' 

More generally, for any Xj such that AXj is defined, 
n n 

(f) :2: AXj = A 2: Xj 
j=l j=l 

• 
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There are several important differences between the algebra of matrices and 
the algebra of real numbers. TWo of these differences are as follows: 

1. Matrix multiplication is, in general, not commutative. That is, in g.eneral, 
AB #0 BA. Several examples will illustrate the failure of the commutatIve law 
(for matriceJ). 

but 

is not defined. 

but 

[ 
7 6] [ J [19 -18 -3 1 1 _0 1 = -1 -3 
2 4 2 3 6 10 -12 

4~] 
26 

Also, 

but 

[ 
2 IJ [4 -IJ = [ 8 -IJ 

-3 4 0 1 -12 7 

2. Let 0 denote the zero matrix, that is, the matrix with zero for every element. In 
the algebra of real numbers, if the product of two numbers, ab, is zero, the~ 
a = 0 or b = O. In matrix algebra, however, the product of two nonzero matn~ 
ces may be the zero matrix. Hence, 

AB 0 
(mxn)(nXk) (mxk) 

does not imply that A = 0 or B = O. For example, 

It is true, however, that if either A = 0 or B = 0, then 
(mXn) (mXn) (nXk) (nXk) 

A B = 0 . 
(mXn)(nxk) (mXk) 
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Definition 2A.24. The determinant of the square k X k matrix A = {aiJ, denoted 
by 1 A I, is the scalar 

1 A 1 = all if k = 1 
k 

1 A 1 = L aliIAlil(-l)1+i ifk> 1 
i=l 

where Ali is the (k - 1) X (k - 1) matrix obtained by deleting the first row and 
k 

jth column of A.Also, 1 A 1 = L aijlAijl( -l)i+i, with theith row in place of the first 
i=l 

row. 

Examples of determinants (evaluated using Definition 2A.24) are 

I! !! = 1141(-I)Z + 3161(-1)3 = 1(4) + 3(6)(-1) = -14 

In general, 

~ _; : = 31_~ ~1(-l)Z + 11~ ~1(-1)3 + 61~ _~/(-1)4 
= 3(39) - 1(-3) + 6(-57) = -222 

100 ! ~ ~ ~ = 1 ~ ~1(-I? + O!~ ~/(-1? + 0l~ ~1(-1)4 = 1(1) = 1 

If I is the k X k identity matrix, 1 I 1 = 1. 

all al2 aB 
aZl aZZ aZ3 
a31 a3Z a33 

- a /azz aZ3 !(_1)2 + a12la21 aZ31(_1)3 + al3la21 aZZ I(_1)4 - 11 
a32 a33 a31 a33 an a32 

The determinant of any 3 X 3 matrix can be computed by summing the products 
of elements along the solid lines and subtracting the products along the dashed 
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lines in the following diagram. This procedure is not valid for matrices of higher 
dimension, but in general, Definition 2A.24 can be employed to evaluate these 
determinants. 

We next want to state a result that describes some properties of the determinant. 
However, we must first introduce some notions related to matrix inverses. 

Definition 2A.2S. The row rank of a matrix is the maximum number of linearly inde
pendent rows, considered as vectors .( that is, row vectors). The column rank of a matrix 
is the rank of its set of columns, consIdered as vectors. 

For example, let the matrix 

1 1] 
5 -1 

1 -1 

The rows of A, written as vectors, were shown to be linearly dependent after 
Definition 2A.6. Note that the column rank of A is also 2, since 

but columns 1 and 2 are linearly independent. This is no coincidence, as the 
following result indicates. 

Result 2A.6. The row rank and the column rank of a matrix are equal. • 
Thus, the rank of a matrix is either the row rank or the column rank. 
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Definition 2A.26. A square matrix A is nonsingular ifAx 0 implies 
(kXk) (kxk)(kXl) (kXl) 

that x 0 . If a matrix fails to be nonsingular, it is called singUlar. Equivalently, 
(kxl) (kXI) 

a square matrix is nonsingular if its rank is equal to the number of rows (or columns) 
it has. 

Note iliat Ax = X13I + X232 + ... + Xk3b where 3i is the ith column of A, so 
that the condition of nonsingularity is just the statement that the columns of A are 
linearly independent. 

Result 2A.T. Let A be a nonsingular square matrix of dimension k X k. Then there 
is a unique k X k matrix B such that 

AB = BA = I 

where I is the k X k identity matrix. • 
Definition 2A.2T. The B such that AB = BA = I is called the inverse of A and is 
denoted by A-I. In fact, if BA = I or AB = I, then B = A-I, and both products 
must equal I. 

For example, 

[2 3J [ ~ A = has A-I = i 
1 5 -::; -n 

since 

[2 3J [ ~ -~J = [ ~ -~J [2 3J = [1 0J 
1 5 -::;::; -::; ::; 1 5 0 1 

Result 2A.S. 

(3) The inverse of any 2 X 2 matrix 

. A=[:~: :~~J 
is given by 

(b) The inverse of any 3 X 3 matrix 



~ 
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is given by 

/a
22 

a32 
a231 
a33 

-la12 

a32 
al31 
a33 

la
12 

a22 
al31 
a23 

1 
-la21 aZ31 jail al3I_lall al31 _A-I = TAT 

a3J a33 a31 a33 aZI aZ3 

la
zl 

a31 
anI 
a32 

-Iall 

a31 
a121 
a32 

la l1 

a2l 
a121 
a22 

In both (a) and (b), it is clear that I A I "# 0 if the inverse is to exist. 

(c) In general, KI has j, ith entry [lA;NIAIJ(-lrj, where A;j is the matrix 
obtained from A by deleting the ith row and jth column. _ 

Result 2A.9. For a square matrix A of dimension k X k, the following are equivalent: 

(a) A x = 0 implies x = 0 (A is nonsingular). 
(kXk)(kx1) (kXI) (kXI) (kxl) 

(b) IAI "# o. 
(c) There exists a matrix A-I such that AA-I = A-lA = I . 

(kXk) -
Result 2A.1 o. Let A and B be square matrices of the same dimension, and let the 
indicated inverses exist. Then the following hold: 

(a) (A-I), = (ATI 

(b) (ABtl = B-1 A-I 

The determinant has the following properties. 

Result 2A.II. Let A and B be k X k square matrices. 

(a) IAI = lA' I 
(b)· If each element of a row (column) of A is zero, then I A I = 0 

(c) If any two rows (columns) of A are identical, then I A I = 0 

(d) If A is nonsingular, then I A I = 1/1 A-I I; that is, I A II A-I I = 1. 

(e) IABI = IAIIBI 

(f) I cA I = ck I A I, where c is a scalar. 

-

You are referred to [6} for proofs of parts of Results 2A.9 and 2A.ll. Some of 
these proofs are rather complex and beyond the scope of this book. _ 

Definition 2A.2B. Let A = {a;j} be a k X k square matrix. The trace of the matrix A, 
k 

written tr (A), is the sum of the diagonal elements; that is, tr (A) = 2: aii' 
;=1 
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Result 2A.12. Let A and B be k X k matrices and c be a scalar. 

(a) tr(cA) = c tr(A) 

(b) tr(A ± B) = tr(A) ± tr(B) 

(c) tr(AB) = tr(BA) 

(d) tr(B-IAB) = tr(A) 

k k 
(e) tr(AA') = 2: 2: afj 

i=1 j=1 -
Definition 2A.29. A square matrix A is said to be orthogonal if its rows, considered 
as vectors, are mutually perpendicular and have unit lengths; that is, AA' = I. 

Result 2A.13. A matrix A is orthogonal if and only if A-I = A'. For an orthogonal 
matrix, AA' = A' A = I, so the columns are also mutually perpendicular and have 
unit lengths. _ 

An example of an orthogonal matrix is 

[ -~ ~ ~ ~l A = 2 -2 2 2 
1 I 1 1 
2" 2 -2 2 
I 1 1 I 
2" 2 2-2 

Clearly,A = A',soAA' = A'A = AA. We verify that AA = I = AA' = A'A,or 

n 
1 I 

Jlr-l 
I I 

Jl~ 
2 2" 2 2 

r~ 
0 0 

~l 
I 1 I 1 

1 0 -2 2 -'2 2 
.1 1 1 1 0 1 
Z -2 2 -2 
I 1 I 1 0 0 
2 2 2 2 

A A I 

so A' = A-I, and A must be an orthogonal matrix. 
Square matrices are best understood in terms of quantities called eigenvalues 

and eigenvectors. 

Definition 2A.30. Let A be a k X k square matrix and I be the k X k identity ma
trix. Then the scalars AI, Az, ... , Ak satisfying the polynomial equation I A - All = 0 
are called the eigenvalues (or characteristic roots) of a matrix A. The equation 
I A - AI I = 0 (as a function of A) is called the characteristic equation. 

For example, let 

A=[~ ~J 
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Then 

IA-AlI~\[~ n-{~ ~J\ 
~ \1 ~ A 3 ~ AI = (1 - A)(3 - A) = 0 

implies that there are two roots, Al = 1 and A2 ~ 3. The eigenvalues of A are 3 
and 1. Let 

Then the equation 

, [13 
A = -~ 

-4 2] 13 -2 
-2 10 

-4 2 13 - A 
-4 13 - A -2 = _A3 + 36.\2 - 405A + 1458 = 0 lA - All = 

2 -2 10 - A 

has three roots: Al = 9, A2 = 9, and A3 = 18; that is, 9, 9, and 18 are the eigenvalues 
ofA. 

Definition 2A.31. Let A be a square matrix of dimension k X k and let A be an eigen
value of A. If x is a nonzero vector ( x * 0) such that (kXI) (kXI) (kXl) 

Ax = Ax 

then x is said to be an eigenvector (characteristic vector) of the matrix A associated with 
the eigenvalue A. 

An equivalent condition for A to be a solution of the eigenvalue--eigenvector 
equation is I A - AI I = O. This follows because the statement that A x = Ax for 
some A and x * 0 implies that 

0= (A - AI)x = Xl colj(A - AI) + ... + Xk colk(A - AI) 
That is, the columns of A - AI are linearly dependent so, by Result 2A.9(b), I A - AI I = 0, as asserted. Following Definition 2A.30, we have shown that the 

eigenvalues of 

A= G ~J 
are Al = 1 and A2 = 3. The eige~vectors ~ssociated with these eigenvalues can be 
determined by solving the followmg equatIOns: 

------------...... 
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From the first expression, 

or 

Xl = Xl 

Xl + 3X2 = X2 

Xl = - 2X2 

There are many solutions for Xl and X2' 
Setting X2 = 1 (arbitrarily) gives Xl = -2, and hence, 

is an eigenvector corresponding to the eigenvalue 1. From the second expression, 

Xl = 3Xj 

Xl + 3X2 = 3xz 

implies that Xl = 0 and x2 = 1 (arbitrarily), and hence, 

is an. eigenvector corresponding to the eigenvalue 3. It is usual practice to determine 
an elge~vector so that It has length unity. That is, ifAx = Ax, we take e = x/YX'X as the elgenvector corresponding to A. For example, the eigenvector for A = 1 is et = [-2/v'S, 1/v'S]. . I 

Definition2A.32. A quadraticform Q(x) in thekvariables Xl,x2,"" Xk is Q(x) = x'Ax, 
where x' = [Xl, X2, ••. , Xk] and A is a k X k symmetric matrix. 

k k 
Note that a quadraticform can be written as Q(x) = 2: 2: a/jx/xj' For example, 

/=1 j=l 

Q(x) = [Xl X2) [~ ~J [:~J = XI + 2XlX2 + X~ 

Q(x) = [Xl X2 X3] [! -~ -~] [:~] = xi + 6XIX2 - X~ - 4XZX3 + 2x~ o -2 2 X3 

A~y symmetric square matrix can be reconstructured from its eigenvalues 
and elg~nvector~. The particular expression reveals the relative importance of 
e~ch paIr accordmg to the relative size of the eigenvalue and the direction of the elgenvector. ' 
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Result 2A.14. The Spectral Decomposition. Let A be a k x k symmetric matrix. 
Then A can be expressed in terms of its k eigenvalue-eigenvector pairs (Ai, e;) as 

For example, let 

Then 

k 

A = 2: Aieiej 
;=1 

A = [2.2 .4J .4 2.8 

lA - All = A2 - 5A + 6.16 - .16 = (A - 3)(A - 2) 

• 

so A has eigenvalues Al = 3 and A2 = 2. The corresponding eigenvectors are 
et = [1/VS, 2/VS] and ez = [2/VS, -l/VS], respectively. Consequently, 

A= [
2.2 
.4 

= [.6 1.2J + [1.6 -.8J 
1.2 2.4 - .8 .4 

The ideas that lead to the spectral decomposition can be extended to provide a 
decomposition for a rectangular, rather than a square, matrix. If A is a rectangular 
matrix, Uten the vectors in the expansion of A are the eigenvectors of the square 
matrices AA' and A' A. 

Result 2A.1 S. Singular-Value Decomposition. Let A be an m X k matrix of real 
numbers. Then there exist an m X m orthogonal matrix U and a k X k orthogonal 
matrix V such that 

A = UAV' 

where Ute m X k matrix A has (i, i) entry Ai ~ 0 for i = 1, 2, ... , mine m, k) and the 
other entries are zero. The positive constants Ai are called the singular values of A. • 

The singular-value decomposition can also be expressed as a matrix expansion 
that depends on the rank r of A. Specifically, there exist r positive constants 
AI, A2, ... , An r orthogonal m X 1 unit vectors U1, U2, ... , Un and r orthogonal 
k X Lunit vectors VI, Vz, ... , V" such that 

r 

A = 2: A;u;vj = UrArV; 
;=1 

where U r = [UI> U2, ... , Ur], Vr = [VI' V2,"" Vr ], and Ar is an r X r diagonal matrix 
with diagonal entries Ai' 
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Here AA' has eigenvalue-eigenvector pairs (At, Ui), so 

AA'Ui = A7ui 

with At, A~, ... , A~ > 0 = A~+l>A~+2"'" A~, (for m> k).Then Vi = A~IA'ui.Alter
natively, the Vi are the eigenvectors of A' A with the same nonzero eigenvalues At. 

The matrix expansion for the singular-value decomposition written in terms of 
the full dimensional matrices U, V, A is 

A U A V' 
(mXk) (mXm)(mxk)(kxk) 

where U has m orthogonal eigenvectors of AA' as its columns, V has k orthogonal 
eigenvectors of A' A as its columns, and A is specified in Result 2A.15. 

For example, let 

Then 

A = [ 3 1 1J 
-1 3 1 

AA' ~ [-: : :J[: -J [1: I:J 
You may verify Utat the eigenvalues ')' = A2 of AA' satisfy the equation 

')'2 - 22,), + 120 = (y- 12)(')' - 10), and consequently, the eigenvalues are 

')'~ = A[l ~ 12 1 aJnd d ')': = A[~ ; 10'_1 Th

J 

e co~esPOnding eigenvectors are 

UI = Vi V2 an U2 = Vi V2' respectively. 

Also, 

so I A' A - ')'1 I = _,),3 - 22')'2 - 120')' = -')'( ')' - 12)(')' - 10), and the eigenvalues 
are ')'1 = AI = 12, ')'2 = A~ = 10, and ')'3 = A~ = O. The nonzero eigenvalues are the 
same as those of AA'. A computer calculation gives the eigenvectors 

I [1 2 1 ] ' [2 -1 ] [ 1 VI = v'6 v'6 v'6' v2 = VS VS 0 , and V3 = v30 

Eigenvectors VI and V2 can be verified by checking: 

[

10 

A'Avl = ~ 

[

10 

A'Av2 = ~ 
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Taking Al = VU and A2 = v1O, we find that the singular-value decomposition of 

Ais 

[ 3 1 1J 
A = -1) 1 

2 

v'6 _1 J + v1O[~l [~ v'6 -1 VS 
v'2 

-1 DJ 
VS 

The equality may be checked by carrying out the operations on the right-hand side. 
The singular-value decomposition is closely connected to a result concerning 

the approximation of a rectangular matrix by a lower-dimensional matrix, due to 
Eckart and Young ([2]). If a m X k matrix A is approximated by B, having the same 
dimension but lower rank, the sum of squared differences 

m k 
2: 2: (aij - bijf = tr[(A - B)(A - B)'] 
i=1 j=1 

Result 2A.16. Let A be an m X k matrix of real numbers with m ~ k and singular 
value decomposition VAV'. Lets < k = rank (A). Then 

s 

B = 2: AiDi v; 
i=1 

is the rank-s least squares approximation to A. It minimizes 

tr[(A - B)(A - B)') 

over all m X k matrices B having rank no greater than s. The minimum value, or 
k 

error of approximation, is 2: AT. • 
;=s+1 

To establish this result, we use vV' = Im and VV' = Ik to write the sum of 

squares as 

tr[(A - B)(A - B)'j = tr[UV'(A - B)VV'(A - B)') 

= tr[V'(A - B)VV'(A - B)'V) 

m k m 

= tr[(A - C)(A - C)') = 2: 2: (Aij - Cij? = 2: (Ai - Cii)2 + 2:2: CTj 
i=1 j=1 i=1 i"j 

where C = V'BV. Clearly, the minimum occurs when Cij = Ofor i '* j and cn = Ai for 
s 

the s largest singular values. The other Cu = O. That is, UBV' = As or B = 2: Ai Di vi· 
i=1 

Exercises 

2.1. Letx' = [5, 1, 3] andy' = [-1, 3, 1]. 
. (a) Graph the two vectors. 
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(b) F~nd (i) ~e length of x, (ii) the angle between x and y, and (iii) the projection of y on x. 

(c) Smce x = 3 and y = 1, graph [5 - 3,1 - 3,3 - 3] = [2 -2 DJ and 
[-1-1,3-1,1-1J=[-2,2,OJ. ' , 

2.2. Given the matrices 

2.3. 

perform the indicated multiplications. 
(a) 5A 

(b) BA 

(c) A'B' 

(d) C'B 

(e) Is AB defined? 

Verify the following properties of the transpose when 

A = [~ ~ J B = U ~ ~ J and 

(a) (A')' = A 
(b) (C,)-l = (C- I )' 

(c) (AB)' = B' A' 

(d) For general A and B , (AB)' = B'A' 
(mXk) (kxt) . 

2,4. When A-I and B-1 exist, prove each of the following. 
(a) (A,)-l = (A-I), . 

(b) (AB)-I = B-IA-I 

Hint: Part a can be proved br noting that AA-I = I, I'; 1', and (AA-i)' = (A-I),A'. 
Part b follows from (B-1 A- )AB = B-I(A-IA)B = B-IB = I. 

2.5. Check that 

is an orthogonal matrix. 

2.6. Let 

(a) Is A symmetric? 

(b) Show that A is positive definite. 

Q = IT IT 
[ 

5 12J 

12 5 
-IT IT 
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2.7. Let A be as given in Exercise 2.6. 

(a) Determine the eigenvalues and eigenvectors of A. 

(b) Write the spectral decomposition of A. 
(c) Find A-I. 

(d) Find the eigenvaiues and eigenvectors of A-I. 

2.8. Given the matrix 

A = G -~J 
find the eigenvalues Al and A2 and the associated nonnalized eigenvectors el and e2. 
Determine the spectral decomposition (2-16) of A. 

2.9. Let A be as in Exercise 2.8. 
(a) Find A-I. 

(b) Compute the eigenvalues and eigenvectors of A-I. 

(c) Write the spectral decomposition of A-I, and compare it with that of A from 
Exercise 2.8. 

2.10. Consider the matrices 

A = [:.001 
4.001J 
4.002 

and [
4 4.001 J 

B = 4.001 4.002001 

These matrices are identical except for a small difference in the (2,2) position. 
Moreover, the columns of A (and B) are nearly linearly dependent. Show that 
A-I ='= (-3)B-I. Consequently, small changes-perhaps caused by rounding-can give 
substantially different inverses. 

2.11. Show that the determinant of the p X P diagonal matrix A = {aij} with aij = 0, i *- j, 

is given by the product of the diagonal elements; thus, 1 A 1 = a" a22 ... a p p. 

Hint: By Definition 2A24, I A I = a" A" + 0 + ... + O. Repeat for the submatrix 
All obtained by deleting the first row and first column of A. 

2.12. Show that the determinant of a square symmetric p x p matrix A can be expressed as 
the product of its eigenvalues AI, A2, ... , Ap; that is, I A I = rr;=1 Ai. 
Hint: From (2-16) and (2-20), A = PAP' with P'P = I. From Result 2A.1I(e), 
lA I = IPAP' I = IP IIAP' I = IP 11 A liP' I = I A 1111, since III = IP'PI = IP'IIPI. Apply 
Exercise 2.11. 

2.13. Show that I Q I = + 1 or -1 if Q is a p X P orthogonal matrix. 
Hint: I QQ' I = I I I. Also, from Result 2A.11, IQ" Q' I = IQ 12. Thus, IQ 12 = I I I. Now 
use Exercise 2.11. 

2.14. Show that Q' A Q and A have the same eigenvalues if Q is orthogonal. 
(pXp)(pXp)(pxp) (pXp) 

Hint: Let A be an eigenvalue of A. Then 0 = 1 A - AI I. By Exercise 2.13 and Result 
2A.11(e), we can write 0 = IQ' 11 A - AlII Q I = IQ' AQ - All, since Q'Q = I. 

2.1 S. A quadratic form x' A x is said to be positive definite if the matrix A is positive definite. 
Is the quadratic form 3xt + 3x~ - 2XIX2 positive definite? . 

2.16. Consider an arbitrary n X p matrix A. Then A' A is a symmetric p X P matrix. Show 
that A' A is necessarily nonnegative definite. 
Hint: Set y = A x so that y'y = x' A' A x. 
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2.17. Prove that every eigenvalue of a k x k positive definite matrix A is positive. 
Hint: Consider the definition of an eigenvalue, where Ae = Ae. Multiply on the left by 
e' so that e' Ae = Ae' e. 

2.18. Consider the sets of points (XI, x2) whose "distances" from the origin are given by 

c2 = 4xt + 3x~ - 2v'2XIX2 

for c
2 = 1 and for c2 = 4. Determine the major and minor axes of the ellipses of con

stant distances and their associated lengths. Sketch the ellipses of constant distances and 
comment on their pOSitions. What will happen as c2 increases? 

2.19. Let AI/2 = ~ VA;eie; = PA J/2P',wherePP' = P'P = I. (The A.'s and the e.'s are 
(mXm) ;=1 ' I 

the eigenvalues and associated normalized eigenvectors of the matrix A.) Show Properties 
(1)-(4) of the square-root matrix in (2-22). 

2.20. Determine the square-root matrix AI/2, using the matrix A in Exercise 2.3. Also, deter
. mine A-I/2, and show that AI/2A-I/2 = A-1f2A1/ 2 = I. 

2.21. (See Result 2AIS) Using the matrix 

(a) Calculate A' A and obtain its eigenvalues and eigenvectors. 

(b) Calculate AA' and obtain its eigenvalues and eigenvectors. Check that the nonzero 
eigenvalues are the same as those in part a. 

(c) Obtain the singular-value decomposition of A. 

2.22. (See Result 2A1S) Using the matrix 

A = [; 8 8J 
6 -9 

(a) Calculate AA' and obtain its eigenvalues and eigenvectors. 

(b) Calculate A' A and obtain its eigenvalues and eigenvectors. Check that the nonzero 
eigenvalues are the same as those in part a. 

(c) Obtain the singular-val~e decomposition of A. 

2.23. Verify the relationships V I/2pV I!2 = I and p = (Vlf2rII(VI/2rl, where I is the 
p X .P popul~tion cov~riance matrix [E~uation (2-32)], p is the p X P population cor
relatIOn matnx [EquatIOn (2-34)], and V /2 is the population standard deviation matrix 
[Equation (2-35)]. 

2.24. Let X have covariance matrix 

Find 
(a) I-I 

(b) The eigenvalues and eigenvectors of I. 

(c) The eigenvalues and eigenvectors of I-I. 
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2.25. Let X have covariance matrix 

[

25 -2 4] 
I = -2 4 1 

4 1 9 

(a) Determine p a~d V 1/2. 

(b) Multiply your matrices to check the relation VI/2pVI/2 = I. 

2.26. Use I as given in Exercise 2.25. 

(a) Findpl3' 

(b) Find the correlation between XI and ~X2 + ~X3' 

2.27. Derive expressions for the mean and variances of the following linear combinations in 
terms of the means and covariances of the random variables XI, X 2, and X 3. 

(a) XI - 2X2 
(b) -XI + 3X2 
(c) XI + X 2 + X3 

(e) XI + 2X2 - X3 

(f) 3XI - 4X2 if XI and X 2 are independent random variables. 

2.28. Show that 

where Cl = [CJl, cl2, ... , Cl PJ and ci = [C2l> C22,' .. , C2pJ. This verifies the off-diagonal 
elements CIxC' in (2-45) or diagonal elements if Cl = C2' 

Hint: By (2-43),ZI - E(ZI) = Cl1(XI - ILl) + '" + Clp(Xp - ILp) and 
Z2 - E(Z2) = C21(XI - ILl) + ... + C2p(Xp - ILp).SOCov(ZI,Zz) = 
E[(ZI - E(Zd)(Z2 - E(Z2»J = E[(cll(XI - ILl) + 
'" + CIP(Xp - ILp»(C21(XI - ILd + C22(X2 - IL2) + ... + C2p(Xp - ILp»J. 

The product 

(Cu(XI - ILl) + CdX2 - IL2) + .. , 

+ Clp(Xp - ILp»(C21(XI - ILl) + C22(X2 - IL2) + ... + C2p(Xp - ILp» 

= (~ cu(Xe - ILe») (~I C2m(Xm - ILm») 

p p 

= 2: 2: CJ(C2 m(Xe - ILe) (Xm - ILm) 
(=1 m=1 

has expected value 

Verify the last step by the definition of matrix multiplication. The same steps hold for all 
elements. 
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2.29. Consider the arbitrary random vector X' = [Xl> X2, X 3, X 4, X5J with mean vector 
,.,: = [ILl> IL2. IL3, IL4, Jl.sJ· Partition X into 

X = [~:!.I'~J X (2) 

where 

xl" ~ [;;] .nd X'" ~ [~:] 
Let I be the covariance matrix of X with general element (Tik' Partition I into the 
covariance matrices of X(l) and X(2) and the covariance matrix of an element of X(1) 
and an element of X (2). 

2.30. You are given the random vector X' = [XI' X 2, X 3, X 4J with mean vector 
Jl.x = [4,3,2, 1J and variance-covariance matrix 

Partition X as 

Let 

f
3 0 
o 1 

Ix = 2 1 

2 0 

A = (1 2J and B = C =n 
and consider the linear combinations AX(!) and BX(2). Find 
(a) E(X(J) 

(b) E(AX(l) 

(c) Cov(X(l) 

(d) COY (AX(!) 
(e) E(X(2) 

(f) E(BX(2) 

(g) COY (X(2) 

(h) Cov (BX(2) 

(i) COY (X(l), X (2) 

(j) COY (AX(J), BX(2) 

2 .31. Repeat Exercise 2.30, but with A and B replaced by 

A = [1 -1 J and B = [~ - ~ ] 
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2.32. You are given the random vector X' = [XI, X 2 , ... , Xs] with mean vector 
IJ.'x = [2,4, -1,3,0] and variance-covariance matrix 

4 -1 I I 0 2: -2: 

-1 3 -1 0 

Ix = 1. 1 2 6 1 -1 
I -1 1 4 0 -2 
0 0 -1 0 2 

Partition X as 

Let 

A =D -~J and B = G ~ -~J 
and consider the linear combinations AX(I) and BX(2). Find 

(a) E(X(l) 

(b) E(AX(I) 

(c) Cov(X(1) 
(d) COV(AX(l) 

(e) E(X(2) 

(f) E(BX(2) 

(g) COy (X(2) 

(h) Cov (BX(2) 
(i) COy (X(l), X(2) 
(j) COy (AX(I), BX(2) 

2.33. Repeat Exercise 2.32, but with X partitioned as 

and with A and B replaced by 

A = [~ -1 0J [1 2J 1 3 and B = 1 -1 

2.34. Consider the vectorsb' = [2, -1,4,0] and d' = [-1,3, -2, 1]. Verify the Cauchy-Schwan 
inequality (b'd)2 s (b'b)(d'd). 
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2.3S. Using the vecto~s b' = [-4,3] and d' = [1,1]' verify the extended Cauchy-Schwarz 
inequality (b'd) s (b'Bb)(d'B-1d) if 

B = [ 2 -2J 
-2 5 

2.36. Fmd the maximum and minimum values of the quadratic form 4x~ + 4x~ + 6XIX2 for 
all points x' = [x I , X2] such that x' x = 1. 

2.37. With A as given in Exercise 2.6, fmd the maximum value of x' A x for x' x = 1. 

2.38. Find the maximum and minimum values of the ratio x' Ax/x'x for any nonzero vectors 
x' = [Xl> X2, X3] if 

A = [~! ~: -~] 
2 -2 10 

2.39. Show that 
s t 

A B C has (i,j)th entry ~ ~ aicbckCkj 
(rXs)(sXt)(tXV) e~1 k~l 

t 

Hint: BC has (e, j)th entry ~ bCkCkj = dCj' So A(BC) has (i, j)th element 
k~l 

2.40. Verify (2-24): E(X + Y) = E(X) + E(Y) and E(AXB) = AE(X)B. 
Hint: X. + ~ has Xij + Yij as its (i,j~th element. Now,E(Xij + Yij) = E(Xij) + E(Yi) 
by a umvanate property of expectation, and this last quantity is the (i, j)th element of 

E(X) + E(Y). Next (see Exercise 2.39),AXB has (i,j)th entry ~ ~ aieXCkbkj, and 
by the additive property of expectation, C k 

E(~ ~ aiCXCkbkj) = ~ ~ aj{E(XCk)bkj 
eke k 

which is the (i, j)th element of AE(X)B. 

2.41. You are given the random vector X' = [Xl, X 2, X 3 , X 4 ] with mean vector 
IJ.x = [3,2, -2,0] and variance-covariance matrix 

[30 0 

~J o 3 0 
Ix = 0 0 3 

o 0 0 
Let [1 -1 0 

-~] A = 1 1 -2 
1 1 1 

(a) Find E (AX), the mean of AX. 
(b) Find Cov (AX), the variances and covariances ofAX. 

(c) Which pairs of linear combinations have zero covariances? 
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2.42. Repeat Exercise 2.41, but with 
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SAMPLE GEOMETRY 

AND RANDOM SAMPLING 

3.1 Introduction 
With the vector concepts introduced in the previous chapter, we can now delve deeper 
into the geometrical interpretations of the descriptive statistics K, Sn, and R; we do so in 
Section 3.2. Many of our explanations use the representation of the columns of X as p 
vectors in n dimensions. In Section 3.3 we introduce the assumption that the observa
tions constitute a random sample. Simply stated, random sampling implies that (1) mea
surements taken on different items (or trials) are unrelated to one another and (2) the 
joint distribution of all p variables remains the same for all items. Ultimately, it is this 
structure of the random sample that justifies a particular choice of distance and dictates 
the geometry for the n-dimensional representation of the data. Furthermore, when data 
can be treated as a random sample, statistical inferences are based on a solid foundation. 

Returning to geometric interpretations in Section 3.4, we introduce a single 
number, called generalized variance, to describe variability. This generalization of 
variance is an integral part of the comparison of multivariate means. In later sec
tions we use matrix algebra to provide concise expressions for the matrix products 
and sums that allow us to calculate x and Sn directly from the data matrix X. The 
connection between K, Sn, and the means and covariances for linear combinations 
of variables is also clearly delineated, using the notion of matrix products. 

3.2 The Geometry of the Sample 
A single multivariate observation is the collection of measurements on p different 
variables taken on the same item or trial. As in Chapter 1, if n observations have 
been obtained, the entire data set can be placed in an n X p array (matrix): 

r
Xl1 X12 XIPj 

X = XZl X22 X2p 

(nxp) : ".: 

Xnl Xn2 ••• xnp 

"' 
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Each row of X represents a multivariate observation. Since the entire set of 
measurements is often one particular realization of what might have been 
observed, we say that the data are a sample of size n from a 
"population." The sample then consists of n measurements, each of which has p 
components. 

As we have seen, the data can be ploUed in two different ways. For the. 
p-dimensional scatter plot, the rows of X represent n points in p-dimensional 
space. We can write 

[

Xll 

X = X~l 
(nXp) : 

Xnl 

X12 

X22 

XI P] [X~J -1st '(multivariate) observation 
X2p _ X2 
· - . · . · . 

xnp x~ -nth (multivariate) observation 

The row vector xj, representing the jth observation, contains the coordinates of 

point. .... . 
The scatter plot of n points in p-dlmensIOnal space provIdes mformatlOn on the 

. locations and variability of the points. If the points are regarded as solid spheres, 
the sample mean vector X, given by (1-8), is the center of balance. Variability occurs 
in more than one direction, and it is quantified by the sample variance-covariance 
matrix Sn. A single numerical measure of variability is provided by the determinant 
of the sample variance-covariance matrix. When p is greate: tha~ 3, this scaUer 
plot representation cannot actually be graphed. Yet the conslde~atlOn ?f the data 
as n points in p dimensions provides insights that are not readIly avallable from 
algebraic expressions. Moreover, the concepts illustrated for p = 2 or p = 3 remain 
valid for the other cases. 

Example 3.1 (Computing the mean vector) Compute the mean vector x from the 
data matrix. 

Plot the n = 3 data points in p = 2 space, and locate x on the resulting diagram. 
The first point, Xl> has coordinates xi = [4,1). Similarly, the remaining two 

points are xi = [-1,3] andx3 = [3,5). Finally, 
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2 

5 .x3 

4 

x2
• 

3 @x 

2 

.x, 
-2 -1 2 3 4 5 

-1 
Figure 3.1 A plot of the data 

-2 matrix X as n = 3 points in p = 2 
space. 

Figure 3.1 shows that x is the balance point (center of gravity) of the scatter 
~ . 

The alternative geometrical representation is constructed by considering the 
data as p vectors in n-dimensional space. Here we take the elements of the columns 
of the data matrix to be the coordinates of the vectors. Let 

x = r;;~ ;;~ 
(nxp) : : 

XnI Xn 2 

XI
P

] 
xZp " 

". : = [YI i Yz i 

'" xnp 

(3-2) 

Then the coordinates of the first point yi = [Xll, XZI, ... , xnd are the n measure
ments on the first variable. In general, the ith point yi = [Xli, X2i,"" xnd is 
determined by the n-tuple of all measurements on the ith variable. In this geo
metrical representation, we depict Yb"" YP as vectors rather than points, as in the 
p-dimensional scatter plot. We shall be manipulating these quantities shortly using 
the algebra of vectors discussed in Chapter 2. 

Example 3.2 (Data as p vectors in n dimensions) Plot the following data as p = 2 
vectors in n = 3 space: 
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], 

5 
1 6 

Figure 3.2 A plot of the data 
matrix X as p = 2 vectors in 
n = 3-space. 

Hereyi = [4, -1,3] andyz = [1,3,5]. These vectors are shown in Figure 3.2. _ 

Many of the algebraic expressions we shall encounter in multivariate analysis 
can be related to the geometrical notions of length, angle, and volume. This is im
portant because geometrical representations ordinarily facilitate understanding and 
lead to further insights. 

Unfortunately, we are limited to visualizing objects in three dimensions, and 
consequently, the n-dimensional representation of the data matrix X may not seem 
like a particularly useful device for n > 3. It turns out, however, that geometrical 
relationships and the associated statistical concepts depicted for any three vectors 
remain valid regardless of their dimension. This follows because three vectors, even if 
n dimensional, can span no more than a three-dimensional space, just as two vectors 
with any number of components must lie in a plane. By selecting an appropriate 
three-dimensional perspective-that is, a portion of the n-dimensional space con
taining the three vectors of interest-a view is obtained that preserves both lengths 
and angles. Thus, it is possible, with the right choice of axes, to illustrate certain alge
braic statistical concepts in terms of only two or three vectors of any dimension n. 
Since the specific choice of axes is not relevant to the geometry, we shall always 
label the coordinate axes 1,2, and 3. . 

It is possible to give a geometrical interpretation of the process of finding a sam
ple mean. We start by defining the n X 1 vector 1;, = (1,1, ... ,1]. (To simplify the 
notation, the subscript n will be dropped when the dimension of the vector 1" is 
clear from the context.) The vector 1 forms equal angles with each of the n 
coordinate axes, so the vector (l/Vii)I has unit length in the equal-angle direction. 
Consider the vector Y; = [Xli, x2i,"" xn;]. The projection of Yi on the unit vector 

(1/ vn)I is, by (2-8), 

'--1 --1-" nl I -- I (
1 ) 1 xI-+X2'+"'+x-

Yi Vii Vii - n - Xi (3-3) 

That is, the sample mean Xi = (Xli + x2i + .. , + xn;}/n = yjI/n corresponds to the 
multiple of 1 required to give the projection of Yi onto the line determined by 1. 
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Further, for each Yi, we have the decomposition 

where XiI is perpendicular to Yi - XiI. The deviation, or mean corrected, vector is 

[

Xli - Xi] 
X2- - X· 

d i = Yi - XiI = ':_' 

Xni - Xi 

(3-4) 

The elements of di are the deviations of the measurements on the ith variable from 
their sample mean. Decomposition of the Yi vectors into mean components and 
deviation from the mean components is shown in Figure 3.3 for p = 3 and n = 3. 

3 

Figure 3.3 The decomposition 
of Yi into a mean component 
XiI and a deviation component 
di = Yi - XiI, i = 1,2,3. 

Example 3.3 (Decomposing a vector into its mean and deviation components) Let 
us carry out the decomposition of Yi into xjI and di = Yi - XiI, i = 1,2, for the data 
given in Example 3.2: 

Here, Xl = (4 - 1 + 3)/3 = 2 and X2 = (1 + 3 + 5)/3 = 3, so 
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Consequently, 

and 

We note that xII and dl = Yl - xII are perpendicular, because 

A similar result holds for x21 and d2 = Y2 - x21. The decomposition is 

Y,+:]~m+:] 

pm~ml:] 
For the time being, we are interested in the deviation (or residual) vectors 

d; = Yi - xiI. A plot of the deviation vectors of Figur,e 3.3 is given in Figure 3.4. 

3 

dJ~ ________ ~ __________________ ~ 

Figure 3.4 The deviation 
vectors di from Figure 3.3. 
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We have translated the deviation vectors to the origin without changing their lengths 
or orientations. 

Now consider the squared lengths of the deviation vectors. Using (2-5) and 
(3-4), we obtain 

L~i = didi = ± (Xji - xi (3-5) 
j=l 

(Length of deviation vector)2 = sum of squared deviations 

From (1-3), we see that the squared length is proportional to the variance of 
the measurements on the ith variable. Equivalently, the length is proportional to 
the standard deviation. Longer vectors represent more variability than shorter 
vectors. 

For any two deviation vectors di and db 

n 

did k = 2: (Xji - Xi)(Xjk - Xk) 
j=l 

Let fJik denote the angle formed by the vectors d i and dk . From (2-6), we get 

or,using (3-5) and (3-6), we obtain 

so that [see (1-5)] 

(3-6) 

(3-7) 

The cosine of the angle is the sample correlation coefficient. Thus, if the two 
deviation vectors have nearly the same orientation, the sample correlation will be 
close to 1. If the two vectors are nearly perpendicular, the sample correlation will 
be approximately zero. If the two vectors are oriented in nearly opposite directions, 
the sample correlation will be close to -1. 

Example 3.4 (Calculating Sn and R from deviation vectors) Given the deviation vec
tors in Example 3.3, let us compute the sample variance-covariance matrix Sn and 
sample correlation matrix R using the geometrical concepts just introduced. 

From Example 3.3, 
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4 
5 

3 

Figure 3.5 The deviation vectors 
d1 andd2· 

These vectors, translated to the origin, are shown in Figure 3.5. Now, 

or SII = ¥. Also, 

or S22 = ~. Finally, 

or S12 = -~. Consequently, 

and 

= [1 -.189J 
R -.189 1 

Random Samples and the Expected Values of the Sample Mean and Covariance Matrix 1,19 

The concepts of length, angle, and projection have provided us with a geometrical 
interpretation of the sample. We summarize as follows: 

Geometrical Interpretation of the Sample 

1. The projection of a column Yi of the data matrix X onto the equal angular 
vector 1 is the vector XiI. The vector XiI has length Vii 1 Xi I. Therefore, the 
ith sample mean, Xi, is related to the length of the projection of Yi on 1. 

2. The information comprising Sn is obtained from the deviation vectors d i = 
Yi - XiI = [Xli - Xi,X2i - x;"",Xni - Xi)" The square of the length ofdi 

is nSii, and the (inner) product between d i and dk is nSik.1 

3. The sample correlation rik is the cosine of the angle between d i and d k • 

3.3 Random Samples and the Expected Values of 
the Sample Mean and Covariance Matrix 

In order to study the sampling variability of statistics such as x and Sn with the ulti
mate aim of making inferences, we need to make assumptions about the variables 
whose oDserved values constitute the data set X. 

Suppose, then, that the data have not yet been observed, but we intend to collect 
n sets of measurements on p variables. Before the measurements are made, their 
values cannot, in general, be predicted exactly. Consequently, we treat them as ran
dom variables. In this context, let the (j, k )-th entry in the data matrix be the 
random variable Xjk • Each set of measurements Xj on p variables is a random vec
tor, and we have the random matrix 

r
Xll 

X = X 21 

(nXp) : 

Xn! 

XIPJ rX~J x.2P = ~2 . . . . 
X np X~ 

(3-8) 

A random sample can now be defined. 
If the row vectors Xl, Xl, ... , X~ in (3-8) represent independent observations 

from a common joint distribution with density function f(x) = f(xl> X2,"" xp), 
then Xl, X2, ... , Xn are said to form a random sample from f(x). Mathematically, 
Xl> X2, ••. , Xn form a random sample if their joint density function is given by the 
product f(Xl)!(X2)'" f(xn), where f(xj) = !(Xj!, Xj2"'" Xjp) is the density func
tion for the jth row vector. 

Two points connected with the definition of random sample merit special attention: 

1. The measurements of the p variables in a single trial, such as Xi = 
[Xjl , X j2 , ... , Xjp], will usually be correlated. Indeed, we expect this to be the 
case. The measurements from different trials must, however, be independent. 

1 The square of the length and the inner product are (n - l)s;; and (n - I)s;k, respectively, when 
the divisor n - 1 is used in the definitions of the sample variance and covariance. 

v 
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2. The independence of measurements from trial to trial may not hold when the 
variables are likely to drift over time, as with sets of p stock prices or p eco
nomic indicators. Violations of the tentative assumption of independence can 
have a serious impact on the quality of statistical inferences. 

The following eJglmples illustrate these remarks. 

Example 3.5 (Selecting a random sample) As a preliminary step in designing a 
permit system for utilizing a wilderness canoe area without overcrowding, a natural
resource manager took a survey of users. The total wilQerness area was divided into 
subregions, and respondents were asked to give information on the regions visited, 
lengths of stay, and other variables. 

The method followed was to select persons randomly (perhaps using a random· 
number table) from all those who entered the wilderness area during a particular 
week. All persons were e~ually likely to be in the sample, so the more popular 
entrances were represented by larger proportions of canoeists. 

Here one would expect the sample observations to conform closely to the crite
rion for a random sample from the population of users or potential users. On the 
other hand, if one of the samplers had waited at a campsite far in the interior of the 
area and interviewed only canoeists who reached that spot, successive measurements 
would not be independent. For instance, lengths of stay in the wilderness area for dif
ferent canoeists from this group would all tend to be large. • 

Example 3.6 (A nonrandom sample) Because of concerns with future solid-waste 
disposal, an ongoing study concerns the gross weight of municipal solid waste gen
erated per year in the United States (Environmental Protection Agency). Estimated 
amounts attributed to Xl = paper and paperboard waste and X2 = plastic waste, in 
millions of tons, are given for selected years in Table 3.1. Should these measure
ments on X t = [Xl> X 2] be treated as a random sample of size n = 7? No! In fact, 
except for a slight but fortunate downturn in paper and paperboard waste in 2003, 
both variables are increasing over time. 

Table 3.1 Solid Waste 

Year 1960 1970 1980 1990 1995 2000 2003 

Xl (paper) 29.2 44.3 55.2 72.7 81.7 87.7 83.1 

X2 (plastics) .4 2.9 6.8 17.1 18.9 24.7 26.7 

• 
As we have argued heuristically in Chapter 1, the notion of statistical indepen

dence has important implications for measuring distance. Euclidean distance appears 
appropriate if the components of a vector are independent and have the same vari
ances. Suppose we consider the location ofthe kthcolumn Yl = [Xlk' X2k>'.·' Xnk] 
of X, regarded as a point in n dimensions. The location of this point is determined by 
the joint probability distribution !(Yk) = !(Xlk,X2k> ... ,Xnk)' When the measure
ments X lk , X2k , ... , Xnk are a random sample, !(Yk) = !(Xlk, X2k,"" Xnk) = 
!k(Xlk)!k(X2k)'" !k(Xnk) and, consequently, each coordinate Xjk contributes equally 
to the location through the identical marginal distributions !k( Xj k)' 
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If the n components are not independent or the marginal distributions are not 
identical, the influence of individual measurements (coordinates) on location is 
asymmetrical. We would then be led to consider a distance function in which the 
coordinates were weighted unequally, as in the "statistical" distances or quadratic 
forms introduced in Chapters 1 and 2. 

Certain conclusions can be reached concerning the sampling distributions of X 
and Sn without making further assumptions regarding the form of the underlying 
joint distribution of the variables. In particular, we can see how X and Sn fare as point 
estimators of the corresponding population mean vector p. and covariance matrix l:. 

Result 3.1. Let Xl' X2, .•• , Xn be a random sample from a joint distribution that 
has mean vector p. and covariance matrix l:. Then X is an unbiased estimator of p., 
and its covariance matrix is 

That is, 

E(X) = p. 

- 1 
Cov(X) =-l: 

n 

(popUlation mean vector) 

(
population variance-covariance matrix) 

divided by sample size 

For the covariance matrix Sn, 

n - 1 1 
E(S) = --l: = l: - -l: 

n n n 

Thus, Ee: 1 Sn) = l: 

(3-9) 

(3-10) 

so [n/(n - 1) ]Sn is an unbiased estimator of l:, while Sn is a biased estimator with 
(bias) = E(Sn) - l: = -(l/n)l:. 

Proof. Now, X = (Xl + X2 + ... + Xn)/n. The repeated use of the properties of 
expectation in (2-24) for two vectors gives 

- (1 1 1) E(X) = E ;;Xl + ;;X2 + .,. + ;;Xn 

= E(~Xl) + E(~X2) + .. , + E(~Xn) 
1 1 1 1 1 1 

= ;;E(Xd + ;;E(X2) + ... + ;;:E(Xn) =;;p. +;;p. + ... + ;;p. 

=p. 

Next, 

(
1 n ) (1 n )' (X - p.)(X - p.)' = - ~ (Xj - p.) - ~ (Xt - p.) 
n j~l n t=l 

1 n n 
= 2 ~ ~ (Xj - p.)(Xt - p.)' 

n j=l [=1 
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so 

For j "# e, each entry in E(Xj - IL )(Xe - IL)' is zero because the entry is the 
covariance between a component of Xi and a component of Xe, and these are 
independent. [See Exercise 3.17 and (2-29).] 

Therefore, 

Since:I = E(Xj - 1L)(Xj - IL)' is the common population covariance matrix.for 
each Xi' we have 

1 ( n ) 1 CoveX) = n2 I~ E(Xi - IL)(Xi - IL)' = n2 (:I + :I + .,. + :I) , 
n terms 

= ..!..(n:I) = (.!.):I 
n2 n 

To obtain the expected value of Sn' we first note that (Xii - XJ (Xik - Xk ) is 
the (i, k)th element of (Xi - X) (Xj - X)'. The matrix representing sums of 
squares and cross products can then be written as 

n 

= 2: XiX; - nXx' 
j=1 

n n 

, since 2: (Xi - X) = 0 and nX' = 2: X;. Therefore, its expected value is 
i=1 i=1 

For any random vector V with E(V) = ILv and Cov (V) = :Iv, we have E(VV') = 
:Iv + ILvlLv· (See Exercise 3.16.) Consequently, 

-- 1 
E(XjXj) = :I + ILIL' and E(XX') = -:I + ILIL' 

n 

Using these results, we obtain 

~ -- (1) £.; E(XjX;) - nE(XX') = n:I + nlLlL' - n -:I + ILIL' = (n - 1):I 
j=1 n 

and thus, since Sn = (1In) (± XiX; - nxx'), it follows immediately that 
1=1 

(n - 1) 
E(Sn) = -n-:I • 
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n 

Result 3.1 shows that the (i, k)th entry, (n - 1)-1 :L (Xii - Xi) (Xik - X k ), of 
i=1 

[nl (n - 1) ]Sn is an unbiased estimator of (Fi k' However, the individual sample stan-
dard deviations VS;, calculated with either n or n - 1 as a divisor, are not unbiased 
estimators of the corresponding population quantities VU;;. Moreover, the correla
tion coefficients rik are not unbiased estimators of the population quantities Pik' 

However, the bias E (~) - VU;;, or E(rik) - Pik> can usually be ignored if the 
sample size n is moderately large. 

Consideration of bias motivates a slightly modified definition of the sample 
variance-covariance matrix. Result 3.1 provides us with an unbiased estimator S of :I: 

(Unbiased) Sample Variance-Covariance Matrix 

( n) 1~ - -S = -- Sn = -- £.; (X· - X)(x· - x)' 
n - 1 n - 1 j=1 1 1 

(3-11) 

n 

Here S, without a subscript, has (i, k)th entry (n - 1)-1 :L (Xji - Xi)(X/k - Xk ). 

i=1 
This definition of sample covariance is commonly used in many multivariate test 
statistics. Therefore, it will replace Sn as the sample covariance matrix in most of the 
material throughout the rest of this book. 

3.4 Generalized Variance 
With a single variable, the sample variance is often used to describe the amount of 
variation in the measurements on that variable. When p variables are observed on 
each unit, the variation is described by the sample variance-covariance matrix 

l
Sll 

S = S~2 

SIp 

The sample covariance matrix contains p variances and !p(p - 1) potentially 
different covariances. Sometimes it is desirable to assign a single numerical value for 
the variation expressed by S. One choice for a value is the determinant of S, which 
reduces to the usual sample variance of a single characteristic when p = 1. This 
determinant2 is called the generalized sample variance: 

Generalized sample variance = I si (3-12) 

2 Definition 2A.24 defines "determinant" and indicates one method for calculating the value of a 
determinant. 
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Example 3.7 (Calculating a generalized variance) Employees (Xl) and profits per 
employee (X2) for the 16 largest publishing firms in the United States are shown in 
Figure 1.3. The sample covariance matrix, obtained from the data in the April 30, 
1990, Forbes magazine article, is 

S = [252.04 -68.43J 
-68.43 123.67 

Evaluate the generalized variance. 
In this case, we compute 

/S/ = (252.04)(123.67) - (-68.43)(-68.43) = 26,487 • 
The generalized sample variance provides one way of writing the information 

on all variances and covariances as a single number. Of course, when p > 1, some 
information about the sample is lost in the process. A geometrical interpretation of 
/ S / will help us appreciate its strengths and weaknesses as a descriptive summary. 

Consider the area generated within the plane by two deviation vectors 
d l = YI - XII and d2 = Yz - x21. Let Ldl be the length of d l and Ldz the length of 
dz. By elementary geometry, we have the diagram 

d l ---------~-------------;.-

Height=Ldl sin «(I) 

and the area of the trapezoid is / Ld
J 
sin ( (1) / L d2 . Since cosz( (1) + sin2

( (1) = 1, we can 
express this area as 

From (3-5) and (3-7), 

and 

Therefore, 

LdJ = I ± (xj1 - Xl)Z = V(n - I)Sl1 V j=l 

cos«(1) = r12 

Area = (n - 1)~Vs;Vl - riz = (n -l)"Vsl1szz (1 - r12) 

Also, 

/S/ = I [;~: ;::J I = I [~~r12 ~s:Ur12J I 
= Sl1 S2Z - slls2zriz = Sl1 S22(1 - rI2) 
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Figure 3.6 (a) "Large" generalized sample variance for p = 3. 
(b) "Small" generalized sample variance for p = 3. 

If we compare (3-14) with (3-13), we see that 

/S/ = (areafj(n - I)Z 

Assuming now that / S / = (n - l)-(p-l) (volume )2 holds for the volume gener
ated in n space by the p - 1 deviation vectors d l , dz, ... , dp - l , we can establish the 
following general result for p deviation vectors by induction (see [1],p. 266): 

GeneraIized sample variance = /S/ = (n -1)-P(volume)Z (3-15) 

Equation (3-15) says that the generalized sample variance, for a fixed set of data, is 
proportional to the square of the volume generated by the p deviation vectors

3 

d l = YI - XII, d2 = Yz - x21, ... ,dp = Yp - xpl. Figures 3.6(a) and (b) show 
trapezoidal regions, generated by p = 3 residual vectors, corresponding to "large" 
and "small" generalized variances. . 

For a fixed sample size, it is clear from the geometry that volume, or / S /, will 
increase when the length of any di = Yi - XiI (or ~) is increased. In addition, 
volume will increase if the residual vectors of fixed length are moved until they are 
at right angles to one another, as in Figure 3.6(a). On the other hand, the volume, 
or / S /, will be small if just one of the Sii is small or one of the deviation vectors lies 
nearly in the (hyper) plane formed by the others, or both. In the second case, the 
trapezoid has very little height above the plane. This is the situation in Figure 3.6(b), 
where d3 1ies nearly in me plane formed by d1 and d2 . 

3 If generalized variance is defmed in terms of the samplecovariance matrix S. = [en - l)/njS, then, 

using Result 2A.11,ISnl = I[(n - 1)/n]IpSI = I[(n -l)/njIpIlSI = [en - l)/nJPISI. Consequently, 

using (3-15), we can also write the following: Generalized sample variance = I S.I = n -pr volume? . 
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Generalized variance also has interpretations in the p-space scatter plot representa_ 
tion of the data. The most intuitive interpretation concerns the spread of the scatter 
about the sample mean point x' = [XI, X2,"" xpJ. Consider the measure of distance_ 
given in the comment below (2-19), with x playing the role of the fixed point p. and S-I 
playing the role of A. With these choices, the coordinates x/ = [Xl> X2"'" xp) of the 
points a constant distance c from x satisfy 

(x - x)'S-I(X - i) = Cl 

[When p = 1, (x - x)/S-I(x. - x) = (XI - XI,2jSll is the squared distance from XI 
to XI in standard deviation units.] 

Equation (3-16) defines a hyperellipsoid (an ellipse if p = 2) centered at X. It 
can be shown using integral calculus that the volume of this hyperellipsoid is related 
to 1 S I. In particular, 

Volume of {x: (x - x)'S-I(x - i) oS c2} = kplSII/2cP 

or 

(Volume of ellipsoid)2 = (constant) (generalized sample variance) 

where the constant kp is rather formidable.4 A large volume corresponds to a large 
generalized variance. 

Although the generalized variance has some intuitively pleasing geometrical 
interpretations, it suffers from a basic weakness as a descriptive summary of the 
sample covariance matrix S, as the following example shows. 

Example 3.8 (Interpreting the generalized variance) Figure 3.7 gives three scatter 
plots with very different patterns of correlation. 

All three data sets have x' = [2,1 J, and the covariance matrices are 

[5 4J [3 DJ [ 5 -4J S = 4 5 ,r =.8 S = 0 3 ,r = 0 S = -4 5' r = -.8 

Each covariance matrix S contains the information on the variability of the 
component variables and also the information required to calculate the correla
tion coefficient. In this sense, S captures the orientation and size of the pattern 
of scatter. 

The eigenvalues and eigenvectors extracted from S further describe the pattern 
in the scatter plot. For 

S = [~ ;l the eigenvalues satisfy 
0= (A - 5)2 - 42 

= (A - 9)(A - 1) 

4 For those who are curious, kp = 2-u1'/2/ p r(p/2). where f(z) denotes the gamma function evaluated 
at z. 

$ tL 
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Figure 3.7 Scatter plots with three different orientations. 
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:n~ w
1
e d~term[ in.~ !,he eigenva] lue-eigenvector pairs Al = 9 ei = [1/\1'2 1/\/2] and 

"2 - ,e2 = 1/ v2, -1/\/2 . " 
The mean-centered ellipse with center x' = [2 1] £ I1 thr . , , or a ee cases, IS 

(x - x),S-I(X - x) ::s c2 

To describe this ellipse as in S ti 2 3' I 
eigenvalue-eigenvecto; air fo~c on . ,,:,::th ~ = S~ , we notice that if (A, e) is an 
S-I That' if S _ A P S, .the? (A ,e) IS an elgenvalue-eigenvector pair for 

S-I' _ ,!? The - e, the? mu1tlplymg on the left by S-I givesS-ISe = AS-le or 
e -" e erefore usmg th· I ' 

extends cvX; in the dir;ction of eiefr~:~~a ues from S, we know that the e11ipse 
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In p = 2 dimensions, the choice C
Z = 5.99 will produce an ellipse that contains 

approximately 95% of the observations. The vectors 3v'5.99 el and V5.99 ez are 
drawn in Figure 3.8( a). Notice how the directions are the natural axes for the ellipse, 
and observe that the lengths of these scaled eigenvectors are comparable to the size 
of the pattern in each direction. 

Next,for 

s=[~ ~J. the eigenvalues satisfy 0= (A - 3)z 

and we arbitrarily choose the eigerivectors so that Al = 3, ei = [I, 0] and A2 = 3, 
ei ,: [0, 1]. The vectors v'3 v'5]9 el and v'3 v'5:99 ez are drawn in Figure 3.8(b). 
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Figure 3.8 Axes of the mean-centered 95% ellipses for the scatter plots in 
Figure 3.7. 
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Finally, for 

[ 5 -4J 
S = -4 5' the eigenval1les satisfy 

o = (A - 5)Z - (-4)Z 
= (A - 9) (A - 1) 

and we determine theeigenvalue-eigenvectorpairs Al = 9, el = [1/V2, -1/V2J and 
A2 = 1, ei = [1/V2, 1/V2J. The scaled eigenvectors 3V5.99 el and V5.99 e2 are 
drawn in Figure 3.8( c). 

In two dimensions, we can often sketch the axes of the mean-centered ellipse by 
eye. However, the eigenvector approach also works for high dimensions where the 
data cannot be examined visually. 

Note: Here the generalized variance 1 SI gives the same value, 1 S I = 9, for all 
three patterns. But generalized variance does not contain any information on the 
orientation of the patterns. Generalized variance is easier to interpret when the two 
or more samples (patterns) being compared have nearly the same orientations. 

Notice that our three patterns of scatter appear to cover approximately the 
same area. The ellipses that summarize the variability 

(x - i)'S-I(X - i) :5 c2 

do have exactly the same area [see (3-17)], since all have I S I = 9. • 
As Example 3.8 demonstrates, different correlation structures are not detected 

by I S I. The situation for p > 2 can be even more obscure. . 
Consequently, it is often desirable to provide more than the single number 1 S I 

_as a summary of S. From Exercise 2.12, I S I can be expressed as the product 
AIAz'" Ap of the eigenvalues of S. Moreover, the mean-centered ellipsoid based on 
S-I [see (3-16)] has axes. whose lengths are proportional to the square roots of the 
A;'s (see Section 2.3). These eigenvalues then provide information on the variability 
in all directions in the p-space representation of the data. It is useful, therefore, to 
report their individual values, as well as their product. We shall pursue this topic 
later when we discuss principal components. 

Situations in which the Generalized Sample Variance Is Zero 

The generalized sample variance will be zero in certain situations. A generalized 
variance of zero is indicative of extreme degeneracy, in the sense that at least one 
column of the matrix of deviations, 

[

xi - i'] [Xll - Xl 
xi -:- i' = X21 ~ Xl 

. . . . 
, -, -

Xn - X Xnl - Xl 

Xlp - ~p] 
X2p - Xp 

Xnp - Xp 

= X-I i' (3-18) 
(nxp) (nxI)(lxp) 

can be expressed as a linear combination of the other columns. As we have shown 
geometrically, this is a case where one of the deviation vectors-for instance, di = 
[Xli - Xi'"'' Xni - xd-lies in the (hyper) plane generated by d1,· .. , di-l> 

di+l>"" dp . 
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Result 3.2. The generalized variance is zero when, and only when, at least one de
viation vector lies in the (hyper) plane formed by all linear combinations of the 
others-that is, when the columns of the matrix of deviations in (3-18) are linearly 

dependent. 

Proof. If the ct>lumns of the deviation matrix (X - li') are linearly dependent, 
there is a linear combination of the columns such that 

0= al coll(X - li') + ... + apcolp(X - li') 

= (X - li')a for some a", 0 

But then, as you may verify, (n - 1)S = (X - li')'(X - Ix') and 

(n - 1)Sa = (X - li')'(X - li')a = 0 

so the same a corresponds to a linear dependency, al coll(S) + ... + ap colp(S) = 

Sa = 0, in the columns of S. So, by Result 2A.9, 1 S 1 = O. 
In the other direction, if 1 S 1 = 0, then there is some linear combination Sa of the 

columns of S such that Sa = O. That is, 0 = (n - 1)Sa = (X - Ix')' (X - li') a. 
Premultiplying by a' yields 

0= a'(X - li')' (X - li')a = Lfx-b')a 

and, for the length to equal zero, we must have (X - li')a = O. Thus, the columns 
of (X - li') are linearly dependent. -

Example 3.9 (A case where the generalized variance is zero) Show that 1 S 1 = 0 for 

X = 4 1 6 [
1 2 5] 

(3X3) 4 0 4 

and determine the degeneracy. 
Here x' = [3,1, 5J, so 

[

1 - 3 

X - lX' = 4 - 3 
4 - 3 

~ = ~ ~ = ~] = [-~ ~ ~] 
0-1 4 - 5 1 -1 -1 

The deviation (column) vectors are di = [-2,1, 1J, dz = [1,0, -1], and 
d3 = [0,1, -IJ. Since d3 = dl + 2d2 , there is column degeneracy. (Note that there 
is row degeneracy also.) This means that one of the deviation vectors-for example, 
d -lies in the plane generated by the other two residual vectors. Consequently, the 
three-dimensional volume is zero. This case is illustrated in Figure 3.9 and may be 
verified algebraically by showing that I S I = O. We have 

S - _J 
[ 

3 

(3X3) - ~ 
-~ 0] 

1 ! 
2 

! 1 
2 

3 

3 
4 
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figure 3.9 A case where the 
three-dimensional volume is zero 
(/SI = 0). 

and from Definition 2A.24, 

ISI=3!! ~1(-1?+(-~)1-~ ~1(-1)3+(0)1-~ tl(-1)4 

= 3 (1 - ~) + (~) (- ~ - 0) + 0 = ~ - ~ = 0 • 
When large data sets are sent and received electronically, investigators are 

sometimes unpleasantly surprised to find a case of zero generalized variance, so that 
S does not have an inverse. We have encountered several such cases, with their asso
ciated difficulties, before the situation was unmasked. A singular covariance matrix 
occurs when, for instance, the data are test scores and the investigator has included 
variables that are sums of the others. For example, an algebra score and a geometry 
score could be combined to give a total math score, or class midterm and final exam 
scores summed to give total points. Once, the total weight of a number of chemicals 
was included along with that of each component. 

This common practice of creating new variables that are sums of the original 
variables and then including them in the data set has caused enough lost time that 
we emphasize the necessity of being alert to avoid these consequences. 

Example 3.10 (Creating new variables that lead to a zero generalized variance) 
Consider the data matrix 

[

1 9 10] 4 12 16 
X = 2 10 12 

5 8 13 
3 11 14 

where the third column is the sum of first two columns. These data could be the num
ber of successful phone solicitations per day by a part-time and a full-time employee, 
respectively, so the third column is the total number of successful solicitations per day. 

Show that the generalized variance 1 S 1 = 0, and determine the nature of the 
dependency in the data. 
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We find that the mean corrected data matrix, with entries Xjk - xb is 

X - fi' +1 ~~ ~1l 
The resulting covariance matrix is 

. [2.5 0 
S = 0 2.5 

2.5 2.5 

2.5]' 
2.5 

5.0 

We verify that, in this case, the generalized variance 

I S I = 2.52 X 5 + 0 + 0 - 2.53 
- 2.5

3 -.0 = 0 

In general, if the three columns of the data matrix X satisfy a linear constraint 
al xjl + a2Xj2 + a3xj3 = c, a constant for all j, then alxl + a2x2+ a3x3 = c, so that 

al(Xjl - Xl) + az(Xj2 - X2) + a3(Xj3 - X3) = 0 

for all j. That is, 
(X - li/)a = 0 

and the columns of the mean corrected data matrix are linearly dependent. Thus, the 
inclusion of the third variable, which is linearly related to the first two, has led to the 

case of a zero generalized variance. 
Whenever the columns of the mean corrected data matrix are linearly dependent, 

(n - I)Sa = (X - li/)/(X -li/)a = (X - li/)O = 0 

and Sa = 0 establishes the linear dependency of the columns of S. Hence, I S I = o. 
Since Sa = 0 = 0 a, we see that a is a scaled eigenvector of S associated with an 

eigenvalue of zero. This gives rise to an important diagnostic: If we are. unaware of 
any extra variables that are linear combinations of the others, we. can fID? them by 
calculating the eigenvectors of S and identifying the one assocIated WIth a zero 
eigenvalue. That is, if we were unaware of the dependency in this example, a com
puter calculation would find an eigenvalue proportional to a/ = [1,1, -1), since 

[

2.5 

Sa = 0 
25 

The coefficients reveal that 

~.5 ~:~] [ ~l = [~] = o[ ~] 
25 5.0 -1 0 -1 

l(xjl - Xl) + l(xj2 - X2) + (-l)(xj3 - X3) = 0 forallj 

In addition, the sum of the first two variables minus the third is a constant c for all n 
units. Here the third variable is actually the sum of the first two variables, so the 
columns of the original data matrix satisfy a linear constraint with c = O. Because 
we have the special case c = 0, the constraint establishes the fact that the columns 

of the data matrix are linearly dependent. -
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Let us summarize the important equivalent conditions for a generalized vari
ance to be zero that we discussed in the preceding example. Whenever a nonzero 
vector a satisfies one of the following three conditions, it satisfies all of them: 

(1) Sa = 0 
'---v-----' 

ais a scaled 
eigenvector of S 
with eigenvalue O. 

(2) a/(xj - x) = 0 for allj 
'" ' 

The linear combination 
of the mean corrected 
data, using a, is zero. 

(3) a/xj = c for allj (c = a/x) , ~ ...,... 

The linear combination of 
the original data, using a, 
is a constant. 

We showed that if condition (3) is satisfied-that is, if the values for one variable 
can be expressed in terms of the others-then the generalized variance is zero 
because S has a zero eigenvalue. In the other direction, if condition (1) holds, 
then the eigenvector a gives coefficients for the linear dependency of the mean 
corrected data. 

In any statistical analysis, I S I = 0 means that the measurements on some vari
ables should be removed from the study as far as the mathematical computations 
are concerned. The corresponding reduced data matrix will then lead to a covari
ance matrix of full rank and a nonzero generalized variance. The question of which 
measurements to remove in degenerate cases is not easy to answer. When there is a 
choice, one should retain measurements on a (presumed) causal variable instead of 
those on a secondary characteristic. We shall return to this subject in our discussion 
of principal components. 

At this point, we settle for delineating some simple conditions for S to be of full 
rank or of reduced rank. 

Result 3.3. If n :s; p, that is, (sample size) :s; (number of variables), then I S I = 0 
for all samples. 

Proof. We must show that the rank of S is less than or equal to p and then apply 
Result 2A.9. 

For any fixed sample, the n row vectors in (3-18) sum to the zero vector. The 
existence of this linear combination means that the rank of X - li' is less than or 
equal to n - 1, which, in turn, is less than or equal to p - 1 because n :s; p. Since 

(n - 1) S = (X - li)'(X - li/) 
(pXp) (pxn) (nxp) 

the kth column of S, colk(S), can be written as a linear combination of the columns 
of (X - li/)'. In particular, 

(n - 1) colk(S) = (X - li/)' colk(X - li') 

= (Xlk - Xk) COII(X - li')' + ... + (Xnk - Xk) coln(X - li/)' 

Since the column vectors of (X - li')' sum to the zero vector, we can write, for 
example, COlI (X - li')' as the negative of the sum of the remaining column vectors. 
After substituting for rowl(X - li')' in the preceding equation, we can express 
colk(S) as a linear combination of the at most n - 1 linearly independent row vec
torscol2(X -li')', ... ,coln(X -li/)'.TherankofSisthereforelessthanorequal 
to n - 1, which-as noted at the beginning of the proof-is less than or equal to 
p - 1, and S is singular. This implies, from Result 2A.9, that I S I = O. • 
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Result 3.4. Let the p X 1 vectors Xl> X2,' •. , Xn , where xj is the jth row of the data 

matrix X, be realizations of the independent random vectors X I, X2, ... , Xn • Then 

1. If the linear combination a/Xj has positive variance for each constant vector a * 0, 

then, provided that p < n, S has full rank with probability 1 and 1 SI> o. 
2: If, with probability 1, a/Xj is a constant (for example, c) for all j, then 1 S 1 = O. 

Proof. (Part 2). If a/Xj = alXjl + a2X j2 + .,. + apXjp = c with probability 1, 
n 

a/x. = c for all j, imd the sample mean of this linear combination is c = .L (alxjl 
J j=1 

+ a2x j2 + .,. + apxjp)/n = alxl + a2x2 + ... + apxp = a/x. Then 

[

a/xI ~ a/x] [e ~ c] 
= : =: = 0 

a/x
n 

- a/x e - c 

indicating linear dependence; the conclusion follows fr.om Result 3.2. 
The proof of Part (1) is difficult and can be found m [2]. 

Generalized Variance Determined by I RI 
and Its Geometrical Interpretation 

• 

The generalized sample variance is unduly affected by the ~ari.ability of measu~e
ments on a single variable. For example, suppose some Sii IS either large or qUIte 
small. Then, geometrically, the corresponding deviation vector di = (Yi - XiI) will 
be very long or very short and will therefore clearly be an important factor in deter
mining volume. Consequently, it is sometimes useful to scale all the deviation vec
tors so that they have the same length. 

Scaling the residual vectors is equivalent to replacing each original observation 
x. by its standardized value (Xjk - Xk)/VS;;;· The sample covariance matrix of the 
si:ndardized variables is then R, the sample correlation matrix of the original vari

ables. (See Exercise 3.13.) We define 

(
Generalized sample variance) = R 
of the standardized variables 1 1 

Since the resulting vectors 

(3-19) 

[(Xlk - Xk)/VS;;;, (X2k - Xk)/...;s;;,···, (Xnk - Xk)/%] = (Yk - xkl)'/Vskk 

all have length ~, the generalized sample variance of the standardized vari
ables will be large when these vectors are nearly perpendicular and will be small 
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when two or more of these vectors are in almost the same direction. Employing the 
argument leading to (3-7), we readily find that the cosine of the angle ()ik between 
(Yi - xi1 )/Vi;; and (Yk - xkl)/vSkk is the sample correlation coefficient rik' 

Therefore, we can make the statement that 1 R 1 is large when all the rik are nearly 
zero and it is small when one or more of the rik are nearly + 1 or -1. 

In sum, we have the following result: Let 

Xli - Xi 

Vi;; 

(Yi - XiI) 

Vi;; 
i = 1,2, ... , p 

X2i - Xi 

Vi;; 

be the deviation vectors of the standardized variables. The ith deviation vectors lie 
in the direction of d;, but all have a squared length of n - 1. The volume generated 
in p-space by the deviation vectors can be related to the generalized sample vari
ance. The saine steps that lead to (3-15) produce 

(
Generalized sample variance) 1 R 1 (- 2 
ofthe standardized variables = = n - 1) P( volume) (3-20) 

The volume generated by deviation vectors of the standardized variables is il
lustrated in Figure 3.10 for the two sets of deviation vectors graphed in Figure 3.6. 
A comparison of Figures 3.10 and 3.6 reveals that the influence -of the d2 vector 
(large variability in X2) on the squared volume 1 S 1 is much greater than its influ
ence on the squared volume 1 R I. 

3 

.> 
\,.. ...... \ 

\ \ 

" \ 

"'!I-'~----~2 J-------2 

(a) (b) 

Figure 3.10 The volume generated by equal-length deviation vectors of 
the standardized variables. 
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The quantities I S I and I R I are connected by the relationship 

(3-21) 

so 

(3-22) 

[The proof of (3-21) is left to the reader as Exercise 3.12.] 
Interpreting (3-22) in terms of volumes, we see from (3-15) and (3-20) that the 

squared volume (n - 1)pISI is proportional to th<; squared volume (n - I)PIRI. 
The constant of proportionality is the product of the variances, which, in turn, is 
proportional to the product of the squares of the lengths (n - l)sii of the di . 

Equation (3-21) shows, algebraically, how a change in the· measurement scale of Xl> 
for example, will alter the relationship between the generalized variances. Since I R I 
is based on standardized measurements, it is unaffected by the change in scale. 
However, the relative value of I S I will be changed whenever the multiplicative 
factor SI I changes. 

Example 3.11 (Illustrating the relation between I S I and I R I) Let us illustrate the 
relationship in (3-21) for the generalized variances I S I and I R I when p = 3. 
Suppose 

[
4 3 1] 

S = 3 9 2 
(3X3) 1 2 1 

Then Sl1 = 4, S22 = 9, and S33 = 1. Moreover, 

R = It ~ !] 
! ~ 1 
2 3 

Using Definition 2A.24, we obtain 

ISI = 41~ ~1(-lf + 31~ ~1(-1)3 + 11~ ~1(_1)4 
= 4(9 - 4) - 3(3 - 2) + 1(6 - 9) = 14 

IRI=lli ~1(_1)2+!li ~1(-1)3+!li il(-1)4 

= (1 -~) - G)(! -~) + GW - !)= ts 
It then follows that 

14 = ISI = Sl1S22S33IRI = (4)(9)(1)(~) = 14 (check) 
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Another Generalization of Variance 

We conclude-this discussion by mentioning another generalization of variance. 
Specifically, we define the total sample variance as the sum of the diagonal elements 
of the sample variance-co)(ariance matrix S. Thus, 

Total sample variance = Sll + S22 + ... + spp (3-23) 

Example 3.12· (Calculating the total sample variance) Calculate the total sample 
variance for the variance-covariance matrices S in Examples 3.7 and 3.9. 

and 

From Example 3.7. 

S = [252.04 -68.43J 
-68.43 123.67 

Total sample variance = Sll + S22 = 252.04 + 123.67 = 375.71 

From Example 3.9, 

and 

[ 

3 
3 -2 

S =-o~ ~ 
2 

I] 
Total sample variance = Su + S22 + S33 = 3 + 1 + 1 = 5 • 

Geometrically, the total sample variance is the sum of the squared lengths of the 
p deviation vectors d I = (YI - xII), ... , dp = (Yp - xpI), divided by n - 1. The 
total sample variance criterion pays no attention to the orientation (correlation 
structure) of the residual vectors. For instance, it assigns the same values to both sets 
ofresidual vectors (a) and (b) in Figure 3.6. 

3.5 Sample Mean, Covariance, and Correlation 
as Matrix Operations 

We have developed geometrical representations of the data matrix X and the de
rived descriptive statistics i and S. In addition, it is possible to link algebraically the 
calculation of i and S directly to X using matrix operations. The resulting expres
sions, which depict the relation between i, S, and the full data set X concisely, are 
easily programmed on electronic computers. 
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We have it that Xi = (Xli' 1 + X2i'l + ... + Xni '1)ln = yj1/n. Therefore, 

Xl yi1 Xll Xl2 Xln 1 
n 

X2 Y21 X21 X22 X2n 1 
1 

x= n 
n 

xp y~l Xpl xp2 xpn 1 
n 

or 

- - 1 X'l (3-24) x --
n 

That is, x is calculated from the transposed data matrix by postmultiplying by the 
vector 1 and then multiplying the result by the constant l/n. 

Next, we create an n X p matrix of means by transposing both sides of (3-24) 
and premultiplying by 1; that is, 

r" 
X2 ... 

~Pj !X' = .!.U'X = ~l X2 ... xp 
(3-25) 

n : 

Xl X2 Xp 

Subtracting this result from X produces the n X p matrix of deviations (residuals) 

(3-26) 

Now, the matrix (n - I)S representing sums of squares and cross products is just 
the transpose of the matrix (3-26) times the matrix itself, or 

Xnl - ~lj 
Xn2 - X2 

x np - xp 

r
Xll - ~l 
X21 - Xl 

X . 

Xnl - Xl 

Xl
p 

- ~Pj 
x2p - xp 

xnp - xp 

= (X - ~ll'X)' (X -~l1'X) = X'(I - ~ll')X 
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since 

(I 111')'(1 111') I, 1 , 1 11" 111' -- -- =1--11 --11 +- 11 =1--
n n. n n n2 n 

To summarize, the matrix expressions relating x and S to the data set X are 

- 1 X'l x=-
n 

S = _1_X' (I - '!'11')X 
n - 1 n 

(3-27) 

The result for Sn is similar, except that I/n replaces l/(n - 1) as the first factor. 
The relations in (3-27) show clearly how matrix operations on the data matrix 

X lead to x and S. 
Once S is computed, it can be related to the sample correlation matrix R. The 

resulting expression can also be "inverted" to relate R to S. We fIrst defIne the p X P 
sample standard deviation matrix Dl/2 and compute its inverse, (DJ/2r l = D-I/2. Let 

r~ 
0 

DII2 = 0 VS; 
(pXp) ~ 

0 lj (3-28) 

Then 
1 

~ 
0 o 
1 

0 
VS; D-1I2 = 

o 
(pXp) 

o o 1 

VS;; 
Since 

and 

we have 

R = D-I/2 SD-l /2 (3-29) 
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Postmultiplying and premultiplying both sides of (3-29) by nl/2 and noting that 
n-l/2nI/2 = n l/2n-l/2 = I gives 

S = nl/2 Rnl/2 (3-30) 

That is, R can be optained from the information in S, whereas S can be obtained from 
nl/2 and R. Equations (3-29) and (3-30) are sample analogs of (2-36) and (2-37). 

3.6 Sample Values of linear Combinations of Variables 
We have introduced linear combinations of p variables in Section 2.6. In many multi
variate procedures, we are led naturally to consider a linear combination of the foim 

c'X = CIXI + c2X2 + .,. + cpXp 

whose observed value on the jth trial is 

j = 1,2, ... , n 

The n derived observations in (3-31) have 

(C'XI + e'x2 + ... + e'xn) 
Sample mean = n 

= e'(xI + X2 + ... + xn) l = e'i 
n 

Since (c'Xj - e'i)2 = (e'(xj - i)l = e'(xj - i)(xj - i)'e, we have 

. (e'xI - e'i)2 + (e'-x2 - e'i)2 + ... + (e'xn - e'i/ 
Sample vanance = n - 1 

(3-31) 

(3-32) 

e'(xI -i)(xI - i)'e + C'(X2 - i)(X2 - i)'e + ... + e'(xn - i)(xn - i)'e 
n-l 

[
(XI - i)(xI - i)' + (X2 - i)(X2 - i)' + .. , + (xn -, i)(xn - i)'] 

= e' n _ 1 e 

or 
Sample variance of e'X = e'Se (3-33) 

Equations (3-32) and (3-33) are sample analogs of (2-43). They correspond to sub
stituting the sample quantities i and S for the "population" quantities /L and 1;, 
respectively, in (2-43). 

Now consider a second linear combination 

b'X = blXI + hzX2 + ... + bpXp 

whose observed value on the jth trial is 

j = 1,2, ... , n (3-34) 
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It follows from (3-32) and (3-33) that the sample mean and variance of these 
derived observations are 

Sample mean of b'X = b'i 

Sample variance of b'X = b'Sb 

Moreover, the sample covariance computed from pairs of observations on 
b'X and c'X is 

Sample covariance 

= (b'xI - b'i)(e'x! - e'i) + (b'X2 - b'i)(e'x2 - e'i) + ... + (b'xn - b'i)(e'xn - e'i) 

n-l 
= b'(x! - i)(xI - i)'e + b'(X2 - i)(X2 - i)'e + ... + b'(xn - i)(xn - i)'e 

n-1 

= b'[(X! - i)(xI - i)' + (X2 - i)(X2 - i)' + ... + (XII - i)(xlI - i),Je 
n-1 

or 

Sample covariance of b'X and e'X = b'Se 

In sum, we have the following result. 

Result 3.5. The linear combinations 

b'X = blXI + hzX2 + ... + bpXp 

e'X = CIXI + c2X2 + ... + cpXp 

have sample means, variances, and covariances that are related to i and S by 

Sample mean of b'X = b'i 

Sample mean of e'X = e'i 

Samplevarianceofb'X = b'Sb 

Sample variance of e'X = e'S e 

Samplecovarianceofb'Xande'X = b'Se 

(3-35) 

(3-36) 

• 
Example 3.13 (Means and covariances for linear combinations) We shall consider 
two linear combinations and their derived values for the n = 3 observations given 
in Example 3.9 as 

x = [;~~ ;~~ ;~:] = [~ 
x31 X32 x33 4 

2 5] 
1 6 
o 4 

Consider the two linear combinations 
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and 

eX ~ [1 -1 3{~] ~ X, - x, + 3X, 

The means, variances, and covariance will first be evaluate.d directly and then be 
evaluated by (3-36). 

Observations on these linear combinations are obtained by replacing Xl, X2 , 

and X3 with their observed values. For example, the n = 3 observations on b'X are 

b'XI = 2Xl1 + 2Xl2 - XI3 = 2(1) + 2(2) - (5) = 1 

b'X2 = 2X21 + 2X22 - X23 = 2(4) + 2(1) - (6) = 4 

b'X3 = 2x31 + 2X32 - x33 = 2(4) + 2(0) - (4) = 4 

The sample mean and variance of these values are, respectively, 

(1 + 4 + 4) 
Sample mean = 3 = 3 

. (1 - 3)2 + (4 - 3)2 + (4 - 3)2 
Sample vanance = 3 = 3 . - 1 

In a similar manner, the n = 3 observations on c'X are 

and 

C'XI = 1Xll - .1X12 + 3x13 = 1(1) - 1(2) + 3(5) = 14 

C'X2 = 1(4) - 1(1) + 3(6) = 21 

C'X3 = 1(4) - 1(0) + 3(4) = 16 

Sample mean 

Sample variance 

(14 + 21 + 16) 
= 3 = 17 

(14 - 17)2 + (21 - 17? + (16 - 17)2 
~--~~~-3----1~~~--~= 13 

Moreover, the sample covariance, computed from the pairs of observations 
(b'XI, c'xd, (b'X2, C'X2), and (b'X3, C'X3), is 

Sample covariance 
(1 - 3)(14 -17) + (4 - 3)(21 - 17) + (4 - 3)(16 - 17) 9 

3 - 1 2 

Alternatively, we use the sample mean vector i and sample covariance matrix S 
derived from the original data matrix X to calculate the sample means, variances, 
and covariances for the linear combinations. Thus, if only the descriptive statistics 
are of interest, we do not even need to calculate the observations b'xj and C'Xj. 

From Example 3.9, 
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Consequently, using (3-36), we find that the two sample means for the derived 
observations are 

S=p1<moan ofb'X ~ b'i ~ [2 2 -1{!J ~ 3 

S=plemoanofe'X ~ e'i ~ [1 -1 3{!J ~ 17 

Using (3-36), we also have 

Sample variance ofb'X = b'Sb 

(check) 

(check) 

= [2 2 -1{ -1 
3 nu] -2 
1 
I 
2 

= [2 2 -1{ -lJ ~ 3 (check) 

Sample variance of c'X = e'Se 

~[1 -1 3J[-i -! m-!] 
~ [1 -1 3{ -n ~ 13 (eh~k) 

Sample covariance of b' X and e' X = b' Se 

~[2 2 -+1 -! m-u 
~ [2 2 -,fl] ~! (cheek) 

As indi~ated, these last results check with the corresponding sample quantities 
computed directly from the observations on the linear combinations. _ 

. The sampl~ m~an and ~variance relations in Result 3.5 pertain to any number 
of lInear combmatlOns. ConSider the q linear combinations 

i = 1,2, ... , q (3-37) 
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Exercises 

These can be expressed in matrix notation as 

rnx
, 

+ al2X 2 
+ ... + ,,~,] ['n a12 

",] [X,] 
a21 X I + a22 X 2 

+ .,. + a2pX p = a21 a22 a~p ~2 = AX 

aq~Xp a~1 
aqlXI + aq2X 2 

+ .,. + aq2 a qp Xp 

(3-38) 

'" k' th 'th roW of A a' to be b' and the kth row of A, ale, to be c', we see that 
~a lng el'" 1'- d th . h d . (3-36) imply that the ith row ofAX has samp e mean ajX an e It an 
EquatIOns ., N h 's . h (. k)th I 
kth rows ofAX have sample covariance ajS ak' ote t at aj ak IS t e I, e e-

ment of ASA'. 

I 3 6 Th q linear combinations AX in (3-38) have sample mean vector Ai 
Resu t .. e ., • 
and sample covariance matnx ASA . 

3.1. Given the data matrix 

X'[Hl 
h tt lot in p = 2 dimensions. Locate the sample mean on your diagram. 

(a) Graph t e sca er p . . . 

h h - 3 dimensional representatIon of the data, and plot the deVIatIOn (b) Sketc t e n_- - _ 
vectors YI - xII and Y2 - x21. 

h h d . ti'on vectors in (b) emanating from the origin. Calculate the lengths 
(c) Sketc t e eVIa .. 

t d the cosine of the angle between them. Relate these quantIties to of these vec ors an 
Sn and R. 

3.2. Given the data matrix 

3.3. 

(a) Graph the scatter plot in p = 2 dimensions, and locate the sample mean on.y~ur diagram. 

k h h - 3 space representation of the data, and plot the deVIatIOn vectors (b) S etc ten - -_ 
YI - XII and Y2 - x21. . . . . 

() k h th deviation vectors in (b) emanatmg from the ongm. Calculate their lengths 
c S etc e I h .. t S d R 

d h . of the angle between them. Re ate t ese quantIties 0 n an . an t ecosme . 
Perform the decomposition of YI into XII and YI - XII using the first column of the data 

matrix in Example 3.9. 

h . b rvat'lons on the variable XI in units of millions, from Table 1.1. Uset esIXO se . ' 
(a) Find the projection on I' = [1,1,1,1,1,1]. 
(b) Calculate the deviation vector YI - XII. Relate its length to the sample standard 

deviation. 

3.S. 
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(c) Graph (to scale) the triangle formed by Yl> xII, and YI - xII. Identify the length of 
each component in your graph. 

(d) Repeat Parts a-c for the variable X 2 in Table 1.1. 

(e) Graph (to scale) the two deviation vectors YI - xII and Y2 - x21. Calculate the 
value of the angle between them. 

Calculate the generalized sample variance 1 SI for (a) the data matrix X in Exercise 3.1 
and (b) the data matrix X in Exercise 3.2. 

3.6. Consider the data matrix 

X = [-~ ! -~] 
523 

(a) Calculate the matrix of deviations (residuals), X - lX'. Is this matrix of full rank? 
Explain. 

(b) Determine S and calculate the generalized sample variance 1 S I. Interpret the latter 
geometrically. 

(c) Using the results in (b), calculate the total sample variance. [See (3-23).] 

3.7. Sketch the solid ellipsoids (x - X)'S-I(x - x) s 1 [see (3-16)] for the three matrices 

S = [~ ~l S = [ 5 
-4 -4J 5 ' 

(Note that these matrices have the same generalized variance 1 SI.) 

3.S. Given 

[
1 0 0] 

S = 0 1 0 
001 ond S· [ = i ~! =!] 

(a) Calculate the total sample variance for each S. Compare the results. 

(b) Calculate the gene'ralized sample variance for each S, and compare the results. Com
ment on the discrepancies, if any, found between Parts a and b. 

3.9. The following data matrix contains data on test scores, with XI = score on first test, 
X2 = score on second test, and X3 = total score on the two tests: 

[

12 17 29] 
18 20 38 

X = 14 16 30 

20 18 38 

16 19 35 

(a) Obtain the mean corrected data matrix, and verify that the columns are linearly de
pendent. Specify an a' = [ai, a2, a3] vector that establishes the linear dependence. 

(b) Obtain the sample covariance matrix S,and verify that the generalized variance is 
zero. Also, show that Sa = 0, so a can be rescaled to be an eigenvector correspond
ing to eigenvalue zero. 

(c) Verify that the third column of the data matrix is the sum of the first two columns. 
That is, show that there is linear dependence, with al = 1, a2 = 1, and Q3 = -1. 
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I 0 Wh the generalized variance is zero, it is the columns of the mean corrected data 
3.. en d'l h f h matrix Xc = X - lx' that are linearly depen ent, not necessan y t ose 0 t e data 

matrix itself. Given the data 

(a) Obtain the mea~ corre~ted d~ta matrix, and verify that. the columns are linearly 
dependent. Specify an a = [ai, a2, a3] vector that estabhshes the dependence .. 

(b) Obtain the sample covariance matrix S, and verify that the generalized variance is 
zero. 

(c) Show that the columns of the data matrix are linearly independent in this case. 

11 U the sample covariance obtained in Example 3.7 to verify (3-29) and (3-30), which 
3. . se _ D-1/2SD-1/2 and D l/2RD 1/2 = S. 

state that R -

3.12. ShowthatlSI = (SIIS22"· Spp)IRI· 
1/2 1/2...., k' d . . 1 S 1 

H· t" From Equation (3-30), S = D RD . la mg etermmants gIves = 
m. ~I 

IDl/211 R 11 D I/2 1· (See Result 2A.l1.) Now examine 1 D . 

3.13. Given a data matrix X and the resulting sample correlation matrix R, 

I'der the standardized observations (Xjk - Xk)/~' k = 1,2, ... , p, 
cons d' d .. hi' j = 1, 2, ... , n. Show that these standar Ize quantities ave samp e covanance 

matrix R. 

14 C 'der the data matrix X in Exercise 3.1. We have n = 3 observations on p = 2 vari-3. • onSl . b" 
abies Xl and X 2• FOTID the hnear com matIons 

c'X=[-1 2][~J=-Xl+2X2 

b'X = [2 3] [~~J = 2Xl + 3X2 

( ) E aluate the sample means, variances, and covariance of b'X and c'X from first 
a pr~nciples. That is, calculate the observed values of b'X and c'X, and then use the 

sample mean, variance, and covariance fOTlDulas. 

(b) Calculate the sample means, variances, and covariance of b'X and c'X using (3-36). 
Compare the results in (a) and (b). 

3.1 S. Repeat Exercise 3.14 using the data matrix 
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and the linear combinations 

b'X ~ [I I lj [~:] 
and 

3.16. Let V be a vector random variable with mean vector E(V) = /-Lv and covariance matrix 
E(V - /-Lv)(V - /-Lv)'= Iv· ShowthatE(VV') = Iv + /Lv/-Lv, 

3.17. Show that, if X and Z are independent then each component of X is 
(pXl) (qXI) " 

independent of each component of Z. 

Hint:P[Xl:S Xl,X2 :s X2""'Xp :S x p andZ1 :s ZI,""Zq:s Zq] 

= P[Xl:s Xl,X2 :s X2""'Xp :S xp]·P[ZI:S Zj, ... ,Zq:s Zq] 

by independence. Let X2,"" xp and Z2,"" Zq tend to infinity, to obtain 

P[Xl:s xlandZ1 :s zd = P[Xl:s xll·P[ZI:s zd 

for all Xl> Zl' So Xl and ZI are independent: Repeat for other pairs. 

3.IS. Energy consumption in 2001, by state, from the major sources 

Xl = petroleum X2 = natural gas 

X3 = hydroelectric power X4 = nuclear electric power 

is recorded in quadrillions (1015
) of BTUs (Source: Statistical Abstract of the United 

States 2006), 
The resulting mean and covariance matrix are 

r
O.

766

J _ 0.508 
x= 

0.438 
0.161 r

O.856 

S = 0.635 
0.173 
0.096 

0.635 0.173 
0.568 0.128 
0.127 0.171 
0.067 0.039 

0.096J 
0.067 
0.039 
0.043 

(a) Using the summary statistics, determine the sample mean and variance of a state's 
total energy consumption for these major sources. 

(b) Determine the sample mean and variance of the excess of petroleum consumption 
over natural gas consumption. Also find the sample covariance of this variable with 
the total variable in part a. 

3.19. Using the summary statistics for the first three variables in Exercise 3.18, verify the 
relation 
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th climates roads must be cleared of snow quickly following a storm. One 
3.20. In nor emf torm se~erity is Xl = its duration in hours, while the effectiveness of snow 

measure 0 s d h' 
al n be quantified by X2 = the number of hours crews, men, an mac me, spend 

remov ca .. . W' . 
to clear snoW. Here are the results for 25 mCldents m Isconsm. 

-Table 3.2 Snow Data 

xl X2 Xl X2 Xl x2 

12.5 13.7 9.0 24.4 3.5 26.1 
14.5 16.5 6.5 18.2 '8.0 14.5 
8.0 17.4 10.5 22.0 17.5 42.3 
9.0 11.0 10.0 32.5 10.5 17.5 

19.5 23.6 4.5 18.7 12.0 21.8 
8.0 13.2 7.0 15.8 6.0 10.4 
9.0 32.1 8.5 15.6 13.0 25.6 
7.0 12.3 6.5 12.0 
7.0 11.8 8.0 12.8 

(a) Find the sam~l~ mean and variance of the difference X2 - Xl by first obtaining the 
summary statIstIcs. 

(b) Obtain the mean and variance by first obtaining the .individual values Xf2 - Xjh 

f 
. - 1 2 25 and then calculating the mean and vanance. Compare these values or] - , , ... , 

with those obtained in part a. 
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Chapter 

THE MULTIVARIATE NORMAL 
DISTRIBUTION 

4.1 Introduction 

== £'1 .. -

A generalization of the familiar bell-shaped normal density to several dimensions plays 
a fundamental role in multivariate analysis. In fact, most of the techniques encountered 
in this book are based on the assumption that the data were generated from a multi
variate normal distribution. While real data are never exactly multivariate normal, the 
normal density is often a useful approximation to the "true" population distribution. 

One advantage of the multivariate normal distribution stems from the fact that 
it is mathematically tractable and "nice" results can be obtained. This is frequently 
not the case for other data-generating distributions. Of course, mathematical attrac
tiveness per se is of little use to the practitioner. It turns out, however, that normal 
distributions are useful in practice for two reasons: First, the normal distribution 
serves as a bona fide population model in some instances; second, the sampling 
distributions of many multivariate statistics are approximately normal, regardless of 
the form of the parent population, because of a central limit effect. 

To summarize, many real-world problems fall naturally within the framework of 
normal theory. The importance of the normal distribution rests on its dual role as 
both population model for certain natural phenomena and approximate sampling 
distribution for many statistics. 

4.2 The Multivariate Normal Density and Its Properties 
The multivariate normal density is a generalization of the univariate normal density 
to p ~ 2 dimensions. Recall that the univariate normal distribution, with mean f-t 
and variance u 2

, has the probability density functio~ 

-00 < x < 00 (4-1) 
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J1 - 20- J1-0- J1 J1 +0- J1 + 20-

Fi~re 4.1 A normal density 
with mean /L and variance (T2 
and selected areas under the 
curve. 

A plot of this function yields the familiar bell-shaped curve shown in Figure 4.1. 
Also shown in the figure are app~oximate areas under the curve within ± 1 standard 
deviations and ±2 standard deviations of the mean. These areas represent probabil-
ities, and thus, for the normal random variable X, 

P(/L - (T S X S /L + (T) == .68 

P(/L - 2cr S X S /L + 2cr) == .95 

It is convenient to denote the normal density function with mean /L and vari
ance (Tz by N(/L, (TZ). Therefore, N(lO, 4) refers to the function in (4-1) with /L = 10 
and (T = 2. This notation will be extended to the multivariate case later. 

The term 

(4-2) 

in the exponent of the univariate normal density function measures the square of 
the distance from x to /L in standard deviation units. This can be generalized for a 
p X 1 vector x of observations on several variables as 

(4-3) 

The p x 1 vector /L represents the expected value of the random vector X, and the 
p X P matrix I is the variance-covariance matrix ofX. [See (2-30) and (2-31).] We 
shall assume that the symmetric matrix I is positive definite, so the expression in 
(4-3) is the square of th.e generalized distance from x to /L. The multivariate normal density is obtained by replacing the univariate distance 
in (4-2) by the multivariate generalized distance of (4-3) in the density function of 
(4-1). When this replacement is made, the univariate normalizing constant (27T rl/2( (Tzrl/2 must be changed to a more general constant that makes the volume 
under the surface of the multivariate density function unity for any p. This is neces
sary because, in the multivariate case, probabilities are represented by volumes 
under the surface over regions defined by intervals of the Xi values. It can be shown 
(see [1]) that this constant is (27TF/zl Irl/2, and consequently, a p-dimensional 
normal density for the random vector X' = [XI' Xz,···, Xp] has the form 

(4-4) 

where -CXJ < Xi < CXJ, i = 1,2, ... , p. We shall denote this p-dimensional normal 
density by Np(/L, I), which is analogous to the normal density in the univariate 
case. 
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Example 4.1 (Bivariatenormal density) L density in terms of the ·nd· ·d al et us evaluate the p = 2-variate normal I IVI U parameters /L - E(X ) (T11 = Var(X
I
), (TZ2 = Var(X

z
) and _ 1 - I, /L2 == E(X

z
), Using Result 2A.8, we find that thP1.Z - (T12/(~ vc;=;;) = Corr(Xl , Xz)· e mverse of the covariance matrix 

is 

I-I = 1 [(TZZ -(T12J 
(T11 (T22 - crtz -(T12 (T11 

Intr~ducing the correlation coefficient Pl2 b writin -obtam (T11(T22 - (T12 = (T (T (1 _ 2) d Y g (TI~ - PlZ~ ya:;, we 11 Z2 Pl2 , an the squared dIstance becomes 
(x - /L)'I-1(x - /L) 

= [XI - /Ll, Xz - /Lz] 1 
(T11(T22(1 - P12) 

[ 
(T22 -PI2 ~ VC;=;;J [Xl - /LlJ 

-P12~VC;=;; (TII X2 - /L2 

= (T22(XI -l1-d + (Tll(X2 -11-2? - 2P12~va:;-(Xl I1-d(X2 I1-Z) 
(T1l(T22(1 PI2) 

= 1 _1 PI2 [ ( X~I Y + ( X~ Y -2P12( X~l) ( X~2 ) J (4-5) 

The last expression is . tt . (X2 _ /J,z)/va:;;. wn enm terms of the standardized values (Xl - I1-d/VC;:;; and 

Next, since I I I = (Tll (T22 - (T2 = (T (T - 2 . and III i (4-4) 12. 11 22(1 P12), we can substItute for I-I n to get the expressIOn fo th b· . ( involving the individual parameter r e Ivanate p = 2) normal density s 11-1> 11-2, (T11> (T22, and PI2: 

f(xJ, X2) = 1 
27TY (T11 (T22 (1 - PI2) 

(4-6) 

X exp {- 2 ~ 2 [(XI - /Ll)2 + (X2 - 11-2)2 
. (1 P12) ~ vc;=;; 

_ 2P12(XI - 11-1) (X2 - 11-2)J} 
. . ~ va:;-

The expresSIOn m (4-6) is somewhat . Id (4-4) is more informative in man wa unWIe y, and the compact general form in 
useful for discussing certain pro/ertiZs~7~ the other ~an?, th.e expression in (4-6) is random variables X and X t e normal dIstnbution. For example if the 
b

. I 2 are uncorrelated so that - 0 h . . .' e wntten as the product of two un.. ' ~~2 - , t e Jomt denSity can Ivanate normal denSItIes each of the form of (4-1). 
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That is, !(X1, X2) = !(X1)!(X2) and Xl and X2 are independent. [See (2-28).] This 
result is true in general. (See Result 4.5.) 

Two bivariate distributions with CT11 = CT22 are shown in FIgure 4.2. In FIgure 
4.2(a), Xl and X 2 are independent (P12 = 0). In Figure 4.2(b), P12 = .75. Notice how 
the presence of correlation causes the probability to concentrate along a line. • 

(a) 

(b) 

Figure 4.2 '!Wo bivariate normal distributions. (a) CT1! = CT22 and P12 = O. 
(b)CTll = CT22andp12 = .75. 
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From the expression in (4-4) for the density of a p-dimensional normal variable, it 
should be clear that the paths of x values yielding a constant height for the density are 
ellipsoids. That is, the multivariate normal density is constant on surfaces where the 
square of the distance (x - J.l)' l:-1 (x - J.l) is constant. These paths are called contours: 

Constant probability density contour = {all x such that (x - J.l )'l:-l(X - J.l) = c2
} 

= surface of an ellipsoid centered at J.l 

The axes of each ellipsoid of constant density are in the direction of the eigen
vectors of l:-1, and their lengths are proportional to the reciprocals of the square 
roots of the eigenvalues of l:-1. Fortunately, we can avoid the calculation of l:-1 when 
determining the axes, since these ellipsoids are also determined by the eigenvalues 
and eigenvectors of l:. We state the correspondence formally for later reference. 

Result 4.1. If l: is positive definite, so that l:-1 exists, then 

l:e = Ae implies l:-le = (±) e 

so (A, e) is an eigenvalue-eigenvector pair for l: corresponding to the pair (1/ A, e) 
for l:-1. Also, l:-1 is positive definite. 

Proof. For l: positive definite and e oF 0 an eigenvector, we have 0 < e'l:e = e' (l:e) 
= e'(Ae) = Ae'e = A. Moreover, e = r1(l:e) = l:-l(Ae), or e = U;-le, and divi
sion by A> 0 gives l:-le = (l/A)e. Thus, (l/A, e) is an eigenvalue-eigenvector pair 
for l:-1. Also, for any p X 1 x, by (2-21) 

x'l:-lx = x'( ± (~)ejei)x 
,=1 A, 

~ (±)(x'ei 2= 0 

since each term Ai1(x'e;)2 is nonnegative. In addition, x'ej = 0 for all i only if 
p , 

x = O. So x oF 0 implies that 2: (l/Aj)(x'ei > 0, and it follows that l:-1 is 
j=l 

positive definite. 

The following summarizes these concepts: 

Contours of constant density for the p-dimensional normal distribution are 
ellipsoids defined by x such the that 

(4-7) 

These ellipsoids are centered at J.l and have axes ±cv'X;ej, where l:ej = Ajei 
for i = 1, 2, ... , p. 

• 

A contour of constant density for a bivariate normal distribution with 
CTU = CT22 is obtained in the following example. 
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Example 4.2 (Contours of the bivariate normal d.ensi.ty) We shall ~bt~in ~e axes of 
constant probability density contours for a blvan?te normal dlst~lbutlOn when 
O"u = 0"22' From (4-7), these axes are given by the elgenvalues and elgenvectors of 

:£. Here 1:£ - All = 0 becomes 

-\0"11 - A 
0= 

0"12 

(112 I = «(111 - A)2 - (1?2 
(111 - A ' 

= (A - 0"11 - (1n) (A - 0"11 + O"n) 

Consequently, the eigenvalues a~e Al = (111 + (112 and A2 = 0"11 - 0"12' The eigen

vector el is determined from 

or 

[::: ::~J [:J = «(111 + (112) [::J 
(1lle1 + (112e2 = (0"11 + (112)e1 

(112e1 + (111e2 = «(111 + (112)e2 

These equations imply that e1 = e2, and after normalization, the first eigenvalue

eigenvector pair is 

Similarly, A2 = 0"11 - (112 yields the eigen:ector ei. = [1("!2, -1/\12). . 
When the covariance (112 (or correlatIOn pn) IS pOSItive, A I = 0"11 + ~12 IS the 

largest eigenvalue, and its associated eigenvect.or. e; = [1/\12, 1/~) hes along 
the 45° line through the point p: = [ILl' 1Lz)· 11llS IS true for any p~sltIve. value of 
the covariance (correlation). Since the axes of the constant-density elhpses are 

iven by ±cVA, e and ±cVX; e2 [see (4-7)], and the eigenvectors each have 
fength unity, th~ ~ajor axis will be associated with the largest .eigen~alue. For 
positively correlated normal random variable~, then, the major a~ls of the 
constant-density ellipses wiil be along the 45° lme through /L. (See Figure 4.3.) 

"-;~ 
/11 

Figure 4.3 A constant-density 
contour for a bivariate normal 
distribution with Cri I = (122 and 
(112) 0 (or P12 > 0). 
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When the covariance (correlation) is negative, A2 = 0"11 - 0"12 will be the largest 
eigenvalue, and the major axes of the constant-density ellipses will lie along a line 
at right angles to the 45° line through /L. (These results are true only for 
0"11 = 0"22') 

To summarize, the axes of the ellipses of constant density for a bivariate normal 
distribution with 0"11 = 0"22 are determined by 

• 
We show in Result 4.7 that the choice c2 = x~(a), where x~(a) is the upper 

(looa)th percentile of a chi-square distribution with p degrees of freedom,leads to 
contours that contain (1 - a) X 100% of the probability. Specifically, the following 
is true for a p-dimensional normal distribution: 

The solid ellipsoid of x values satisfying 

(4-8) 

has probability 1 - a. 

The constant-density contours containing 50% and 90% of the probability under 
the bivariate normal surfaces in Figure 4.2 are pictured in Figure 4.4. 

Figure 4.4 The 50% and 90% contours for the bivariate normal 
distributions in Figure 4.2. 

The p-variate normal density in (4-4) has a maximum value when the squared 
distance in (4-3) is zero-that is, when x = /L. Thus, /L is the point of maximum 
density, or mode, as well as the expected value of X, or mean. The fact that /L is 
the mean of the multivariate normal distribution follows from the symmetry 
exhibited by the constant-density contours: These contours are centered, or balanced, 
at /L. 



156 Chapter 4 The Multivariate Normal Distribution 

Additional Properties of the Multivariate 
Normal Distribution 

Certain properties of the normal distribution will be needed repeatedly in OUr 
explanations of statistical models and methods. These properties make it possible 
to manipulate normal distributions easily and, as we suggested in Section 4.1, are 
partly responsible for the popularity of the normal distribution. The key proper
ties, which we shall soon discuss in some mathematical detail, can be stated rather 
simply. . 

The following are true for a.random vector X having a multivariate normal 
distribution: 

1. Linear combinations of the components of X are normally distributed. 

2. All subsets of the components of X have a (multivariate) normal distribution. 

3. Zero covariance implies that the corresponding components are independently 
. distributed. 

4. The conditional distributions of the components are (multivariate) normal. 

These statements are reproduced mathematically in the results that follow. Many 
of these results are illustrated with examples. The proofs that are included should 
help improve your understanding of matrix manipulations and also lead you 
to an appreciation for the manner in which the results successively build on 
themselves. 

Result 4.2 can be taken as a working definition of the normal distribution. With 
this in hand, the subsequ~nt properties are almost immediate. Our partial proof of 
Result 4.2 indicates how the linear combination definition of a normal density 
relates to the multivariate density in (4-4). 

Result 4.2. If X is distributed as Np(/L, ~), then any linear combination of vari
ables a'X = alXl + a2X2 + .. , + apXp is distributed as N(a' /L, a'~a). Also, if a'X 
is distributed as N(a' /L, a'~a) for every a, then X must be Np(/L, ~). 

Proof. The expected value and variance of a'X follow from (2-43). Proving that 
a'Xis normally distributed if X is multivariate normal is more difficult. You can find 
a proof in [1 J. The second part of result 4.2 is also demonstrated in [1]. • 

Example 4.3 (The distribution of a linear combination of the components of a normal 
random vector) Consider the linear combination a'X of a m.ultivariate normal ran
dom vector determined by the choice a' = [1,0, .. ,,0]. Since 

a'X ~ [1.0., ".OJ [1:] ~ X, 
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and 

we have 

[

0"11 0"12 

, _ 0"12 0"22 
a ~a - [1,0, ... ,0] : : 

(Jlp 0"2p 

'" (JIP1 [11 '" 0"2p 0_ 
. : : - 0"11 

O"pp 0 

and it fol!ows ~ro~ R~sult 4.2 that Xl is distributed as N (/J-I, 0"11)' More generally, 
the margmal dlstnbutlOn of any component Xi of X is N(/J-i, O"ii)' • 

The next result considers several linear combinations of a multivariate normal 
vectorX. 

Result 4.3. If X is distributed as Nip" ~), the q linear combinations 

are distributed as Nq(Ap" A~A'). Also, X + d , where d is a vector of 
(pXl) (pXI) 

constants, is distributed as Np(/L + d, I). 

Proof. The expected value E(AX) and the covariance matrix ofAX follow from 
(2-45). Any linear combination b'(AX) is a linear combination of X of the 
form a'X with a = A'b. Thus, the conclusion concerning AX follows direc~ly from 
Result 4.2. 

The second part of the result can be obtained by considering a'(X + d) = 

a'~ +.(a'd), where a'~ is distributed as N(a'p"a'Ia). It is known from the 
umvanate case that addmg a constant a'd to the random variable a'X leaves the 
varianc~ unchanged and translates the mean to a' /L + a'd = a'(p, + d). Since a 
was arbItrary, X + d is distributed as Np(/L + d, ~). • 

Example 4.4 (The distribution of two linear combinations of the components of a 
normal random vector) For X distributed as N3(/L, ~), find the distribution of 

Xl - X 2 1 -1 0 I [ ] [ ] [X] 
X z - X3 = 0 1 -1 ~: = AX 
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By Result 4.3, the distribution ofAX is multivariate normal with mean 

0J [::] = [ILl - IL2J 
-1 IL2-IL3 

IL3 

and covariance matrix 

Alternatively, the mean vector AIL and covariance matrix A:tA' may be veri
fied by direct calculation of the means and covariances of the two random variables 
YI = XI - X 2 and Yi = X 2 - X3 · • 

We have mentioned that all subsets of a multivariate normal random vector X 
are themselves normally distributed. We state this property formally as Result 4.4. 

Result 4.4. All subsets of X are normally distributed. If we respectively partition 
X, its mean vector /L, and its covariance matrix :t as 

d~l) = [ __ J~~L_] 
((p-q)XI) 

and 

l 
:t11 i I12 1 (qxq) i (qX(p-q)) 

:t = -----------------1---------·-------------
(pXp) :t21 i I22 

((p-q)Xq) i ((p-q)X(p-q)) 

Proof. Set A = [I i 0 ] in Result 4.3, and the conclusion follows. 
(qxp) (qXq) i (qX(p-q)) 

To apply Result 4.4 to an arbitrary subset of the components of X, we simply relabel 
the subset of interest as Xl and select the corresponding component means and 
covariances as ILl and :tll , respectively. -
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Example 4.5 (The distribution of a subset of a normal random vector) 

If X is distributed as N5(IL, :t), find the distribution of [ ~: J. We set 

XI = [X2J, ILl = [IL2J, _ :t11 = [0"22 0"24J 
X4 IL4 0"24 0"44 

and note that with this assignment, X, /L, and :t can respectively be rearranged and 
par~itioned as 

or 

X =[(~:)J, 
(3Xl) 

Thus, from Result 4.4, for 

we have the distribution 

[

0"22 0"24 i 0"12 0"23 0"25] 

0"24 0"44 i 0"14 0"34 0"45 -----------------f---------------------------
:t = 0"12 0"14! 0"11 0"13 0"15 

0"23 0"34! 0"13 0"33 0"35 

0"25 0"45 i 0"15 0"35 0"55 

l:t11 ! :t12 J (2X2) i (2X3) 
:t = ----------f----------

:t21 i :t22 
(3X2) i (3X3) " 

N2(ILt>:t 11 ) = N2([::J [::: :::J) 
It is clear from this example that the normal distribution for any subset can be 
expressed by simply selecting the appropriate means and covariances from the origi
nal /L and :to The formal process of relabeling and partitioning is unnecessary_ _ 

We are now in a position to state that zero correlation between normal random 
variables or sets of normal random variables is equivalent to statistical independence. 

Result 4.5. 

(8) If XI and X2 are independent, then Cov (XI, X2) = 0, a ql X q2 matrix of 
(ql XI) (Q2 XI ) 

zeros. 

( If [ XI] . ([ILl] [:t11 i :t12]) ". b) ------ IS Nq1+q2 -------, -------.j-------- , then XI and X2 are independent If 
X 2 IL2 :t21: :t22 

and only if:t12 = o. 
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(c) If Xl and X2 are independent and are distributed as Nq1(P-I, Ill) and . 

N
q2

(P-2, I
22

), respectively, then [I!] has the multivariate normal distribution. 

Proof. (See Exercise 4.14 for partial proofs based upon factoring the density 

function when I12 = 0.) • 

Example 4.6. (The equivalence of zero covariance and independence for normal 
variables) Let X be N3(p-, I) with 

(3xl) 

[

4 1 0] 
I = 1 3 0 

o 0 2 

Are XI and X 2 independent? What about (XI ,X2) and X3? 
Since Xl and X 2 have covariance Ul2 = 1, they are not mdependent. However, 

partitioning X and I as 

we see that Xl = [~J and X3 have covariance m~trix. I12 =[? J. Therefore, 

(X X) and X are independent by Result 4.5. This unphes X3 IS mdependent of 
I, 2 3 • 

Xl and also of X 2· 

We pointed out in our discussion of the bivariate nor~~l distri?ution t~at 
P12 = 0 (zero correlation) implied independence because ~he Jo(mt de~)sl~y fu.n~tJo~ 
[see (4-6)] could then be written as the product of the ~arg~al n~rm.a ensItJes.o 
Xl and X

2
. This fact, which we encouraged you to verIfy dIrectly, IS SImply a speCial 

case of Result 4.5 with ql = q2 = l. 

Result 4.6. Let X = [~;J be distributed as Np(p-, I) with P- = [:;] , 

I = [-~!-d-~!-?-J, and I In! > O. Then the conditional distribution of Xl> given 
I21 ! I22 

iliat X 2 = X2, is nonnal and has 

Mean = P-I + I 12I21 (X2 - P-2) 
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and 

Covariance = III - I 12I 2iI21 

Note that the covariance does not depend on the value X2 of the conditioning 
variable. 

Proof. We shall give an indirect proof. (See Exercise 4.13, which uses the densities 
directly.) Take 

A = [---~~-~~!-- __ L~_~A~~~~-J 
(pXp) 0 i I 

(p-q)Xq i (p-q)x(p-q) 

so 

is jointly normal with covariance matrix AIA' given by 

Since Xl - P-I - I12Iz1 (X2 - P-2) and X2 - P-2 have zero covariance, they are 
independent. Moreover, the quantity Xl - P-I - I12Iz1 (X2 - P-2) has distribution 
Nq(O, III - I12I21I21)' Given that X2 = X2, P-l + I12Iz1 (X2 - P-2) is a constant. 
Because XI - ILl - I12I21 (X2 - IL2) and X2 - IL2 are independent, the condi
tional distribution of Xl - ILl - I12Izi (X2 - IL2) is the same as the unconditional 
distribution of Xl - ILl - I12I21 (X2 - P-2)' Since Xl - ILl - I12Iz1 (X2 - P-2) 
is Nq(O, III - I 12I 2iI21 ), so is the random vector XI - P-I - I12Iz1 (X2 - P-2) 
when X2 has the particular value x2' Equivalently, given that X2 = X2, Xl is distrib
uted as Nq(ILI + I12Izi (X2 - P-2), III - I12Izi I2d· • 

Example 4.7 (The conditional density of a bivariate normal distribution) The 
conditional density of Xl' given that X 2 = X2 for any bivariate distribution, is 
defined by 

f( I ) { d·· Id . f . f(Xl,X2) Xl X2 = con ItIona enslty 0 Xl gIven that X 2 = X2} = ~...;.:.~:.:.. 
f(X2) 

where f(X2) is the marginal distribution of X2. If f(x!> X2) is the bivariate normal 
density, show that f(xII X2) is 

( 
U12 Ut2) N P-I + -(X2 - P-2), Ull --
U22 U22 
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Here Ull - Urz/U22 = ull(1 - PI.2)' The two te?Ds involving Xl -: ILl in the expo-

t of the bivariate normal density [see Equation (4-6)] become, apart from the nen 2 
multiplicative constant -1/2( 1 - PI2), 

(Xl - ILl? (Xl - ILd(X2 - IL2) 
..:.....;--- - 2p12 • r- . =-

Ull VUll VU22 

Because Pl2 = UI2/~ ya;, or Pl2vU;Jvu:;;. = Ulz/U22, the complete expo

nent is 

-1 (Xl - ILd2 _ 2PI2 (Xl - ILI)(X2 -1Lz) + (X2 - IL2f) 
2(1 - PI2) Ull ~ vo:; U22 

-1 ( ~ )2 = 2) Xl - ILl - PI2 vu:;:, (X2 - IL2) 
2Ull(1 - Pl2 U22 

_ 1 (_1 __ PI2) (X2 - p.,zf 
2( 1 - piz) Un U22 

-1 ( UI2 )2 1 (X2 - IL2f 
= . 2) Xl - ILl - ~ (X2 - IL2) - 2" U 2 

2Ull(1 - PI2 22 2 

The constant term 21TVUllU22(1 - PI2) also factors as 

Dividing the joint density of Xl and X 2 by the marginal density 

!(X2) = 1 e-(X2-fJ.2)2/2u22 
V2iiya; 

and canceling terms yields the conditional density 

1 e-[Xl-~I-(U12/u221(X2-~2)fl2cr11{1-pt2), 

= V2Ti VUll(1 - PI2) 
-00 < Xl < 00 

Thus, with our customary notation, the conditional distribution of Xl given that 
X = x is N(ILl + (U12/Un) (X2 - IL2)' uu(l- PI2»' Now, III -I12I21I21 = 
U:l - !rz/U22 = uu(1 - PI2) and I12I2"! = Ulz/U22, agreeing with Result 4.6, 

which we obtained by an indirect method. -
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For the multivariate normal situation, it is worth emphasizing the following: 

1. All conditional distributions are (multivariate) normal. 

2. The conditional mean is of the form 

(4-9) 

where the f3's are defined by 

lf3I,q+1 

~ ~-l _ f32,q+1 
.... 12 .... 22 - : 

f3 q,q+1 

f3I,q+2 ... f3I'p] 
f32,q+2 . . . f32,p · . . · . · . 
f3q,q+2 . . . f3 q,p 

3. The conditional covariance, I11 - II2I2"~I2 1> does not depend upon the value(s) 
of the conditioning variable(s). 

We conclude this section by presenting two final properties of multivariate 
normal random vectors. One has to do with the probability content of the ellipsoids 
of constant density. The other discusses the distribution of another form of linear 
combinations. 

The chi-square distribution determines the variability of the sample variance 
S2 = SJ1 for samples from a univariate normal population. It also plays a basic role 
in the multivariate case. 

Result 4.7. Let X be distributed as Np(IL, I) with II 1 > O. Then 

(a) (X - p,)':I-I(X - p,) is distributed as X~, where ~ denotes the chi-square 
distribution with p degrees of freedom. 

(b) The Np(p" I) distribution assigns probability 1 - a to the solid ellipsoid 

{x: (x - p,)'I-I(x - p,) :5 x~(a)}, where ~(a) denotes the upper (l00a)th 

percentile of the ~ distribution. 

Proof. We know that ~ is defined as the distribution of the sum Zt + Z~ + ... + Z~, 
where Zl, Z2,"" Zp are independent N(O,l) random variables. Next, by the 
spectral decomposition [see Equations (2-16) and (2-21) with A = I, and see 

Result 4.1], I-I = ± ~ eiei, where :Iei = Aiei, so I-1ei = (I/Ai)ei' Consequently, 
i=l Ai 

p p 2 
(X-p,)'I-I(X-p,) = L(1/Ai)(X-p,)'eiei(X-p,) = L(I/AJ(ej(X-p,» = 

;=1 i=1 
p 2 p 

L [(I/vT;) ej(X - p,)] = L Zr, for instance. Now, we can write Z = A(X - p,), 
i=l i=l 
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where 

A = 
(pxp) 

and X - /L is distributed as Np(O, I). Therefore, by Result 4.3, Z = A(X - /L) is 
distributed as Np(O, AIA'), where 

A I A' = 
(pxp)(pXp)(pXp) 

_l_e ] = I vr;,p 

By Result 4.5, Zl, Z2, ... , Zp are independent standard normal variables, and we 

conclude that (X - /L )'I-l(X - /L) has a x;,-distribution. 

For Part b, we note that P[ (X - /L ),I-l(X - /L) :5 c2] is the probability as
signed to the ellipsoid (X - /L)'I-l(X - /L):5 c2 by the density Np(/L,I). But 
from Part a, P[(X - /L),I-l(X - /L) :5 x~(a)] = 1 - a, and Part b holds. • 

Remark: (Interpretation of statistical distance) Result 4.7 provides an interpreta
tion of a squared statistical distance. When X is distributed as Np(/L, I), 

(X - /L)'I-l(X - /L) 

is the squared statistical distance from X to the population mean vector /L. If one 
component has a much larger variance than another, it will contribute less to the 
squared distance. Moreover, two highly correlated random variables will contribute 
less than two variables that are nearly uncorrelated. Essentially, the use of the in
verse of the covariance matrix, (1) standardizes all of the variables and (2) elimi
nates the effects of correlation. From the proof of Result 4.7, 

eX - /L),I-l(X - /L) = Z1 + Z~ + .. ' + Z~ 
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1 1 
In terms ofI-Z (see (2-22»,Z = I-Z(X - /L) has a Np(O,lp) distribution, and 

= Z'Z = Z1 + Z~ + ... + Z~ 

The squared statistical distance is calculated as if, first, the random vector X were 
transformed to p independent standard normal random variables and then the 
usual squared distance, the sum of the squares of the variables, were applied. 

Next, consider the linear combination of vector random variables 

(4-10) ClXl + C2X2 + .,. + cnXn = [Xl i X2 i ... i Xn] c 
(pXn) (nXl) 

This linear combination differs from the linear combinations considered earlier in 
that it defines a p. x 1 vector random variable that is a linear combination of vec
tors. Previously, we discussed a single random variable that could be written as a lin
ear combination of other univariate random variables. 

Result 4.8. Let Xl, X2, ... , Xn be mutually independent with Xj distributed as 
Np(/Lj, I). (Note that each Xj has the same covariance matrix I.) Then 

VI = ClXl + C2X2 + ... + cnXn 

is distributed as Np( ± Cj/Lj, (± CY)I). Moreover, Vl and V2 = blX1 + b2X 2 
J=l J=l 

+ .. , + bnXn are jointly multivariate normal with covariance matrix 

[C~ CY)I . (b'c)I ] 

(b'c)I (~bY)I 
n 

Consequently, VI and Vz are independent ifb'c = 2: cjbj = O. 
j=l 

Proof. By Result 4.5(c), the np component vector 

is multivariate normal. In particular, X is distributed as Nnp(/L; Ix), where 
(npXl) 

/L = [~~] and Ix = [~ ~ 
(npXl) ~n (npXnp) ~ ° 0] ° 

... I 
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The choice 

where I is the p X P identity matrix, gives 

AX Jf.::] ~ [;:J 
and AX is normal N2p(AIL, Al:,A') by Result 4.3. Straightforward block multipli
cation shows that Al:.A' has the first block diagonal term 

The off-diagonal term is 

[CIl:, c2l:, ... , cnIJ [bl I, b2I, ... , bnIJ' = (± Cjbj ) l: 
J=l 

n 

This term is the cQvariance matrix for VI, V2 • Consequently, when 2:. cjbj = 
j=l 

b' c = 0, so that (± Cjbj)l: = 0 ,VI and V2 are independent by Result 4.5(b) .• 
j=l (pxp) 

. For sums of the type in (4-10), the property of zero correlation is equivalent to 
requiring the coefficient vectors band c to be perpendicular. 

Example 4.8 (Linear combinations of random vectors) Let XI. X 2 , X 3 , and X 4 be 
independent and identically distributed 3 X 1 random vectors with 

P_~ [-n 'Od ~ +: -~ ~] 
We first consider a linear combination a'XI of the three components of Xl. This is a 
random variable with mean 

and variance 

a'l: a = 3af + a~ + 2aj - 2ala2 + 2ala3 

That is, a linear combination a'XI of the components of a random vector is a single 
random variable consisting of a sum of terms that are each a constant times a variable. 
This is very different from a linear combination of random vectors, say, 

CIXI + C2X 2 + C3X3 + c4X4 
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which is itself a random vector. Here each term in the sum is a constant times a 
random vector. 

Now consider two linear combinations of random vectors 

and 

Xl + X2 + X3 - 3X4 

Find the mean vector and covariance matrix for each linear combination of vectors 
and also the covariance between them. 

By Result 4.8 with Cl = C2 = C3 = C4 = 1/2, the first linear combination has 
mean vector 

and covariance matrix 

(cl + " + ,,+ cl)X ~ 1 X X ~ [ -1 -1 1] 
1 0 
o 2 

For the second linear combination of random vectors, we apply Result 4.8 with 
bl = bz = b3 = 1 and b4 = -3 to get mean vector 

and covariance matrix 

[ 

36 
(by + b~ + b~ + b~)I = 12 X l: = -12 

12 

-12 12] 
12 0 
o 24 

Finally, the covariance matrix for the two linear combinations of random vectors is 

Every Component of the first linear combination of random vectors has zero 
covariance with every component of the second linear combination of random vectors. 

If, in addition, each X has a trivariate normal distribution, then the two linear 
combinations have a joint six-variate normal distribution, and the two linear combi
nations of vectors are independent. _ 
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4.3 Sampling from a Multivariate Normal Distribution 
and Maximum likelihood Estimation 

We discussed sampling and selecting random samples briefly in Chapter 3. In this 
section, we shall-be concerned with samples from ~ multivariate normal popula
tion-in particular, with the sampling distribution of X and S. 

The Multivariate Normal likelihood 

Let us assume that the p X 1 vectors Xl, X 2, .. ·, Xn represent a random sample 
from a multivariate normal population with mean vector p. and covariance matrix 
l:. Since Xl, X 2, ..• , Xn are mutually independent and each has distribution 
Np(p., l:), the joint density function of all the observations is the product of the 
marginal normal densities: 

{
Joint density } = fI { ~ 1(2 e-(Xi-/L)'~-I(Xi-/L)/2} 

ofX1,X2"",Xn j=1 (27T)P III 

= __ 1 __ 1_e-:~ (Xj-/L)'~-I(!lr/L)/2 (4-11) 
(27T )np(21 I In(2 )-

When the numerical values of the observations become available, they may be sub
stituted for the x . in Equation (4-11). The resulting expression, now considered as a func
tion of p. and l: Jfor the fixed set of observations Xl, X2, ... , Xn, is called the likelihood. 

Many good statistical procedures employ values for the popUlation parameters 
that "best" explain the observed data. One meaning of best is to select the parame
ter values that maximize the joint density evaluated at the observations. This tech
nique is called maximum likelihood estimation, and the maximizing parameter 
values are called maximum likelihood estimates. 

At this point, we shall consider maximum likelihood estimation of the parame
ters p. and l: for a muItivariate normal population. To do so, we take the observa
tions Xl'X2'''',Xn as fixed and consider the joint density of Equation (4-11) 
evaluated at these values. The result is the likelihood function. In order to simplify 
matters we rewrite the likelihood function in another form. We shaH need some ad
ditionai properties for the trace of a square matrix. (The trace .of a mat~ix is t~e .s~m 
of its diagonal elements, and the properties of the trace are discussed m DefmlUon 
2A.28 and Result 2A.12.) 

Result 4.9. Let A be a k x k symmetric matrix and x be a k X 1 vector. Then 

(a) x'Ax = tr(x'Ax) = tr(Axx') 
k 

(b) tr (A) = 2.: Ai, where the Ai are the eigenvalues of A. 
i=1 

Proof. For Part a, we note thatx'Ax is a scalar,sox'Ax = tr(x'Ax). We pointed 
out in Result 2A.12 that tr(BC) = tr(CB) for any two matrices Band C of 

k 

dimensions. m X k and k X rn, respectively. This follows because BC has 2.: b;jcji as 
j=1 
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m (_ k ) 
its ith diagonal element, so tr (BC) = ~ j~ b;jcj; . Similarly, the jth diagonal 

element of CB is i: Cj;bij , so tr(CB) = ± (± Cj;b;i) = ± (± b;jCji) = tr(BC). 
1=1, j=1 ;=1 ;=1 j=1 

Let x' be the matrix B with rn = 1, and let Ax play the role of the matrix C. Then 
tr(x'(Ax» = tr«Ax)x'),and the result follows. 

Part b is proved by using the spectral decomposition of (2-20) to write 
A = P' AP, where pp' = I and A is a diagonal matrix with entries AI, A

2
, ••• , A

k
• 

Therefore, tr(A) = tr(P'AP) = tr(APP') = tr(A) = Al + A2 + ... + A
k

• • 

Now the exponent in the joint density in (4-11) can be simplified. By Result 4.9(a), 

(Xj - p.)'l:-I(Xj - p.) = tr[(xj - p.)'I-1(xj - p.») 

Next, 
= tr[l:-\xj - p.)(Xj - p.)'] (4-12) 

n n 

2.: (Xj - p.)'I-1(xj - p.) = 2.: tr[(xj - p.)'l:-\Xj - p.») 
J=1 _ j=1 

n 

= 2.: tr[l:-l(xj - p.)(Xj - p.)') 
j=1 

= tr[l:-l(~ (Xj - p.)(Xj - P.),)]_ (4-13) 

since the trace of a sum of matrices is equal to the sum of the traces of the matrices, 

according to Result 2A.12(b). We can add and subtract i = {l/n) ± Xj in each 
n j=1 

term (Xj - p.) in 2.: (Xj - p. )(Xj - p.)' to give 
j=l 

n 

2.: (Xj - x + x - p.)(Xj - X + X - p.)' 
j=1 

n n 

= ~ (Xj - x)(Xj - x)' + 2.: (x - p.)(i - p.)' 
J=1 j=l 

n 

= 2.: (Xj - x)(Xj - i)' + n(i - p.)(i - p.)' 
j=1 (4-14) 

n n 
because the cross-product terms, ~ (x; - i)(i - p.)' and 2.: (i - p. )(Xj - i)', 

J=1 j=1 
are both matrices of zeros. (See Exercise 4.15.) Consequently, using Equations (4-13) 
and (4-14), we can write the joint density of a random sample from a multivariate 
normal population as 

{
joint density Of} (2 /2 

= (27T rnp /l: I-n 
Xl>X2,·.·,Xn 

X exp { -tr[l:-l(jt (Xj - i)(xj - i)' + n(x - p.)(i - P.)')]/2} (4-15) 
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Substituting the observed values Xl, X2, ... , Xit into the joint density yields the likeli
hood function. We shall denote this function by L(iL, l:), to stress the fact that it is a 
function of the (unknown) population parameters iL and l:. Thus, when the vectors 
Xj contain the specific numbers actually observed, we have 

L( l:) = - 1 e-tr[r{t (Xj-x)(xj-x)'+n(x-IL)(X-ILY)]/2 (4-16) 
iL, (27r tp/21l: In/2 J 

It will be convenient in later sections of this book to express the exponent in the like
lihood function (4-16) in different ways. In particular, we shall make use of the identity 

tr[l:-I(~ (Xj - x)(Xj - x)' + n(x - iL)(X - p.)')] 

= tr [l:-IC~ (Xj - x)(Xj - X)') ] + n tr[l:-l(x - iL) (x - iL )'] 

= tr [ l:-I( ~ (Xj - x)(Xj - X)') ] + n(x - iL )'l:-I(X - p.) (4-17) 

Maximum Likelihood Estimation of JL and l: 

The next result will eventually allow us to obtain the maximum likelihood estima
tors of p. and l:. 

Result 4.10. Given a p X P symmetric positive definite matrix B and a scalar 
b > 0, it follows that 

_ 1_ e-tr (rI B)/2 :5 _1_ (2b ybe-bp 
Il: Ib I B Ib 

for all positive definitel: , with equality holding only for l: = (1/2b )B. 
(pxp) 

Proof. Let Bl/2 be the symmetric square root of B [see Equation (2-22)], 
so Bl/2Bl/2 = B, Bl/2B-l/2 = I, and B-l/2B-l/2 = B-1. Then tr(l:-IB) = 
tr [(l:-1 Bl/2)Bl/2] = tr [Bl/2(l:-IBl/2)]. Let 17 be an eigenvalue of Bl/2l:-1 Bl/2. This 

matrix is positive definite because y'Bl/2l:-1BI/2y = (B1/2y)'l:-I(Bl/2y) > 0 if 

BI/2y "* 0 or, equivalently, y "* O. Thus, the eigenvaiues 17; of Bl/2l:-I B1/2 are positive 

by Exercise 2.17. Result 4.9(b) then gives 
p 

tr(l:-IB) = tr(B1/2l:-1B1/2) = 2:17; 
;=1 

p • 
a~d I B1/2l:-IB1/21 = IT 17; by Exercise 2.12. From the properties of determinants ID 

;=1 
Result 2A.11, we can write 

I B1/2l:-1BI/21 = I BI/2IIl:-1 11 BI/21 = 1l:-111 Bl/211 Bl/21 

1 
= 1l:-I IIBI = -IBI 

Il: I 
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or 

Combining the results for the trace and the determinant yields 

( 

p )b IT 17; P p 
_1_ e- tr [I-IBj/2 = ;=1 e-.'i,7j./2 = _1_ IT l?e-7j/2 
Il: Ib , I B Ib ,=1 I B Ib ;=1 171 

But the function 17be-rJ/2 has a maximum, with respect to 17, of (2b )be-b, occurrjng at 
17 = 2b. The choice 17; = 2b, for each i, therefore gives 

_1_ e-tr (I-IB)/2 :5 _1_ (2b)Pbe-bp 
Il: Ib IBlb 

The upper bound is uniquely attained when l: = (1/2b )B, since, for this choice, 

and 

Moreover, 

B1/2l:-1B1/2 = Bl/2(2b )B-1B1/2 = (2b) I 
(pXp) 

1 I B1/2l:-1B1/2 I = 1(2b)II = (2by 

~ = IBI IBI IBI 

Straightforward substitution for tr[l:-IB 1 and 1/1l: Ib yields the bound asserted. _ 

The maximum likelihood estimates of p. and l: are those values--denoted by ji, 
and i-that maximize the function L(p., l:) in (4-16). The estimates ji, and i will 
depend on the observed values XI, X2, ... , Xn through the summary statistics i and S. 

Result 4.1 I. Let X I, X2, ... , Xn be a random sample from a normal population 
with mean p. and covariance l:. Then 

A 1 ~ _ _, (n - 1) 
l: = - "",(Xj - X)(Xj - X) = S 

n j=1 n 
and 

are the maximum likelihood estimators of p. and l:, respectively. Their observed 
n 

values, x and (l/n) 2: (Xj - x) (Xj - x)', are called the maximum likelihood esti
j=1 

mates of p. and l:. 

Proof. The exponent in the likelihood function [see Equation (4-16)], apart from 
the multiplicative factor -!, is [see (4-17)] 

tr[ l:-l(~ (Xj - i)(xj - X)')] + n(x - p.)'l:-l(X - p.) 
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By Result 4.1, :t-l is positive definite, so the distance (x - /L )':t-l(x - /L} > 0 un
less /L = X. Thus, the likelihood is maximized with respect to /L at jl = X. It remains 
to maximize 

n 

over :to By Result 4.10 with b = nl2 and B = L(Xj -:- x)(Xj - x)', the maximum 
j=l 

n 

- occurs at i = (l/n) :L (Xj - x)(Xj - x)', as stated. 
j=l 

The maximum likelihood estimators are random quantities. They are optained by 
replacing the observations Xl, X2, ... , Xn in the expressions for jl and :t with the 
corresponding random vectors, Xl> X2,···, X n • • 

We note that the maximum likelihood estimator X is a random vector and the 
maximum likelihood estimator i is a random matrix. The maximum likelihood 
estimates are their particular values for the given data set. In addition, the maximum 
of the likelihood is 

L( ~ i) = 1 e-np/2 _
1_ 

/L, (27T )np/2 1 i 1 n/2 
(4-18) 

or, since 1 i 1 = [en - l)lnYI S I, 

L(jl, i) =, constant X (generalized variance )-n/2 (4-19) 

The generalized variance determines the "peakedness" of the likelihood function 
and, consequently, is a natural measure of variability when the parent population is 
multivariate normal. ~ 

Maximum likelihood estimators possess an invariance property. Let 8 be the 
maximum likelihood estimator of 8, and consider estimating the parameter h(8), 
which is a function of 8. Then the maximum likelihood estimate of 

h( 8) is given by 
(a function of 8) 

h(O) 
(same function of 9) 

(4-20) 

(See [1] and [15].) For example, 

1. The maximum likelihood estimator of /L':t-l/L isjl'i-ljl, where jl = X and 

i = «n - l)ln)S are the maximum likelihood estimators of /L and :t, 
respectively. 

2. The maximum likelihood estimator of ~ is ~, where 

~ 1 ~ - 2 
l7ii = -n .£J (Xij - Xi) 

j=l 

is the maximum likelihood estimator of l7ii = Var (Xi)' 
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Sufficient Statistics 

From expression (4-15), the joint density depends on the whole set of observations 
XI, x2, ... -, xn only through the sample mean x and the sum-of-squares-and-cross-

n 

products matrix :L (Xj - x)(Xj - x)' = (n - l)S. We express this fact by saying 
j=l 

that x and (n - l)S (or S) are sufficient statistics: 

Let Xl, X2, ... , Xn be a random sample from a multivariate normal population 
with mean JL and covariance:t. Then 

X and S are sufficient statistics (4-21) 

The importance of sufficient statistics for normal populations is that all of the 
information about /L and :t in the data matrix X is contained in x and S, regardless 
of the sample size n. This generally is not true for nonnormal populations. Since 
many multivariate techniques begin with sample means and covariances, it is pru
dent to check on the adequacy of the multivariate normal assumption. (See Section 
4.6.) If the data cannot be regarded as multivariate normal, techniques that depend 
solely on x and S may be ignoring other useful sample information. 

4.4 The Sampling Distribution of X and S 
The tentative assumption that Xl> X2, ... , Xn constitute a random sample from a 
normal population with mean /L and covariance :t completely determines the 
sampling distributions of X and S. Here we present the results on the sampling 
distributions of X and S by drawing a parallel with the familiar univariate 
conclusions. 

In the univariate case (p = 1), we know that X is normal with mean /L = 
(population mean) and variance 

1 population variance 
-172 = ~~------
n sample size 

The result for the multivariate case (p ~ 2) is analogous in that X has a normal 
distribution with mean /L and covariance matrix (lln ):t. 

For the sample variance, recall that (n - 1 )s2 = ± (Xj - X)2 is distributed as 
'-I 

~ times a chi-square variable having n - 1 degreesJ~f freedom (dJ.). In turn, this 
chi-square is the distribution of a sum of squares of independent standard normal 
random variables. That is, (n - 1 )s2 is distributed as 172 ( Z1 + ... + Z~-l) = (17 Zl)2 
+ ... + (I7Zn-lf The individual terms 17Zi are independently distributed as 
N(O, ~). It is this latter form that is suitably generalized to the basic sampling 
distribution for the sample covariance matrix. 
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1 Ovariance matrix is called the Wish an . 'b' f the samp e c d The sampling dlstn utiOn 0.. f' d s the sum of independent pro ucts of . d' r It IS de me a distribution, after ItS ISCovere, t s Specifically, multivariate normal random vec or . ..' f (4-22) 
W· hart distributIOn with m d .. W (. \ '1) == IS . m 

In 

== distribution of '2: ZjZj 
j=1 

. dently distributed as Np( 0, '1). where the Z j are each mdePU
n 

d' tribution results as follows: We summarize the samp ng IS 

le of size n from a p-variate normal X X X be a random samp . Let I, 2, ... , n d riance matrJX t. Then distribution with mean po an cova 

1. X is distributed as Np(p.,{l/ n
).'l). random matrix with n - 1 d.f. (4-23) 2. (n - l)S is distributed as a WIshart 

3. X and S are independent. 

. 'b' of X cannot be used directly to make . the dlstn utlOn . ~ d h 
Because '1 IS unknown,· 'd' dependent informatiOn about ~, an t e S provI es III 

. . f 
inferences about iJ-. However, Tb' allows us to construct a statistic or d t depend on p.. IS distribution of S oes no e shall see in Chapter 5. .' ..' making inferences about p., as w e further results from multlvanabl~ dlstn~utiOn For the present, we record. som the Wishart distribution are derIved directly theory. The following propertieS ?fde endent products, ZjZj. Proofs can be found from its definition as a sum of the III P 
in [1]. 

Pro erties of the Wishart Distribution . . . p .' t independently of A 2, which IS dlstnbu~ed as If Al is distrIbuted as W",,(AI I .). d W (A + A2 \ '1). That IS, the 1. \ A + A is distribute as ",,+1>12 I (424) W"'2(A2 '1), then 1 2 
-degrees of freedom add. \ ) h CAC' is distributed as Wm(CAC' \ C'lC') . . d' 'b t d sW (A t ,t en 2. If A IS IStn u e a m arlicular need for the probabilit~ density Although we do not have ~ny ~ be of some interest to see ItS rather function of the Wishart distributIOn, It tmax~lst unless the sample size n is greater d . t does no e . fi . complicated form. The. ensl y When it does exist, its value at the positive de mte than the number of van abies p. 

matrix A is 

A positive definite 

(4-25) 

where r (-) is the gamma function. (See [11 and [11].) 
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4.S large-Sample Behavior of X and S 
Suppose the quantity X is determined by a large number of independent causes VI, V2 ,.· . , Vn , where the random variables V; representing the causes have approximately the same variability. If X is the sum 

X=ltJ.+V2 +"·+v" 
then the central limit theorem applies, and we conclude that X has a distribution that is nearly nonnal. This is true for virtually any parent distribution of the V;'s, provided that n is large enough. 

The univariate central limit theorem also tells us that the sampling distribution of the sample mean, X for a large sample size is nearly nonnal, whatever the form of the underlying population distribution. A similar result holds for many other important univariate statistics. 
It turns out that certain muItivariate statistics, like X and S, have large-sample properties analogous to their univariate counterparts. As the sample size is increased without bound, certain regularities govern the sampling variation in X and S, irrespective of the form of the parent population. Therefore, the conclusions presented in this section do not require multivariate normal populations. The only requirements are that the parent population, whatever its form, have a mean p. and a finite covariance :to 

Result 4.12 (Law of large numbers). Let YI , 12, ... ,1';, be independent observations from a popUlation with mean E(Y;) = /L. Then 

- }j +Yz +"·+ 1';, Y = ~--=--------". 
n 

converges in probability to /L as n increases without bound. That is, for any prescribed accuracy e > 0, P[ -e < Y - /L < e) approaches unity as n --+ 00. 

Proof. See [9). 
• 

As a direct consequence of the law of large numbers, which says that each X; converges in probability to JLi, i = 1,2, ... , p, 

X converges in probability to po (4-26) 
Also, each sample covariance Sik converges in probability to (Fib i, k = 1,2, ... , p, and 

S (or i = Sn) converges in probability to:t 
Statement (4-27) follows from writing 

n 
(n - l)sik = L (Xji - X;) (Xjk - Xk ) 

j=1 

n 

= L (Xji - poi + /Li - X;)(Xjk - JLk + /Lk - Xk ) j=1 

n 

= L (Xji - poi) (Xjk - P.k) + n(X; - /Li) (Xk - JLk) j=1 

(4-27) 
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Letting Yj = (Xii - J.Li)(Xik - J.Lk), with E(Yj) = (Fib we see that the first term in 
Sik converges to (Fik and the second term converges to zero, by applying the law of 
large numbers. 

The practical interpretation of statements (4-26) and (4-27) is that, with high 
probability, X will be close to I'- an~ S will be close to I whene.ver the sampl~ si~e is 
large. The statemellt concerning X is made even more precIse by a multtvanate 
version of the central limit theorem. 

Result 4.13 (The central limit theorem). Let X I, X2, ... , Xn be independent 
observations from any population with mean I'- and finite covariance I. Then 

Vii eX - 1'-) has an approximate NP(O,I) distribution 

for large sample sizes. Here n should also be large relative to p. 

Proof. See [1]. • 
The approximation provided by the central limit theorem applies to dis

crete, as well as continuous, multivariate populations. Mathematically, the limit 
is exact, and the approach to normality is often fairly rapid. Moreover, from the 
results in Section 4.4, we know that X is exactly normally distributed when the 
underlying population is normal. Thus, we would expect the central limit theo
rem approximation to be quite good for moderate n when the parent population 
is nearly normal. 

As we have seen, when n is large, S is close to I with high probability. Conse-
quently, replacing I by S in the approximating normal distribution for X will have a 
negligible effect on subsequent probabili~ caIcul~tions.:... 2 . • . 

Result 4.7 can be used to show that n(X - 1'-) r l (X - 1'-) has a Xp dlstnbutlOn 

when X is distributed as Nj,( 1'-, ~ I) or, equivalently, when Vii (X - 1'-) has an 

Np(O, I) distribution. The X~ distribution is .approximately the sampling distribution 
of n(X - 1'-)' I-I (X - 1'-) when X is approximately normally distributed. Replac
ing I-I by S-I does not seriously affect this approximation for n large and much 

greater than p. 
We summarize the major conclusions of this section as follows: 

Let XI, X2, ... , Xn be independent observations from a population with mean 
JL and finite (nonsingular) covariance I. Then 

Vii (X - 1'-) is approximately Np (0, I) 

and (4-28) 

n(X - I'-)'S-I(X - 1'-) is approximately 4 
for n - p large. 

In the next three sections, we consider ways of verifying the assumption of nor
mality and methods for transforming- nonnormal observations into observations 
that are approximately normal. 
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4.6 Assessing the Assumption of Normality 
As we have pointed out, most of the statistical techniques discussed in subsequent 
chapters assume that each vector observation Xi comes from a multivariate normal 
distribution. On the other hand, in situations where the sample size is large and the 
techniques depend solely on the behavior of X, or distances involving X of the form 
n(X - I'- )'S-I(X - 1'-), the assumption of normality for the individual observa
tions is less crucial. But to some degree, the quality of inferences made by these 
methods depends on how closely the true parent population resembles the multi
variate normal form. It is imperative, then, that procedures exist for detecting cases 
where the data exhibit moderate to extreme departures from what is expected 
under muItivariate normality. 

We want to answer this question: Do the observations Xi appear to violate the 
assumption that they came from a normal population? Based on the properties of 
normal distributions, we know that all linear combinations of normal variables are 
normal and the contours of the multivariate normal density are ellipsoids. There
fore, we address these questions: 

1. Do the marginal distributions of the elements of X appear to be normal? What 
about a few linear combinations of the components Xi? 

2. Do the scatter plots of pairs of observations on different characteristics give the 
elliptical appearance expected from normal populations? 

3. Are there any "wild" observations that should be checked for accuracy? 

It will become clear that our investigations of normality will concentrate on the 
behavior of the observations in one or two dimensions (for example, marginal dis
tributions and scatter plots). As might be expected, it has proved difficult to con
struct a "good" overall test of joint normality in more than two dimensions because 
of the large number of things that can go wrong. To some extent, we must pay a price 
for concentrating on univariate and bivariate examinations of normality: We can 
never be sure that we have not missed some feature that is revealed only in higher 
dimensions. (It is possible, for example, to construct a nonnormal bivariate distribu
tion with normal marginals. [See Exercise 4.8.]) Yet many types of nonnormality are 
often reflected in the marginal distributions and scatter plots" Moreover, for most 
practical work, one-dimensional and two-dimensional investigations are ordinarily 
sufficient. Fortunately, pathological data sets that are normal in lower dimensional 
representations, but nonnormal in higher dimensions, are not frequently encoun
tered in practice. 

Evaluating the Normality of the Univariate Marginal Distributions 

Dot diagrams for smaller n and histograms for n > 25 or so help reveal situations 
where one tail of a univariate distribution is much longer than the other. If the his
togram for a variable Xi appears reasonably symmetric, we can check further by 
counting the number of observations in certain intervals. A univariate normal distri
bution assigns probability .683 to the interval (J.Li - YU;";, J.Li + YU;";) and proba
bility .954 to the interval (J.Li - 2YU;";, J.Li + 2yu;";). Consequently, with a large 
sample size n, we expect the observed proportion Pi 1 of the observations lying in the 
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interval (Xi - v's;;, Xi + Vs;";) to be about .683. Similarly, the observed proportion 
A2 of the observations in (x, - 2Vs;";, Xi + 2~) should be about .954. Using the 
normal approximation to the sampling distribution of Pi (see [9]), we observe that 
either 

I Pi! - .683 I > 3 
(.683)(.317) 1.396 

n Vii 
or 

I Pi2 - .954 I > 3 
(.954 )(.046) .628 

(4-29) 
n Vii 

would indicate departures from an assumed normal distribution for the ith charac
teristic. When the observed proportions are too small, parent distributions with 
thicker tails than the normal are suggested. 

Plots are always useful devices in any data analysis. Special plots caIled Q-Q 
plots can be used to assess the assumption of normality. These plots can be made for 
the marginal distributions of the sample observations on each variable. They are, in 
effect, plots of the sample quantile versus the quantile one would expect to observe if 
the observations actually were normally distributed. When the points lie very nearly 
along a straight line, the normality assumption remains tenable. Normality is suspect 
if the points deviate from a straight line. Moreover, the pattern of the deviations can 
provide clues about the nature of the nonnormality. Once the reasons for the non
normality are identified, corrective action is often possible. (See Section 4.8.) 

To simplify notation, let Xl, Xz, ... , XII represent n observations on any single 
characteristic Xi' Let x(1) ~ x(z) ~ .. , ~ x(n) represent these observations after 
they are ordered according to magnitude. For example, x(z) is the second smallest 
observation and x(n) is the largest observation. The x(j)'s are the sample quantiles. 
When the x(j) are distinct, exactly j observati~ns are less than or ~qual to xU). (~is 
is theoretically always true when the observahons are of the contmuous type, which 
we usually assume.) The proportion j I n of the sample at or to the left of xU) is often 
approximated by (j - !)In for analytical convenience.' 

For a standard normal distribution, the quantiles %) are defined by the relation 

l
qU) 1 j - ! 

P[ Z ~ q(j)] = , r-;:- e-z2j2 dz = Pw = __ 2 
-00 VL-1T n 

(4-30) 

(See Table 1 in the appendix). Here PU) is the probability of getting a value less than 
or equal to q( ') in a single drawing from a standard normal population. 

The idea is to look at the pairs of quantiles (qU), xU» with the same associated 

cumulative probability (j - Din. If the data arise from a normal populati~n, the 
pairs (%), x(j) will be approximately linearly related, since U%) + IL is nearly the 
expected sample quantile.2 

lThe! in the numerator of (j - Din is a "continuity" correction. Some authors (see [5) and [10)) 

have suggested replacing (j - !)In by (j - n/( n + ~). 
2 A better procedure is to plot (mU)' x(j))' where m(j) = E(z(j)) is the expected value of the jth

order statistic in a sample of size n from a standard normal distribution. (See [13) for further discussion.) 
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Example 4.9 (Constructing a Q-Q plot) A sample of n = 10 observations gives the 
values in the following table: 

Ordered 
observations 

xU) 

Probability levels Standard normal 
quantiles q(j) 

-1.00 
-.10 

.16 

.41 

.62 

.80 
1.26 
1.54 
1.71 
2.30 

(j - Din 
.05 
.15 
.25 
.35 
.45 
.55 
.65 
.75 
.85 
.95 

-1.645 
-1.036 
-.674 
-.385 
-.125 

.125 

.385 

.674 
1.036 
1.645 

1
·335 1 

Here,forexample,P[Z ~ .385] = -DO v17ie-z2/2dz = .65. [See (4-30).] 

Let us now construct the Q-Q plot and comment on its appearance. The Q-Q 
plot for th.e forego.ing data,.whi.ch is a plot of the ordered data xu) against the nor
mal quanbles qV)' IS ~hown m Figure 4.5. The pairs of points (%), x(j» lie very near
ly along a straight lme, and we would not reject the notion that these data are 
normally distributed-particularly with a sample size as small as n = 10. 

x{j) 

• 

2 

Figure 4.S A Q-Q plot for the 
data in Example 4.9. • 

The calculations required fo'r Q-Q plots are easily programmed for electronic 
computers. Many statistical programs available commercially are capable of produc-
ing such plots. , 

The steps leading to a Q-Q plot are as follows: 

1. Order the original observations to get x(1), x(2), . .. , x(n) and their corresponding 

probability values (1 -1)ln, (2 -1)ln, ... , (n -1)ln; 
2. Calculate the standard normal quantiles q(l), q(2)"'" q(n); and 

3. ~lot th~pair.s of observations (q(l), X(I»' (q(2), X(2», .•• , (q(n), x(n», and exam
me the straightness" of the outcome. 
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Q_Q plots are not particularly informative unless the sample size is.moderate to 
large-for instance, n ;::: 20. There can be quite a bit of variability in the straightness 
of the Q_Q plot for small samples, even when the observations are known to come 
from a normal population. 

Example 4.10 (A Q_Q plot for radiation data) The quality-control department of a 
manufacturer of microwave ovens is required by the federal governmeI:1t to monitor 
the amount of radiation emitted when the doors of the ovens are closed. Observa
tions of the radiation emitted through closed doors of n = 42 randomly selected 
ovens were made. The data are listed in Table 4.1. 

Table 4.1 Radiation Data (Door Closed) 

Oven Oven Oven 

no. Radiation no. Radiation no. Radiation 

1 .15 16 .10 31 .10 

2 .09 17 .02 32 .20 

3 .18 18 .10 33 .11 

4 .10 19 .01 34 .30 

5 .05 20 .40 35 .02 

6 .12 21 .10 36 .20 

7 .08 22 .05 37 .20 

8 . 05 23 .03 38 .30 

9 .08 24 .05 39 .30 

10 .10 25 .15 40 .40 

11 .07 26 .10 41 .30 

12 .02 27 .15 42 .05 

13 ,01 28 .09 

14 .10 29 .08 

15 .10 30 .18 

Source: Data courtesy of 1. D. Cryer. 

In order to determine the probability of exceeding a prespecified tolerance 
level, a probability distribution for the radiation emitted was needed. Can we regard 
the observations here as being normally distributed? 

A computer was used to assemble the pairs (q(j)' x(j» and construct the Q-Q 
plot, pictured in Figure 4.6 on page 181. It appears from the plot that the data as 
a whole are not normally distributed. The points indicated by the circled locations in 
the figure are outliers-values that are too large relative to the rest of the 
observations. For the radiation data, several observations are equal. When this occurs, those 
observations with like values are associated with the same normal quantile. This 
quantile is calculated using the average of the quantiles the tied observations would 
have if they all differed slightly. 

.40 

.30 

.20 

. 10 

.00 
2 

• 5 
3 

.3 

3 

2 9 •• 

2 3 
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Figure 4.6 A Q-Q plot of 
the radiation data (door 
closed) from Example 4.10. 
(The integers in the plot 
indicate the number of 

q(j) points occupying the same 
3.0 location.) 

~ __ ~ __ ~ __ L-__ L-~_ 
2.0 -1.0 .0 1.0 2.0 

The straightness of the Q-Q plot can be . efficient ofthe points in the plot Th I' measured. by calculatmg the correlation co-. e corre atIOn coefficIent for the Q-Q plot is defined by 
11 

2: (x(jl - x)(q(j) - q) 
rQ = J=I 

~t (x(j) - x/ I± (%) _ q)2 
J-I V j=1 

(4-31) 

and a powerful test of normality can be ba d . we reject the hypothesis of normality at 1~~e~n/t .. (S~ [5], [lO],.and [12].) Formally, appropriate value in Table 4.2. 0 sIgn lcance a If rQ falls below the 

Table 4.~ Critical Points for the Q-Q Plot 
CorrelatIOn Coefficient Test for Normality 

Sample size Significance levels a 
n .01 .05 .10 

5 .8299 .8788 .9032 
10 .8801 .9198 .9351 
15 .9126 .9389 .9503 

,20 .9269 .9508 .9604 
25 .9410 .9591 .9665 
30 .9479 .9652 .9715 
35 .9538 .9682 .9740 
40 .9599 .9726 .9771 
45 .9632 .9749 .9792 
50 .9671 .9768 .9809 
55 .9695 .9787 .9822 
60 .9720 .9801 .9836 
75 .9771 .9838 .9866 

100 .9822 .9873 .9895 
150 .9879 .9913 .9928 
200 .9905 .9931 .9942 
300 .9935 .9953 .9960 
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Example 4.11 (A correlation coefficient test for normality) Let us calculate the cor
relation coefficient rQ from the Q-Q plot of Example 4.9 (see Figure 4.5) and test 

for normality. 
Using the information from Example 4.9, we have x = .770 and 

10 10 10 

~ (X(j) - x)%) = 8.584, 2: (x(j) - x)2 = 8.472, and 2: qIj) = 8.795 
j=l j=l j=l 

Since always, q = 0, 

A test of normality at the 10% level of significance is provided by referring rQ = .994 
to the entry in Table 4.2 corresponding to n = 10 and a = .10. This entry is .9351. Since 
'Q > .9351, we do not reject the hypothesis of normality. • 

Instead of rQ' some software packages evaluate the original statistic proposed 
by Shapiro and Wilk [12]. Its correlation form corresponds to replacing %) by a 
function of the expected value of standard normal-order statistics and their covari
ances. We prefer rQ because it corresponds directly to the points in the normal
scores plOt. For large sample sizes, the two statistics are nearly the same (see [13]), so 

either can be used to judge lack of fit. 
Linear combinations of more than one characteristic can be investigated. Many 

statisticians suggest plotting 

ejXj where Se1 = A1e1 

in which A1 is the largest eigenvalue of S. Here xj = [xi!' Xj2,···, Xjp] is the jth 
observation on the p variables Xl' X 2 , •• ·, Xp. The linear combination e~Xj corre
sponding to the smallest eigenvalue is also frequently singled out for inspection. 

(See Chapter 8 and [6] for further details.) 

Evaluating Bivariate Normality 
We would like to check on the assumption of normality for all distributions of 
2,3, ... , p dimensions. However, as we have pointed out, for practical work it is usu
ally sufficient to investigate the univariate and bivariate distributions. We consid
ered univariate marginal distributions earlier. It is now of interest to examine the 

bivariate case. 
In Chapter 1, we described scatter plots for pairs of characteristics. If the obser-

vations were generated from a multivariate normal distribution, each bivariate dis
tribution would be normal, and the contours of constant density would be ellipses. 
The scatter plot should conform to this structure by exhibiting an overall pattern 

that is nearly elliptical. 
Moreover, by Result 4.7, the set of bivariate outcomes x such that 

Assessing the Assumption of Normality ,83 

has probability .5. Thus, we should expect rou hi the sa 0 

sample observations to lie in the ellipse given b; y me percentage, 50 Yo, of 

{all X such that (x - X)'S-l(X - x):s X~(.5)} 

where I~e have re~lac~d JL by its estimate x and l;-1 by its estimate S-l. If not the 
norma 1ty assumptlOn 1S suspect. ' 

!::~~: 4.~: t (Che~king bivariate ~ormality) Although not a random sample, data 

compani;s in t~: ~~~~do: ~~~~r~a~lOEns (Xl. = sales, x2 = profits) for the 10 largest 
r 1S e m xerC1se lA. These data give 

x = [155.60J S = [7476.45 303.62J 
14.70 ' 303.62 26.19 

so 

S-l = 1 [26.19 -303.62J 
103,623.12 -303.62 7476.45 

[ 
.000253 - .002930J 

= - .002930 .072148 

Frt~mf Table 3 in the appendix, rz(.5) = 1.39. Thus, any observation x' - [x x] 
sa1symg - 1,2 

[
Xl - 155.60J' [ .. 000253 
X2 - 14.70 - .002930 

-.002930J [Xl - 155.60J 
.072148 X2 _ 14.70 :s 1.39 

is on or inside the estimated 50O/C t Oth . •• 0 con our. erW1se the observation is outside this 
~~~~~::~~e first pa1r of observations in Exercise lA is [Xl> X2]' = (108.28,17.05J. 

[
108.28 - 155.60J' [ .000253 
17.05 - 14.70 - .002930 

= 1.61 > 1.39 

-.002930J [108.28 - 155.60J 
.072148 17.05 - 14.70 

and this point falls outside the 50% t Th ... . 
alized distances from x of .30,.62 1~~~ ~~~ 4 ;8re1~~n~nff3 1l11n7e1

Pomts have gener
tively Since fo f th d. ' ,.,.,.,.,., and 1.16 respec
falls ~ithin th~r5~% ~~:t~sta~~eshare less tha~ 1.39, a proportion, 040, of ~he data 
would expect about half ~. f th e observat~o~s w~re normally distributed, we 

. . . ,o.r ,0 t em to be Wlthm th1S contour. This difference in 

~~~~~~~~~~:;~~rO~dmanlY rO~ide evid~nce for rejecting the notion of bivariate 
also Exa~ple 4.13.)' ur samp e SlZe of 10 1S too small to reach this conclusion. (See 

• 
ing ~o~r:t:~; ~:!r:~~~:~ ;~~~:~~:~si:i~h~::f~~n~outr anthd sUbjecthivelY compar-, u ra er roug , procedure. 
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A somewhat more formal method for judging the joint normality of a data set is 
based on the squared generalized distances 

j = 1,2, ... , n 

where XI, Xz, .. ' , l:n are the sample observationl'. The procedure we are about to de
scribe is not limited to the bivariate case; it can be used for all p ~ 2. 

When the parent population is multivariate normal and both nand n - pare 
greater than 25 or 30, each of the squared distances di, d~, ... , d~ should behave 
like a chi-square random variable. [See Result 4.7 and Equations (4-26) and (4-27).] 
Although these distances are not independent or exactly chi-square distributed, it is 
helpful to plot them as if they were. The resulting plot is called a chi-square plot or 
gamma plot, because the chi-square distribution is a special case of the more general 
gamma distribution. (See [6].) 

To construct the chi-square plot, 

1. Order the squared distances in (4-32) from smallest to largest as 
d71) :s d7z) :s ... :S d[n). 

2. Graph the pairs (qcj(j - Dln),d7j)), where qc,A(j - !)In) is the 
100(j - Din quantile of the chi-square distribution with p degrees of freedom. 

Quantiles are specified in terms of proportions, whereas percentiles are speci-
fied in terms of percentages. . 

The quantiles qc) (j - !)In) . are related to the upper percentiles of a 

chi-squared distribution. In particular, qc,p( (j - Din) = x~( (n - j + Din). 
The plot should resemble a straight line thro~gh the origin hav~ng slope 1. A 

systematic curved pattern suggests lack of normalIty. One or two POlllts far above 
the line indicate large distances, or outlying observations, that merit further 

attention. 

Example 4.13 (Constructing.a chi~square plot) Let us construct a c~i-square plot of 
the generalized distances given I~ Example 4,12, The ordered. dlsta~ces and the 
corresponding chi-square percentIles for p = 2 and n = 10 are lIsted III the follow-

ing table: 

C 1) j dfj) J - '2 
qc,z 10 

1 .30 .10 
2 .62 .33 
3 1.16 .58 
4 1.30 . 86 
5 1.61 1.20 
6 1.64 1.60 
7 1.71 2.10 
8 1.79 2,77 
9 3.53 3,79 

10 4.38 5.99 
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Figure 4.7 A chi-square plot of the ordered distances in Example 4.13. 

Fi u~ g:;rh of the pairs (qc.z( (j - !)/1O), dfj)) is shown in Figure 4.7. The points in 
? .' ~re reasona?ly straight. Given the small sample size it is difficult to 

~eJect blvanate ~ormalIty on the evidence in this graph. If further analysis of the 
ata were req~lre~, it might be reasonable to transform them to observations 

ms ort~ ne
4
a
8
rly blvanate normal. Appropriate transformations are discussed 

ec IOn . . III 

• 
. ~n addition ~o inspecting univariate plots and scatter plots, we should check mul

tlvanate normalIty by constructing a chi-squared or d Z plot. Figure 4.8 contains dZ 

dJ) 
dJ) 

• IO 

• 
• • 8 • • ••• ••• 6 •• • .: ,. • 

",- 4 

/ ~ 2 

" , 
qc . .cv - ~/30) 0 

qc,iv - ~/30) 0 2 4 6 8 IO 12 0 2 4 6 8 IO 12 
Figure 4.8 Chi-square plots for two simulated four-variate normal data sets with n = 30, 
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Observation 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

plots based on two computer-generated samples of 30 four-variate normal random 
vectors. As expected, the plots have a straight-line pattern, but the top two or three 
ordered squared distances are quite variable. . 

The next example contains a real data set comparable to the sImulated data set 
that produced !he plots in Figure 4.8. 

Example 4.14 (Evaluating multivariate normality for a four-variable data set) The 
data in Table 4.3 were obtained by taking four different measures of stiffness, 
x x X3 and x of each of n = 30 boards. The first measurement involves sending 1, 2" 4, . . 
a shock wave down the board, the second measurement IS determined while vibrat-
ing the board, and the last tw_o ,m_~asuren:ents are obtained fr~m static tests. The 
squared distances dj = (Xj - x) S (Xj - x) are also presented In the table. . 

Observation 

Xl X2 X3 X4 d2 no. XI X2 X3 X4 d2 

1889 ]651 1561 1778 .60 16 1954 2149 1180 1281 16.85 
2403 2048 2087 2197 5.48 17 1325 1170 1002 1176 3.50 
2119 1700 1815 2222 7.62 18 1419 1371 1252 1308 3.99 
1645 1627 1110 1533 5.21 19 1828 1634 1602 1755 1.36 
1976 1916 1614 1883 1040 20 1725 1594 1313 1646 1.46 
1712 1712 1439 1546 2.22 21 2276 2189 1547 2111 9.90 
1943 1685 1271 1671 4.99 22 1899 1614 1422 1477 5.06 
2104 1820 1717 1874 1.49 23 1633 1513 1290 1516 .80 
2983 2794 2412 2581 12.26 24 2061 1867 1646 2037 2.54 
1745 1600 1384 1508 .77 25 1856 1493 1356 1533 4.58 
1710 1591 15]8 1667 1.93 26 1727 1412 1238 1469 3.40 
2046 1907 1627 1898 .46 27 2168 1896 1701 1834 2.38 
1840 1841 1595 1741 2.70 28 1655 1675 1414 1597 3.00 
1867 1685 1493 1678 .13 29 2326 2301 2065 2234 6.28 
1859 1649 1389 1714 1.08 30 1490 1382 1214 1284 2.58 

Source: Data courtesy ofWilliam Galligan. 

The marginal distributions appear quite normal (see Exercise 4.33), with the 
possible exception of specimen (~oard) 9. . . 

To further evaluate mu/tivanate normalIty, we constructed the chI-square plot 
shown in Figure 4.9. The two specimens with the largest squared distances are clear
ly removed from the straight-line pattern. Together, with the next largest point or 
two, they make the plot appear curved at the upper end. We will return to a discus
sion of this plot in Example 4.15. • 

We have discussed some rather simple techniques for checking the multivariate 
normality assumption. Specifically, we advocate calculating the dJ, j = 1,2, ... , n 

[see Equation' (4-32)] and comparing the results with .i quantiles. For example, 
p-variate normality is indicated if 

1. Roughly half of the dy are less than or equal to qc,p( .50). 
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Figure 4.9 A chi-square plot for the data in Example 4.14. 
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L :,.r~ or )~:"O(~'~l fU~'::, (~~l), :~;,:ti:::y,: .:,;1:' ,,::: 
line having slope 1 and that passes through the origin. 

(See [6] for a more complete exposition of methods for assessing normality.) 
We close this section by noting that all measures of goodness offit suffer the same 

serious drawback, When the sample size is small, only the most aberrant behavior will 
be identified as lack of fit. On the other hand, very large samples invariably produce 
statistically significant lack of fit. Yet the departure from the specified distribution 
may be very small and technically unimportant to the inferential conclusions. 

4.7 Detecting Outliers and Cleaning Data 
Most data sets contain one or a few unusual observations that do not seem to be
long to the pattern of variability produced by the other observations. With data 
on a single characteristic, unusual observations are those that are either very 
large or very small relative to the others. The situation can be more complicated 
with multivariate data, Before we address the issue of identifying these outliers, 
we must emphasize that not all outliers are wrong numbers, They may, justifiably, 
be part of the group and may lead to a better understanding of the phenomena 
being studied. 
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OutIiers are best detected visually whenever this is possible. When the number 
of observations n is large, dot plots are not feasible. When the number of character
istics p is large, the large number of scatter plots p(p - 1)/2 may prevent viewing 
them all. Even so, we suggest first visually inspecting the data whenever possible. 

What should we look for? For a single random variable, the problem is one di
mensional, and"we look for observations that are far from the others. For instance, 
the dot diagram 

• • 
•• •••• • .... . ....... ..... . .. @ 

I .. x 

reveals a single large observation which is circled. 
In the bivariate case, the situation is more complicated. Figure 4.10 shows a 

situation with two unusual observations. 
The data point circled in the upper right corner of the figure is detached 

from the pattern, and its second coordinate is large relative to the rest of the X2 
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Figure 4.10 Two outliers; one univariate and one bivariate. 

• • 

• 

.<;J • 

Detecting Outliers and Cleaning Data 189 

measurements, as shown by the vertical dot diagram. The second outIier, also cir
cled, is far from the elliptical pattern of the rest of the points, but, separately, each of 
its components has a typical value. This outlier cannot be detected by inspecting the 
marginal dot diagrams. 

In higher dimensions, there can be outliers that cannot· be detected from the 
univariate plots or even the bivariate scatter plots. Here a large value of 
(Xj - X)'S-l(Xj - x) will suggest an unusual observation, even though it cannot be 
seen visually. 

Steps for Detecting Outliers 

1. Make a dot plot for each variable. 

2. Make a scatter plot for each pair of variables. 

3. Calculate the standardized values Zjk = (Xjk - Xk)/YS;;; for j = 1,2, ... , n 

and each column k = 1,2, ... , p. Examine these standardized values for large 
or small values. 

4. Calculate the -generalized squared distances (Xj - X)'S-I(Xj - x). Examine 
these distances for unusually large values. In a chi-square plot, these would be 
the points farthest from the origin. 

In step 3, "large" must be interpreted relative to the sample size and number of 
variables. There are n X p standardized values. When n = 100 and p = 5, there are 
500 values. You expect 1 or 2 of these to exceed 3 or be less than -3, even if the data 
came from a multivariate distribution that is exactly normal. As a guideline, 3.5 
might be considered large for moderate sample sizes. 

In step 4, "large" is measured by an appropriate percentile of the chi-square dis
tribution with p degrees of freedom. If the sample size is n = 100, we would expect 
5 observations to have values of dJ that exceed the upper fifth percentile of the chi
square distribution. A more extreme percentile must serve to determine observa
tions that do not fit the pattern of the remaining data . 

The data we presented in Table 4.3 concerning lumber have already been 
cleaned up somewhat. Similar data sets from tl!e same study also contained data on 
Xs = tensile strength. Nine observation vectors, out of the total of 112, are given as 
rows in the following table, along with their standardized values. 

Xl X2 X3 X4 Xs Zl Z2 Z3 Z4 Zs 

1631 1528 1452 1559 1602 .06 -.15 .05 .28 -.12 
1770 1677 1707 1738 1785 .64 .43 1.07 .94 .60 
1376 1190 723 1285 2791 -1.01 -1.47 -2.87 -.73 ~ 
1705 1577 1332 1703 l.ti64 .37 .04 -.43 .81 .13 
1643 1535 1510 1494 1582 .11 -.12 .28 .04 -.20 
1567 1510 1301 1405 1553 -.21 -.22 -.56 -.28 -.31 
1528 1591 1714 1685 1698 -.38 .10 LlO .75 .26 
1803 1826 1748 2746 1764 .78 1.01 1.23 ~ .52 
1587 1554 1352 1554 1551 -.13 -.05 -.35 .26 -.32 

: 
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The standardized values are based on the sample mean and variance, calculated 
from al1112 observations. There are two extreme standardized values. Both are too large 
with standardized values over 4.5. During their investigation, the researchers recorded 
measurements by hand in a logbook and then performed calculations that produced the 
values given in the table. When they checked their records regarding the values pin-
pointed by this analysis, errors were discovered. The value X5 = 2791 was corrected to 
1241, andx4 = 2746 was corrected to 1670. Incorrect readings on an individual variable 
are quickly detected by locating a large leading digit for the standardized value. 

The next example returns to the data on lumber discussed in Example 4.14. 

Example 4.15 (Detecting outliers in the data on lumber) Table 4.4 contains the data 
in Table 4.3, along with the standardized observations. These data consist of four 
different measures of stiffness Xl, X2, X3, and X4, on each of n = 30 boards. ReCall 
that the first measurement involves sending a shock wave down the board, the second 
measurement is determined while vibrating the board, and the last two measurements 
are obtained from static tests. The standardized measurements are 

Table 4.4 Four Measurements 'of Stiffness with Standardized Values 

Xl X2 X3 X4 Observation no. Zl Z2 Z3 Z4 d2 

1889 1651 1561 1778 1 -.1 -.3 .2 .2 .60 

2403 2048 2087 2197 2 1.5 .9 1.9 1.5 5048 

2119 1700 1815 2222 3 .7 -.2 1.0 1.5 7.62 

1645 1627 1110 1533 4 -.8 -A -1.3 -.6 5.21 

1976 1916 1614 1883 5 .2 .5 .3 .5 1.40 

1712 1712 1439 1546 6 -.6 -.1 -.2 -.6 2.22 

1943 1685 1271 1671 7 .1 -.2 -.8 -.2 4.99 

2104 1820 1717 1874 8 .6 .2 .7 .5 1049 

2983 2794 2412 2581 9 3.3 3.3 3.0 2.7 c@ 
1745 1600 1384 1508 10 -.5 -.5 -.4 -.7 .77 

1710 1591 1518 1667 11 -.6 -.5 .0 -.2 1.93 

2046 1907 1627 1898 12 A .5 .4 .5 046 

1840 1841 1595 1741 13 -.2 .3 .3 .0 2.70 

1867 1685 1493 1678 14 -.1 -.2 -.1 -.1 .13 

1859 1649 1389 1714 15 -.1 -.3 -.4 -.0 1.08 

1954 2149 1180 1281 16 .1 1.3 -1.1 -1.4 c:1]@ 
1325 1170 1002 1176 17 -1.8 -1.8 -1.7 -1.7 3.50 

1419 1371 1252 1308 18 -1.5 -1.2 -.8 -1.3 3.99 

1828 1634 1602 1755 19 -.2 -.4 .3 .1 1.36 

1725 1594 1313 1646 20 -.6 -.5 -.6 -.2 1.46 

2276 2189 1547 2111 21 1.1 lA .1 1.2 9.90 

1899 1614 1422 1477 22 -.0 -A -.3 -.8 5.06 

1633 1513 1290 1516 23 -.8 -.7 -.7 -.6 .80 

2061 1867 1646 2037 24 .5 .4 .5 1.0 2.54 

1856 1493 1356 1533 25 -.2 -.8 -.5 -.6 4.58 

1727 1412 1238 1469 26 -.6 -1.1 -.9 -.8 3.40 

': 
2168 1896 1701 1834 27 .8 .5 .6 .3 2.38 

~i 1655 1675 1414 1597 28 -.8 -.2 -.3 -A 3.00 

2326 2301 2065 2234 29 1.3 1.7 1.8 1.6 6.28 

~ 1490 1382 1214 1284 30 -1.3 -1.2 -1.0 -lA 2.58 

L-
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Figure 4.11 Scatter plots for the lumber stiffness data with specimens 9 and 16 plotted as solid dots. 

k = 1,2,3,4; j = 1,2, ... ,30 

and the squares of the distances are d? = (x· - -)'S-l( -
Th I 

J J X x· - x) . east column in Table 4.4 reveals th . J.. . . SIDce x~(.OO5) = 14.86' yet all of th . d' .;t speCImen 16 IS a multIvanate outlier, 
respective univariate s~atters Spe . e ID 9

IVI
I uaIhmeasurements are well within their Th . . clmen a so as a large d2 value 

e two speclffiens (9 and 16) with lar . . different from the rest of the It' . g~ squared distances stand out as clearly 
removed, the remaining patter:a er;- ID Igure 4.9. Once these two points are Scatter plots for the lumber stiffn con orms to the. expected straight-line relation. e~s measurements are given in Figure 4.11 above. 
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The solid dots in these figures correspond to specimens 9 and 16. Although the dot for 
specimen 16 stands out in all the plots, the dot for specimen 9 is "hidden" in the scat
ter plot of X3 versus X4 and nearly hidden in that of Xl versus ~3. However, s~ecimen 9 
is clearly identified as a multivariate outlier when all four vanables are considered. 

Scientists specializing in the properties of wood conjectured that specimen 9 
was unusually cH~ar and therefore very stiff and strong. It would also appear that 
specimen 16 is a bit unusual, since both of its dynamic measurements are above av
erage and the two static measurements are low. Unf?rtunately, it was not possible to 
investigate this specimen further because the matenal was no longer available. • 

If outliers are identified, they should be examIned for content, as was done in 
the case of the data on lumber stiffness in Example 4.15. Depending upon the 
nature of the outliers and the objectives of the investigation, outIiers may be delet
ed or appropriately "weighted" in a subsequent analysis. 

Even though many statistical techniques assume normal populations, those 
based on the sample mean vectors usually will not be disturbed by a few moderate 
outliers. Hawkins [7] gives an extensive treatment of the subject of outliers. 

4.8 Transformations to Near Normality 
If normality is not a viable assumption, what is the next step? One alternative is to 
ignore the findings of. a ~ormality check and p:ocee~ as if t~e data w~re normally 
distributed. This practice IS not recommended, smce, m many mstances, It could lead 
to incorrect conclusions. A second alternative is to make nonnormal data more 
"normal looking" by considering transformations of the data. Normal-theory analy
ses can then be carried out with the suitably transformed data. 

1Tansformations are nothing more than a reexpression of the data in different 
units. For example, when a histogram of positive observations exhibits a long right
hand tail, transforming the observations by taking their logarithms or square roots 
will often markedly improve the symmetry about the mean and the approximation 
to a normal distribution. It frequently happens that the new units provide more 
natural expressions of the characteristics being studied. 

Appropriate transformations are suggested by (1) theoretical considerations or 
(2) the data themselves (or both). It has been shown theoretically that data that are 
counts can often be made more normal by taking their square roots. Similarly, the 
logit transformation applied to proportions and Fisher's z-transformation applied to 
correlation coefficients yield quantities that are approximately normally distributed. 

Helpful Transformations To Near Normality 
Original Scale Transformed Scale 

1. Counts,y 

2. Proportions, jJ 

Vy 

10git(jJ) = ~ 10gC ~ jJ) (4-33) 

3. Correlations, r Fisher's 1 (1 + r) z(r) = 2" log 1 - r 
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In ma~y ~nstances, ~he choice of a transformation to improve the approximation 
to normaht~ IS not obvIOus. For such cases, it is ~onvenient to let the data suggest a 
transformatIOn. A useful family of transformations for this purpose is the family of 
power transformations. 

Power transformations are defined only for positive variables. However, this is 
not as restrictive as it seems, because a single constant can be added to each obser
vation in the data set ifsome of the values are negative. 
. . Let X represent an arbitrary observation. The power family of transformations 
IS mdexed by a parameter A. A given value for A implies a particular transformation. 
For example, consider XA with A = -1. Since X-I = l/x, this choice of A corre
sponds to the recip~ocal transformation. We can trace the family of transformations 
as A ranges from negative to positive powers of x. For A = 0, we define XO = In x. A 
sequence of possible transformations is 

-I 
... ,X 

1 
- xO = In x xl/4 = -..v:; XI/2 = • rx x' , , VX, 

shrinks large values of x 

~,r, ... 
increases large 

values ofx 

To select a power transformation, an investigator looks at the marginal oot dia
gram or histogram and decides whether large values have to be "pulled in" or 
"pushed out" to improve the symmetry about the mean. Trial-and-error calculations 

. ~ith a fe~ of the foregoing transformations should produce an improvement. The 
fmal chOIce should always be examined by a Q-Q plot or other checks to see 
whether the tentative normal assumption is satisfactory. 

The transformations we have been discussing are data based in the sense that it 
is ?nly the appear~nce of the data themselves that influences the choice of an appro
pnate trans~ormatlOn. There are no external considerations involved, although the 
tr~nsformatlOn actually used is often determined by some mix of information sup
phed by the d~ta and extra-data factors, such as simplicity or ease of interpretation. 

A convement analytical method is available for choosing a power transforma
tion. We begin by focusing our attention on the univariate case. 

Box and Cox (3) consider the slightly modified family of power transformations 

X(A) = {XA ; 1 A*-O 

lnx .1=0 
(4-34) 

which is continuous in A for x > O. (See [8].) Given the observations Xl, X2, .. . , X
n

, 

the Box-Cox solution for the choice of an appropriate power A is the solution that 
maximizes the expression 

n [1" - ] " e(A) = --In -:L (xy) - X{A)2 + (A - 1) L In x; 
2 n /=1 j=1 

(4-35) 

We note that xY) is defined in (4-34) and 

X(A) =.!. ± xy) = .!. ± (xt - 1) 
n ;=1 n j=1 A 

(4-36) 



pi 

194 Chapter 4 The Multivariate Normal Distribution 

is the arithmetic average of the transformed observations. The first term in (4-35) is, 
apart from a constant, the logarithm of a normal likelihood function, after maximiz
ing it with respect to the population mean and variance parameters. 

The calculation of e( A) for many values of A is an easy task for a computer. It is 
helpful to have a graph of eCA) versus A, as. well as a tabular displflY of the pairs 
(A, e(A)), in order to study the be~avior near the maxim~zing value A. For instance, 
if either A = 0 (logarithm) or A = 2 (square root) is near A, one of these may be pre
ferred because of its simplicity. 

Rather than program the calculation of (4-35), some statisticians recommend 
the equivalent procedure of fixing A, creating the new variable 

j = 1, ... , n (4-37) 

and then calculating the sample variance. The minimum of the variance occurs at the 
same A that maximizes (4-35). 

Comment. It is now understood that the transformation obtained by maximiz
ing e(A) usually improves the approximation to normality. However, there is no 
guarantee that even the best choice of A will produce a transformed set of values 
that adequately conform to a normal distribution. The outcomes produced by a 
transformation selected according to (4-35) should always be carefully examined for 
possible violations of the tentative assumption of normality. This warning applies 
with equal force to transformations selected by any other technique. 

Example 4.16 (Determining a power transformation for univariate data) We gave 
readings of the microwave radiation emitted through the closed doors of n = 42 
ovens in Example 4.10. The Q-Q plot of these data in Figure 4.6 indicates that the 
observations deviate from what would be expected if they were normally distrib
uted. Since all the observations are positive, let us perform a power transformation 
of the data which, we hope, will produce results that are more nearly normal. 
Restricting our attention to the family of transformations in (4-34), we must find 
that value of A maximizing the function e(A) in (4-35). 

The pairs (A, e (A» are listed in the following table for several values of A: 

A e(A) A C(A) 

-1.00 70.52 
-.90 75.65 040 106.20 
-.80 80.46 .50 105.50 
-.70 84.94 .60 104.43 
-.60 89.06 .70 103.03 
-.50 92.79 .80 101.33 
-040 96.10 .90 99.34 
-.30 98.97 1.00 97.10 
-.20 101.39 1.10 94.64 
-.10 103.35 1.20 91.96 

.00 104.83 1.30 89.10 

.10 105.84 1040 86.07 

.20 106.39 1.50 82.88 
(.30 106.51) 
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C(A) 

11.=0.28 

Figure 4.12 Plot of C(A) versus A for radiation data (door closed). 

h 
Th~ cFiurve of e(A) versus A that allows the more exact determination A = 28 is 

s own In Igure 4.12. . 

~t ~s eVi~e(nt) from both th~ table and the plot !hat a value of A around .30 
maXImIzes A. For convemence, we choose A = 25 The d t 
reexpressed as .. a a Xj were 

(1/4) x}l4 - 1 
Xi = --:1:--- j = 1,2, ... ,42 

:\ 

~n;.a Q-~ fiot was constructed from the transformed quantities. This plot is shown 
In Igure. on page 196. The quantile pairs fall very close to a straight line and we 
would conclude from this evidence that the x(I/4) . ' 

j are approxImately normal. • 
Transforming Multivariate Observations 

t
Whith m~lbtII'variate observations, a power transformation must be selected for each of 

e vana es. Let A A A b h . . 1, 2,···, pet e power transformations for the measured 
charactenstIcs. Each Ak can be selected by maximizing P 

ek(A) = -~ In[;; ~ (x)}c) - XiAk»2] + (Ak - 1) ± In Xjk 
J J=1 

(4-38) 
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. re 4 13 A Q-Q plot of the transformed radiat~on data (d?or closed). 
flgu.. . the plot indicate the number of pomts occupymg the same 
(The mtegers III 
location.) 

are the n observations on the kth variable, k = 1, 2, ... , p. 
where Xlk> X2b"" Xnk 

Here 

n 1 " (xAi - 1) (A;) _ l '" X(Ak) = _ '" _1 __ 
Xk - £.J Ik £.J A n j=l n j=l k 

(4-39) 

. . e of the transformed observations. The jth transformed mul-
is the anthmetlc averag 
tivariate observation is 

x(l) = 
1 

XAp - 1 
_I_P __ 

Ap 

A; ; are the values that individually maximize (4-38). 
where AI, "2,' .. , "p 
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The procedure just described is equivalent to making each marginal distribution 
approximately normal. Although normal marginals are not sufficient to ensure that 
the joint distribution is normal, in practical applications this may be good enough. 
If not, we could start with the values AI, A2 , ... , Ap obtained from the preceding 
transformations and iterate toward the set of values A' = (A'I, A2, ... , Ap], which col
lectively maximizes 

n Jl n 

= -2"InIS(A)1 + (A] -1) L Inxjl + (A2 - 1) L Inxj2 
j=1 j=! 

n 

+ ... + (A - 1) '" In X· p £.J. JP (4-40) 
j=! 

where SeA) is the sample covariance matrix computed from 

j = 1,2, ... , n 

Maximizing (4-40) not only is substantially more difficult than maximizing the indi
vidual expressions in (4-38), but also is unlikely to yield remarkably better results. The 
selection method based on Equation (4-40) is equivalent to maximizing a muItivariate 
likelihood over f-t, 1: and A, whereas the method based on (4-38) corresponds to maxi
mizing the kth univariate likelihood over JLb akk, and Ak' The latter likelihood is 
generated by pretending there is some Ak for which the observations (x;~ - 1)/Ak , 

j = 1, 2, ... , n have a normal distribution. See [3] and [2] for detailed discussions of the 
univariate and multivariate cases, respectively. (Also, see [8].) 

Example 4.17 (Determining power transformations for bivariate data) Radiation 
measurements were also recorded through the open doors of the n = 42 
microwave ovens introduced in Example 4.10. The amount of radiation emitted 
through the open doors of these ovens is listed in Table 4.5. 

In accordance with the procedure outlined in Example 4.16, a power transfor
mation for these data was selected by maximizing £(A) in (4-35). The approximate 
maximizing value was A = .30. Figure 4.14 on page 199 shows Q-Q plots of the un
transformed and transformed door-open radiation data. (These data were actually 
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Table 4.S Radiation Data (Door Open) 

Oven Oven Oven 
no. Radiation no. Radiation no. Radiation 

1 .30 16 .20 31 .10 
2 .09 17 .04 32 .10 
3 .30 18 .10 33 .10 
4 .10 19 .01 34 .30 
5 .10 20 :60 35 .12 
6 .12 21 .12 36 .25 
7 .09 22 .10 37 .20 
8 .10 23 .05 38 .40 
9 .09 24 .05 39 .33 
10 .10 25 .15 40 .32 
11 .07 26 .30 41 .12 
12 .05 27 .15 42 .12 
13 .01 28 .09 
14 .45 29 .09 
15 .12 30 .28 

Source: Data courtesy of 1. D. Cryer. 

transformed by taking the fourth root, as in Example 4.16.) It is clear from the figure 
that the transformed data are more nearly normal, although the normal approxima
tion is not as good as it was for the door-closed data. 

Let us denote the door-closed data by XII ,X2b"" x42,1 and the door-open data 
by X12, X22," . , X42,2' Choosing a power transformation for each set by maximizing 
the expression in (4-35) is equivalent to maximizing fk(A) in (4-38) with k = 1,2. 
Thus, using th~ outcomes from Example 4.16 and the foregoing results, we have 
Al = .30 and A2 = .30. These powers were determined for the marginal distribu
tions of Xl and X2' 

We can consider the joint distribution of Xl and X2 and simultaneously deter
mine the pair of powers (Ab A2) that makes this joint distribution approximately 
bivariate normal. To do this, we must maximize f(Al' A2) in (4-40) with respect to 
both Al and A2· 

We computed f(AJ, A2) for a grid of Ab A2 values covering 0 :S Al :S .50 and 
o :S A2 :;; .50, and we constructed the contour pl<2t s~hown in Figure 4.15 on 
page 200. We see that the maxirilUm occurs at about (AI' A2) = (.16, .16). 

The "best" power transformations for this bivariate case do not differ substan-
tially from those obtained by considering each marginal distribution. -

As we saw in Example 4.17, making each marginal distribution approximately 
normal is roughly equivalent to addressing the bivariate distribution directly and 
making it approximately normal. It is generally easier to select appropriate transfor
mations for the marginal distributions than for the joint distributions. 
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• 4·· 
• 
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X (1I4) 
(j) 
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-2.40 
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(a) 

_-2,J,.0--_-I..L.O---.,J,0---1---L--...l--.~q(i} 
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(b) 

Figure 4.14 Q-Q plots of (a) the original and (b) the transformed 
radiation data (with door open). (The integers in the plot indicate the 
number of points occupying the same location.) 
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Figure 4.1 5 Contour plot of C( AI' A2) for the radiation data. 

If the data includes some large negative values and have a single .l~ng tail, a 
more general transformation (see Yeo and Johnson [14]) should be apphe . 

x2:0,A,*0 

x 2: O,A = 0 

x < O,A '* 2 
x < O,A = 2 

{

{(x + I)A - 1}/A 

A In(x+l) 
x( ) = -{(-x + 1)2-A - 1}/(2 - A) 

-In(-x + 1) 

Exercises 

4.1· Consider a bivariate normal distributlOn WI ILl = ,IL2 - ,11 , . 'th 1 - 3 (1" = 2 (1"22 = 1 and 
P12 = -.8. . 
(a) Write out the bivariate normal density. 

. ( )'I-I(x-p.)asaqua-(b) Write out the squared statistical distance expresslOn x - p. 
dratic function of XI and X2' 

4.2. I · 'th 0 11. - 2 (1"11 = 2 (1"22 = 1, and Consider a bivariate normal popu abon WI ILl = ,.-2 - , , 

PI2 = .5. . 
(a) Write out the bivariate normal density. 
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(b) Write out the squared generalized distance expression (x - p.)'I-I(x _ p.) as a 
function of xI and X2' 

(c) Determine (and sketch) the. constant-density contour that contains 50% of the 
probability. 

4.3. Let X be N 3(p., I) with p.' = [-3,1,4) and 

~ ~ [-~ -: n 
Which of the following random variables are independent? Explain. 
(a) X 1 and X 2 

(b) X 2 and X3 

(c) (X1,X2) and X3 

Xl + X 2 
(d) 2 and X3 

(e) X2 and X 2 - ~ X 1 - X3 

Let X be N3(p., I) with p.' = [2, -3, 1) and 

I = [~ ~ 
1 2 

(a) Find the distribution of 3X1 - 2X
2 

+ X3. 

(b) Relabelthe variables if necessary, and find a 2 x 1 vector a such that X
2 

and 

X 2 - af ~;] are independent. 

4.5. Specify each of the following. 

(a) The conditional distribution of XI> given that X 2 = X2 for the joint distribution in 
Exercise 4.2. 

(b) The conditional distribution of X2 , given that XI = xI and X3 = X3 for the joint dis
tribution in Exercise 4.3. 

(c) The conditional distribution of X 3 , given that XI = xI and X
2 

= X2 for the joint dis
tribution in Exercise 4.4. 

4.6. Let X be distributed asN3(p.,I), wherep.' = [1, -1,2) and 

I = [ ~ ~ -~] 
-1 0 2 

Which of the following random variables are independent? Explain. 
(a) XI andX2 

(b) X 1 and X3 ' 

(c) X 2 and X3 

(d) (X1' X3 ) and X 2 

(e) XI and XI + 3X2 - 2X3 
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4.1. 

4.8. 

Refer to Exercise 4.6 and specify each of the following. 
(a) The conditional distribution of Xl, g~ven that X 3 = x3' _ 
(b) The conditional distribution of Xl, gtven that X 2 = X2 and X 3 - .X3' 

I f a nonnonnal bivariate distribution with normal margmals.) Let XI be (Examp e 0 
N(O, 1), and let~ 

Show each of the following. 

if-l S XI S 1 
otherwise 

(a) X
2 

also has an N(O, 1) distribution. .,. 
(b) XI and X2 do not have a bivariate normal dlstnbutlOn. 

Hint: ) Wh . is N(O 1) P[-1 < XI S x] = P[-x S XI < 1 for any x. en (a) Smce XI< 1 P[X ~ x) = P[X2 S -1) + P[-l <X2 S X2] = P[XI S -1) -1 <xI2<_X' <x2) =2p [X
l
s-1) + P[-X2S X I <l).ButP[-X2 S XI <1] + P[ - I - 2 • I' f h' h' X < ] from the symmetry argument in the fIrst me 0 t IS m!. -P[-l< l- x2 P[X ] h'h' - [ ] _ P[X S -1] + P[-1 < XI S X2] = 1 S X2 ,w IC IS Thus,P X2 S X2 - .t. 

a standard normal probabIlIty. . .. 'd the II'near combination XI - X 2 , which equals zero wIth probabIlIty (b) Consl er 
p[lXII> 1] = .3174. . 

E 
. 48 but modify the construction by replacing the break pomt 1 by Refer to xerclse ., 

c so that 

{
-XI if-c S XI S C X -2 - XI elsewhere 

b hosen so that Cov (XI X 2) = 0 but that the two random variables Show that c can e c " 
are not independent. 

~;~ = 0, evaluate Cov (Xl' X 2) = E[ X:I (XI)] 
For c very large, evaluate Cov (XI' X 2 ) = E [XI ( - XI)]' 

4.10. ShoW each of the following. 

(a) 

\~ :\ = IAIIBI 

(b) 

I~ ~I = IAIIBI for IAI -# 0 

Hint: 

\
A 0 I _ lA 0 \\ I 0 \. Expanding the determinant \ I, 0 \ by the first roW . (a) 0' B - 0' I 0' BOB . ee Definition 2A.24) gives 1 times a determinant of the sam: form,. wIth t~e ?rder (s d db one This procedure is repeated until 1 X I B lIS obtamed. SlffitlarIy, ofIre uce Y . \A 0\ 

expanding the determinant \~ ~ \ by the lastrow gives 0' I = I A I· 

(b) I~ ~I = I~ :11:, A~'el·Butexpandingthedeterminant I:, 
II A-Iel by the last row gives 0' 1 = 1. Now use the result in Part a. 

4.1 I. Show that, if A is square, 

IAI = IAnllAII - A I2A 2iA 2Ii forlAnI -# 0 

= IAJ1I1A22 - A 2IAjIA12 1 for/Alii -# 0 

Hint: Partition A and verify that 
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Take determinants on both sides of this equality. Use Exercise 4.10 for the first and third determinants on the left and for the determinant on the right. The second equality for / A / follows by considering 

[ 1 0J [Att A 12J [I -A21 Ajl I A21 A22 0' 

4.12. Show that, for A symmetric, 

Thus, (A\1 - A 12A2iA2l )-1 is the upper left-hand block of A-I. 

[
I -AlI2A21J-l and Hint: Premultiply the expression in the hint to Exercise 4.11 by 0' 

postmultiply by [-A~A21 ~ J-'. Take inverses of the res~lting expression. 

4.13. Show the following if X is Np(IL, I) with / I I -# O. 
(a) Check that /I/ = IInllIl1 - I 12I 2iI2J/. (Note that /I/ can be factored into the product of contributions from the marginal and conditional distributions.) 
(b) Check that 

(x - IL)'I-I(x - IL) = [XI - ILl - I 12I 2i(X2 - IL2)]' 

X (I'l - II2I2iI2t>-I[X, - ILl - I 12I 2i(X2 - IL2») 

+ (X2 - ILdI2~(X2 - IL2) 

(Thus, the joint density exponent can be written as the sum of two terms corresponding to contributions from the conditional and marginal distributions.) 
(c) Given the results in Parts a and b, identify the marginal distribution of X2 and the conditional distribution of XI f X 2 = X2' 
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Hint: 
(a) Apply Exercise 4.11. _ 
(b) Note from Exercise 4.12 that we can write (x - IL)'!, I (x - p.) as 

[
XI - P.IJ' [~!I 0J [(!,II - !,!2,!,i"!!,2It

l !,~I J 
X2 - P.2 - !,22!,21 I 0 22 

X [I -!'12!'i"!J [XI - P.I] 
0' I X2 - P.2 

If we group the product so that . 

[
I - !'J2!'i'!] [x; - P.I] = [XI - ILl - !'~!'i"~(X2 - P.2)J 
0' I X2 - P.2 X2 P.2 

the result follows. 

14 If X
· d' 'b t d N (11. !,) with I!' I#'O show that the joint density can be written 4.. IS Istn u e as p"-' . . ' 

as the product of marginal denslttes for , 

XI and X2 if Il2 = 0 
(qXI) ((p-q)XI) (qx(p-q)) 

Hint: Show by block multiplication that 

[~~l !'~l}s the inverse of I = [~I !,:J 

Then write [!'li 0] [XI - P.I] 
(x - p.)'!,-I(x - p.) = [(XI - 1"1)', (X2 - IL2)'] 0' Ii"! X2 - P.2 

= (XI - p.1)'!,ll(xI - ILl) + (X2 - P.2)'!,i"1(X2 - P.2) 

Note that I!' I = I !,IIII !,221 from Exercise 4.1O(a). Now factor the joint density. 

~ ( -)(- 11.)' and ~ (x - I" )(x· - x)' are both p X P matrices of 4.15. Show that £.J Xj - X X - ,.- ~} . 
j=1 } 

zeros. Here xi = [Xjl, Xj2,"" Xj pl, j = 1,2, ... , n, and 

1 11 

X = - 2: Xj 
n j=1 

4.16. Let Xj, X 2, X 3, and X4 be independent Np(p., I) random vectors. 

(a) Find the marginal distributions for each of the random vectors 
I IX IX IX VI = 4 Xl - 4 2 + 4 3 - 4 4 

and I IX -!X - lX Vz = 4XI + 4 2 4 3 4 4 

(b) Find the joint density of the random vectors VI and V2 defined in (a). 

4 17 Le X X X X and X be independent and identically distributed random vectors 
• • . th I> 2, t3, 4'and cov

5
ariance matrix!' Find the mean vector and covariance ma-WIt mean vec or p. . .' . 

trices for each of the two linear combtna tlOns of random vectors 
I IX!X!X ~XI+5X2+5 3+5 4+55 
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and 
Xl - X2 + X3 - X4 + Xs 

in terms of p. and !'. Also, obtain the covariance between the two linear combinations of 
random vectors. 

4.18. Find the maximum likelihood estimates of the 2 x 1 mean vector p. and the 2 x 2 
covariance matrix!' based on the random sample 

from a bivariate normal population. 

4.19. Let XI> X2, ... , X 20 be a random sample of size n = 20 from an N6(P.,!') population. 
Specify each of the following completely. 
(a) The distribution of (XI - p.),!,-I(XI - p.) 

(b) The distributions of X and vIl(X - p.) 

( c) The distribution of (n - 1) S 

4.20. For the random variables XI, X2, ... , X20 in Exercise 4.19, specify the distribution of 
B(19S)B' in each case. 

(a) B = [~ ~! -O! ~! ~! ~ J 
(b) B = [0

1 
0 0 0 0 0J o 1 000 

4.21. Let X I, ... , X 60 be a random sample of size 60 from a four-variate normal distribution 
having mean p. and covariance !'. Specify each of the following completely. 

(a) The distribution ofK: 
(b) The distribution of (XI - p. )'!,-I(XI - p.) 

(c) Thedistributionofn(X - p.)'!,-I(X - p.) 

(d) The approximate distribution of n(X - p. },S-I(X - p.) 

4.22. Let XI, X2, ... , X75 be a random sample from a population distribution with mean p. 
and covariance matrix !'. What is the approximate distribution of each of the following? 

. (a) X 
(b) n(X - p. ),S-l(X - p.) 

4.23. Consider the annual rates of return (including dividends) on the Dow-Jones 
industrial average for the years 1996-2005. These data, multiplied by 100, are 

-0.6 3.1 25.3 -16.8 -7.1 -6.2 25.2 22.6 26.0. , 
Use these 10 observations to complete the following. 

(a) Construct a Q-Q plot. Do the data seem to be normally distributed? Explain. 

(b) Carry out a test of normality based on the correlation coefficient 'Q. [See (4-31).] 
Let the significance level be er = .10. 

4.24. Exercise 1.4 contains data on three variables for the world's 10 largest companies as of 
April 2005. For the sales (XI) and profits (X2) data: 

(a) Construct Q-Q plots. Do these data appear to be normally distributed? Explain. 
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t t of normality based on the correlation coefficient rQ. [See (4-31).] 
(b) Carry o~t a.f.es I I at a = 10 Do the results ofthese tests corroborate the re-

Set the slgm Icance eve ., 
suits in Part a? 

f th world's 10 largest companies in Exercise 1.4. Construct a chi-
4 25 Refer to the data or e . '1 

. . . II three variables. The chi-square quanti es are 
square plot uslO.g a 
0.3518 0.7978 1.2125 1.6416 2.1095 2.6430 3.2831 4.1083 5.3170 7.8147 

. h x measured in years as well as the selling price X2, measured 
4.26. Exercise 1.2 glVeds tll e agfe ~ = 10 used cars. Th'ese data are reproduced as follows: 

in thousands of 0 ars, or . 

2 3 3 4 5 6 8 9 11 

18.95 19.00 17.95 15.54 14.00 12.95 8.94 7.49 6.00 3.99 

I f Exercise 1 2 to calculate the squared statistical distances 
(a) Use the resU ts 0 . , - [ ] 

(x- - X),S-1 (Xj - x), j = 1,2, ... ,10, where Xj - Xj~' Xj2 • •• 

I . . Part a determine the proportIOn of the observatIOns falhng 
(b) Us'ng the distances m, . . d' 'b . . I _ . d 500"; probability contour of a blvanate normal Istn utlOn. 

wlthlO the estimate ° 
( ) 0 d th distances in Part a and construct a chi-square plot. 
c r er e b" I? 

I 
. P rts band c are these data approximately Ivanate norma. 

(d) Given the resu ts m a , 
Explain. 

. . ( data (with door closed) in Example 4.10. Construct a Q-Q plot 
4.27. ConSider the radla I?~ of these data [Note that the natural logarithm transformation 

for the naturall~:r~~h:s A = 0 in (4-34).] Do the natural logarithms appe~r to be ?or
corres~nd.sbtot d? Compare your results with Figure 4.13. Does the chOice A = 4, or 
mally dlstn u e . .,? 
A = 0 make much difference III thiS case. 

The following exercises may require a computer. 

- . . _ ollution data given in Table 1.5. Construct a Q-Q plot for the s~lar 
4.28. ConsIder the an p d arry out a test for normality based on the correlation 

d' r measurements an c . 0 . 
ra la.l?n [ (4-31)] Let a = .05 and use the entry correspond 109 to n = 4 ID 
coeffIcient rQ see . 
Table 4.2. 

_ I . ollution data in Table 1.5, examine the pairs Xs = N02 and X6 = 0 3 for 
4.29. GIven t le alf-p 

bivariate nonnality. , 1 _ • 
.. I d'stances (x- - x) S- (x- - x), ] = 1,2, ... ,42, where 

(a) Calculate statlstlca I I I 

x'·= [XjS,Xj6]' . f 11' 
I . e the ro ortion of observations xj = [XjS,Xj6], ] = 1,2, ... '.42: a .lOg 

(b) DetermlO p. p te 500"; probability contour of a bivariate normal dlstnbutlOn. 
within the approxlma ° 

( c) Construct a chi-square plot of the ordered distances in Part a. 

4 30. Consider the used-car data in Exercise 4.26., . 
. . th power transformation AI that makes the XI values approxImately 

(a) Determllle e d 
I C nstruct a Q-Q plot for the transforme data. 

norma. 0 , . t I 
. th power transfonnations A2 that makes the X2 values approxlll1a e y 

(b) Determme e ed d 
I C nstruct a Q-Q plot for the transform ata. 

norma. 0 , " ] I 
. th wer transfonnations A' = [AI,A2] that make the [XIoX2 vaues 

(c) Deterrnmnna\e e p? (440) Compare the results with those obtained in Parts a and b. 
jointly no usmg - . 
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4.31. Examine the marginal normality of the observations on variables XI, X 2 , • •• , Xs for the 
multiple-sclerosis data in Table 1.6. Treat the non-multiple-sclerosis and multiple-sclerosis 
groups separately. Use whatever methodology, including transformations, you feel is 
appropriate. 

4.32. Examine the marginal normality of the observations on variables Xl, X 2, ••• , X6 for the 
radiotherapy data in Table 1.7. Use whatever methodology, including transformations, 
you feel is appropriate. 

4.33. Examine the marginal and bivariate normality of the observations on variables 
XI' X 2 , X 3 , and X 4 for the data in Table 4.3. 

4.34, Examine the data on bone mineral content in Table 1.8 for marginal and bivariate nor
mality. 

4.35. Examine the data on paper-quality measurements in Table 1.2 for marginal and multi
variate normality. 

4.36. Examine the data on women's national track records in Table 1.9 for marginal and mul
tivariate normality. 

4.37. Refer to Exercise 1.18. Convert the women's track records in Table 1.9 to speeds mea
sured in meters per second. Examine the data on speeds for marginal and multivariate 
normality. . 

4.38. Examine the data on bulls in Table 1.10 for marginal and multivariate normality. Consider 
only the variables YrHgt, FtFrBody, PrctFFB, BkFat, SaleHt, and SaleWt 

4.39. The data in Table 4.6 (see the psychological profile data: www.prenhall.comlstatistics) con
sist of 130 observations generated by scores on a psychological test administered to Peru
vian teenagers (ages 15, 16, and 17). For each of these teenagers the gender (male = 1, 
female = 2) and socioeconomic status (low = 1, medium = 2) were also recorded The 
scores were accumulated into five subscale scores labeled independence (indep), support 
(supp), benevolence (benev), conformity (conform), and leadership (leader). 

Table 4.6 Psychological Profile Data 

Indep Supp Benev Conform Leader Gender Sodo 

27 13 14 20 11 2 1 
12 13 24 25 6 2 1 
14 20 15 16 7 2 1 
18 20 17 12 6 2 1 
9 22 22 21 6 2 1 

: : 
10 11 26 17 10 1 2 
14 12 14 11 29 1 2 
19 11 23 18 13 2 2 
27 19 22 7 9 2 2 
10 17 22 22 8 2 2 

Source: Dala courtesy of C. SOlO. 

(a) Examine each of the variables independence, support, benevolence, conformity and 
leadership for marginal normality. 

(b) Using all five variables, check for multivariate normality. 

(c) Refer to part (a). For those variables that are nonnormal, determine the transformation 
that makes them more nearly nonnal. 
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4.40. Consider the data on national parks in Exercise 1.27. 

(a) Comment on any possible outliers in a scatter plot of the original variables. 

(b) Determine the power transformation Al the makes the Xl values approximately • 
normal. Construct a Q-Q plot of the transformed observations. 

(c) Determine -the power transformation A2 the makes the X2 values approximately 
normal. Construct a Q-Q plot of the transformed observations. . 

(d) DetermiQe the power transformation for approximate bivariate normality 
(4-40). 

4.41. Consider the data on snow removal in Exercise 3.20 .. 

(a) Comment on any possible outliers in a scatter plot of the original variables. 

(b) Determine the power transformation Al the makes the Xl values approximately 
normal. Construct a Q-Q plot of the transformed observations. 

(c) Determine the power transformation A2 the makes the X2 values approximately 
normal. Construct a Q- Q plot of the transformed observations. 

(d) Determine the power transformation for approximate bivariate normality 
(4-40). 
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Chapter 

INFERENCES ABOUT A MEAN VECfOR 

5.1 Introduction 
This chapter is the first of the methodological sections of the book. We shall now use 
the concepts and results set forth in Chapters 1 through 4 to develop techniques for 
analyzing data. A large part of any analysis is concerned with inference-that is, 
reaching valid conclusions concerning a population on the basis of information from a 
sample. . 

At this point, we shall concentrate on inferences about a populatIOn mean 
vector and its component parts. Although we introduce statistical inference through 
initial discussions of tests of hypotheses, our ultimate aim is to present a full statisti
cal analysis of the component means based on simultaneous confidence statements. 

One of the central messages of multivariate analysis is that p correlated 
variables must be analyzed jointly. This principle is exemplified by the methods 
presented in this chapter. 

5.2 The Plausibility of /-La as a Value for a Normal 
Population Mean 

Let us start by recalling the univariate theory for determining whether a specific value 
/lQ is a plausible value for the population mean M. From the point of view of hypothe
sis testing, this problem can be formulated as a test of the competing hypotheses 

Ho: M = Mo and HI: M *- Mo 

Here Ho is the null hypothesis and HI is the (two-sided) alternative hypothesis. If 
Xl, X 2 , ... , Xn denote a random sample from a normal population, the appropriate 
test statistic is 

(X - Jko) 1 n 1 n 2 
t where X = - ~ XI' and s2 = -- 2: (Xj -X) 

= s/Yn ' n ~ n - 1 j=l 

210 

The Plausibility of /La as a Value for a Normal Population Mean 211 

This test statistic has a student's t-distribution with n - 1 degrees of freedom (d.f.). 
We reject Ho, that Mo is a plausible value of M, if the observed I t I exceeds a specified 
percentage point of a t-distribution with n - 1 d.t 

Rejecting Ho when I t I is large is equivalent to rejecting Ho if its square, 

- 2 
2 (X - Jko) - 2 -1 -

t = 2/ = n(X - Jko)(s) (X - Mo) (5-1) 
s n 

is large. The variable t2 in (5-1) is the square of the distance from the sample mean 
X to the test value /lQ. The units of distance are expressed in terms of s/Yn, or esti
mated standard deviations of X. Once X and S2 are observed, the test becomes: 
Reject Ho in favor of HI , at significance level a, if 

(5-2) 

where t,,_1(a/2) denotes the upper lOO(a/2)th percentile of the t-distribution with 
n - 1 dJ. 

If Ho is not rejected, we conclude that /lQ is a plausible value for the normal 
population mean. Are there other values of M which are also consistent with the 
data? The answer is yes! In fact, there is always a set of plausible values for a nor
mal population mean. From the well "known correspondence between acceptance 
regions for tests of Ho: J-L = /lQ versus HI: J-L *- /lQ and confidence intervals for M, 
we have 

{Do not reject Ho: M = Moat level a} or Ixs/~OI:5 tn -l(a/2) 

is equivalent to 

{JkolieS in the 100(1 - a)%confidenceintervalx ± tn_l(a/2) ~} 
or 

(5-3) 

The confidence interval consists of all those values Jko that would not be rejected by 
the level a test of Ho: J-L = /lQ. 

Before the sample is selected, the 100(1 - a)% confidence interval in (5-3) is a 
random interval because the endpoints depend upon the random variables X and s. 
The probability that the interval contains J-L is 1 - a; among large numbers of such 
independent intervals, approximately 100(1 - a)% of them will contain J-L. 

Consider now the problem of determining whether a given p x 1 vector /Lo is a 
plausible value for the mean of a multivariate normal distribution. We shall proceed 
by analogy to the univariate development just presented. 

A natural generalization of the squared distance in (5-1) is its multivariate analog 
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where 

1 n 
X =-"'X· 

1 n _ - / 1L20 llLIOJ 
S = -- 2: (Xj - X)(Xj - X) , and P-o = : 

£..; I' (pXl) n j=l (pXp) n - 1 j=1 (pXl) . 
ILpo 

The statistic T2 is called Hotelling's T2 in honor of Harold Hotelling, a pioneer in 
multivariate analysis, who first obtained its sampling distribution. Here (1/ n)S is the 
estimated covariance matrix of X. (See Result 3.1.) 

If the observed statistical distance T2 is too large-that is, if i is "too far" from 
p-o-the hypothesis Ho: IL = P-o is rejected. It turns out that special tables of T2 per
centage points are not required for formal tests of hypotheses. This is true because 

T
2' d' 'b d (n - l)PF (55) 

IS Istn ute as (n _ p) p.n-p -

where F
p

•
n

-
p 

denotes a random variable with an F-distribution with p and n - p d.f. 
To summarize, we have the following: 

Let Xl, X2, ... , X" be a random sample from an Np(p-, 1:) population. Then 
_ 1 n 1 ~ - -)/ 

with X = - 2: Xj and S = ( _ 1) £..; (Xj - X)(Xj - X , 
n J=l n 1=1 

[ 

2 (n - l)p ] 
a = PT> (n _ p) Fp.n-p(a) 

[ 

- / I - (n - l)p ( )] 
= P n(X - p-)S- (X - p-) > (n _ p) Fp,n-p a (5-6) 

whatever the true p- and 1:. Here Fp,ll-p(a) is the upper (l00a)th percentjle of 

the Fp,n-p distribution. 

Statement (5-6) leads immediately to a test of the hypothesis Ho: p- = P-o versus 
HI: p- '* P-o. At the a level of significance, we reject Ho in favor of HI if the 

observed 

2 (- )/S-I(- ) > (n - l)p F () (5-7) T = n x-p-o x-p-o ( ) p.n-p a n-p 

It is informative to discuss the nature of the r 2-distribution briefly and its cor
respondence with the univariate test statistic. In Section 4.4, we described the man
ner in which the Wishart distribution generalizes the chi-square distribution. We 

can write 

2: (Xj - X)(Xj - X)/ 

( 
" )-1 

T2 = Vii (X - P-o)/ j=l n _ l' vn (X - p-o) 
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which combines a normal, Np(O, 1:), random vector and a Wishart W _ (1:) random 
matrix in the form ' p,n 1 , 

( 

Wishart random )-1 
T~.n-I = (mUltiVariate normal)' matrix (mUltiVariate normal) 

random vector d.f. random vector 

[ 
1 ]-1 

= Np(O,1:)' n _ 1 Wp ,n-I(1:) Np(O,1:) (5-8) 

This is analogous to 

or 

(

scaled) Chi-square)-l 
t~-1 = ( normal. ) random variable ( normal ) 

random varIable d.f. random variable 

for the univariate case. Since the multivariate normal and Wishart random variables 
are indepen~ently distributed [see (4-23)], their joint density function is the product 
of the margmal normal and Wish art distributions. Using calculus, the distribution 
(5-5) of T2 as given previously can be derived from this joint distribution and the 
representation (5-8). 

It is rare, in multivariate situations, to be content with a test of Ho: IL = ILo, 
whe~e a~l o~ t~e mean vector components are specified under the null hypothesis. 
Ordmanly, It IS preferable to find regions of p- values that are plausible in light of 
the observed data. We shall return to this issue in Section 5.4. 

Example.S.1 .(Evaluating T2) Let the data matrix for a random sample of size n = 3 
from a blvanate normal population be 

X~[~ n 
Evaluate the observed T2 for P-o = [9,5]. What is the sampling distribution of T2 in 
this case? We find . 

and 
_ (6 - 8)2 + (10 - 8)2 + (8 - 8)2 

~I- =4 
2 

_ (6 - 8)(9 - 6) + (10 - 8)(6 - 6) + (8 - 8)(3 - 6) 
SI2 - 2 = -3 

(9 - 6)2 + (6 - 6j2 + (3 ~ 6)2 
S22 = 2 = 9 
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so 

Thus, 
~ 1 [9 3J [~ 

S-I = (4)(9) - (-3)(-3) 3 4 = ~ 

and, from (5-4), 

[I I] [8 9J· T2 =3[8-9, 6-5)1 ~ 6=5 =3[-1, 

Before the sample is selected, T2 has the distribution of a 

(3 - 1)2 
(3 - 2) F2,3-Z = 4Fz,1 

random variable. 

iJ 

• 
The next example illustrates a test of the hypothesis Ho: f.L = f.Lo ~sing. data 

collected as part of a search for new diagnostic techniques at the Umverslty of 

Wisconsin Medical School. 

Example 5.2 (Testing a multivariate mean vector with T2) Perspiration fro~ 20 
healthy females was analyzed. Three components, XI = sweat rate, XZ.= sodIUm 
content, and X3 = potassium content, were measured, and the results, whIch we call 
the sweat data, are presented in Table 5.1. 

Test the hypothesis Ho: f.L' = [4,50,10) against HI: f.L' "* [4,50,10) at level of 

significance a = .10. 
Computer calculations provide 

x = [4~:~~~J, S = [1~:~~~ 1~~:~!~ 
9.965 -1.810 -5.640 

and 

We evaluate 

TZ = 

[ 

.586 
S-I = -.022 
. .258 

-.022 
.006 

-.002 

.258J 
-.002 

.402 

20[4.640 - 4, 45.400 - 50, [ 

.586 -.022 

9.965 - 10) -.022 .006 
.258 -.002 

-1.81OJ 
-5.640 

3.628 

.258J [ 4.640 - 4 J 
-.002 45.400 - 50 

.402 9.965 - 10 

[ 

.467J 
= 20[.640, -4.600, -.035) -.042 = 9.74 

.160 
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Table 5.1 Sweat Data 

Xl Xz X3 
Individual (Sweat rate) (Sodium) (Potassium) 

1 3.7 48.5 9.3 
2 5.7 65.1 8.0 
3 3.8 47.2 10.9 
4 3.2 53.2 12.0 
5 3.1 55.5 9.7 
6 4.6 36.1 7.9 
7 2.4 24.8 14.0 
8 7.2 33.1 7.6 
9 6.7 47.4 8.5 

10 5.4 54.1 11.3 
11 3.9 36.9 12.7 
12 4.5 58.8 12.3 
13 3.5 27.8 9.8 
14 4.5 40.2 8.4 
15 1.5 13.5 10.1 
16 8.5 56.4 7.1 
17 4.5 71.6 8.2 
18 6.5 52.8 10.9 
19 4.1 44.1 11.2 
20 5.5 40.9 9.4 

Source: Courtesy of Dr. Gerald Bargman. 

Comparing the observed T Z = 9.74 with the critical value 

(n - l)p 19(3)· 
(n _ p) Fp,n-p('lO) = 17 F3,17(.10) = 3.353(2.44) = 8.18 

we see that T Z = 9.74 > 8.18, and consequently, we reject Ho at the 10% level of 
significance. 

We note that Ho will be rejected if one or more of the component means, or 
some combination of means, differs too much from the hypothesized values 
[4,50, 10). At this point, we have no idea which of these hypothesized values may 
not be supported by the data . 

We have assumed that the sweat data are multivariate normal. The Q-Q plots 
constructed from the marginal distributions of XI' X z, and X3 all approximate 
straight lines. Moreover, scatter plots for pairs of observations have approximate 
elliptical shapes, and we conclude that the normality assumption was reasonable in 
this case. (See Exercise 5.4.) • 

One feature of tl1e TZ-statistic is that it is invariant (unchanged) under changes 
in the units of measurements for X of the form 

Y=CX+d, 
(pXl) (pXp)(pXl) (pXl) 

C nonsingular (5-9) 
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A transformation of the observations of this kind arises when a constant b; is .. · 
subtracted from the ith variable to form Xi - bi and the result is· < 
by a constant a; > 0 to get ai(Xi - b;). Premultiplication of the f:en!ter,''/ 

scaled quantities a;(X; - b;) by any nonsingular matrix will yield Equation 
As an example, the operations involved in changing X; to a;(X; - b;) cor<re~nllT'~'" 
exactly to the process of converting temperature from a Fahrenheit to a Celsius 
reading. 

Given observations Xl, Xz, ... , Xn and the transformation in (5-9), it immediately 
follows from Result 3.6 that . 

y = Cx + d and S~ = _1_ ± (Yj <- YJ (Yj - y)' = CSC' 
n - 1 j=l 

Moreover, by (2-24) and (2-45), 

II-y = E(Y) = E(CX + d) = E(CX) + E(d) = CII- + d 

Therefore, T2 computed with the y's and a hypothesized value II-y.o = CII-o + d is 

T2 = n(y - II-Y.O)'S;I(y - II-y.o) 

= n(C(x - lI-o»'(CSCTI(C(x - #Lo)) 

= n(x - lI-o)'C'(CSCTIC(x - #Lo) 

= n(x - lI-o)'C'(CTIS-IC-IC(X - #Lo) = n(x - II-O)'S-1(X - #Lo) 

The last expression is recognized as the value of rZ computed with the x's. 

5.3 Hotelling's T2 and Likelihood Ratio Tests 
We introduced the TZ-statistic by analogy with the univariate squared distance t2• 

There is a general principle for constructing test procedures called the likelihood 
ratio method, and the TZ-statistic can be derived as the likelihood ratio test of Ho: 
11- = 11-0' The general theory of likelihood ratio tests is beyond the scope of this 
book. (See [3] for a treatment of the topic.) Likelihood ratio tests have several 
optimal properties for reasonably large samples, and they are particularly conve
nient for hypotheses formulated in terms of multivariate normal parameters. 

We know from (4-18) that the maximum of the multivariate normal likelihood 
as 11- and :t are varied over their possible values is given by 

(5-10) 

where 

i = ! ± (Xj - x)(Xj - x)' and P- = x = ! ± Xj 
n j=l n j=l 

are the maximum likelihood estimates. Recall that P- and i are those choices for fL 
and :t that best explain the observed values of the random sample. 
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Under the hypothesis Ho: #L = 11-0, the normal likelihood specializes to 

The mean 11-0 is now fixed, but :t can be varied to find the value that is "most likely" 
to have led, with #Lo fixed, to the observed sample. This value is obtained by maxi
mizing L(II-o, :t) with respect to :to 

Following the steps in (4-13), the exponent in L(II-o,:t) may be written as 

-.!. ± (Xj - #LO)':t-I(Xj - #Lo) = -.!. ± tr[:t-I(Xj - lI-o)(Xj - lI-o)'J 
2 j=I 2 j=l 

= -~tr[:t-l(~ (Xj - lI-o)(Xj - 11-0)')] 

n 

Applying Result 4.10 with B = 2: (Xj - fLo)(Xj - 11-0)' and b = n12, we have 
j=l 

(5-11) 

with 
A 1 n 

:to = - 2: (Xj - #Lo)(Xj - 11-0)' 
n j=I 

Todetermine whether 11-0 is a plausible value of 11-, the maximum of L(II-o,:t) is 
compared with the unrestricted maximum of L(II-, :t). The resulting ratio is called 
the likelihood ratio statistic. 

Using Equations (5-10) and (5-11), we get 

.. . mfx L(II-o, :t) (Ii I )n/2 
LIkelIhood ratIO = A = L(:t) = -A-

~1x fL, l:to I 
(5-12) 

The equivalent statIstIc A 2/n = I i III io I is called Wilks' lambda. If the 
observed value of this likelihood ratio is too small, the hypothesis Ho: 11- = 11-0 is 
unlikely to be true and is, therefore, rejected. Specifically, the likelihood ratio test of 
Ho: 11- = lI-oagainstH1:11- * 11-0 rejects Ho if 

(5-13) 

where Ca is the lower (l00a)th percentile of the distribution of A. (Note that the 
likelihood ratio test statistic is a power of the ratio of generalized variances.) Fortu
nately, because of the following relation between T Z and A, we do not need the 
distribution of the latter to carry out the test. 
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Result 5.1. Let XI' X 2, ••. , X" be a random sample from an Np(/L, 'i,) population. 
Then the test in (5-7) based on T2 is equivalent to the likelihood ratio test 

Ho: /L = /Lo versus HI: /L #' /Lo because 

( 
T2 )-1 

A 2/" = 1 + --
(n - 1) 

Proof. Let the (p + 1) x (p + 1) matrix 

A = r ~ (Xj - x)(Xj - i)' I vn (x - #LO)J = [.~~.d .. ~!.~.J 
lL.·--7n-(i-·-=·';~Y---"T---------~i--'------ A21 i A22 

By Exercise 4.11, IAI = IA22I1All - A12A2"1A2d = IAldIA22 - A21AIIAI21, 
from which we obtain 

(-1)\± (Xj - x)(Xj - x)' + n(x - /Lo)(x - #La)' \ 
1=1 

~ 1 ~ (x, - i)(x, - x)' 11-1 - n(i - ".)' (~ (x, - x)(x, - x)' r (x - ,,·)1 
Since, by (4-14), 

= ± (Xj - x) (Xj - x)' + n(x - /Lo) (x - /Lo)' 
j=1 

the foregoing equality involving determinants can be written 

(-1)\~ (Xj - /Lo)(Xj - /Lo)'\ = \~ (Xj - x)(Xj - X)'\(-1)(1 + (n ~ 1») 
or 

, A ( T2) 
I n'i,o I = I n'i, I 1 + (n - 1) 

Thus, 

(5-14) 

Here Ho is rejected for small values of A 2/" or, equivalently, large values of T2. The 
critical values of T2 are determined by (5-6). • 
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Incidentally, relation (5-14) shows that T2 may be calculated from two determi
nants, thus avoiding the computation of S-l. Solving (5-14) for T2, we have 

T2 = (n - :) 110 I _ (n - 1) 

I 'i, I 

(n - 1) I~ (Xi - /Lo)(Xj - /Lo),1 
- (n - 1) 

I± (Xj - x)(Xj - x)'1 
1=1 

(5-15) 

Likelihood ratio tests are common in multivariate analysis. Their optimal 
large sample properties hold in very general contexts, as we shall indicate shortly. 
They are well suited for the testing situations considered in this book. Likelihood 
ratio methods yield test statistics that reduce to the familiar F- and t-statistics in uni
variate situations. 

General likelihood Ratio Method 

We shall now consider the general likelihood ratio method. Let 8 be a vector consist
ing of all the unknown population parameters, and let L( 8) be the likelihood function 
obtained by evaluating the joint density of X I, X 2, ... ,Xn at their observed values 
x), X2,"" XI!" The parameter vector 8 takes its value in the parameter set 9. For 
example, in the p-dimensional multivariate normal case, 8' = [,ul,"" ,up, 
O"ll"",O"lp, 0"22"",0"2p"'" O"p-I,P'O"PP) and e consists of the p-dimensional 
space, where - 00 <,ul < 00, ... , - 00 <,up < 00 combined with the 
[p(p + 1)/2]-dimensional space of variances and covariances such that 'i, is positive 
definite. Therefore, 9 has dimension v = p + p(p + 1 )/2. Under the null hypothesis 
Ho: 8 = 80 ,8 is restricted to lie in a subset 9 0 of 9. For the multivariate normal 
situation with /L = /Lo and 'i, unspecified, 8 0 = {,ul = ,u10,,u2 = .uzo,···,,up = ,upo; 
O"I!o' .. , O"lp, 0"22,"" 0"2p"'" 0" p_l,p> 0" pp with 'i, positive definite}, so 8 0 has 
dimension 1'0 = 0 + p(p + 1 )/2 = p(p + 1)/2. 

A likelihood ratio test of Ho: 8 E 8 0 rejects Ho in favor of HI: 8 fl eo if 
max L(8) 

A = lIe80 < c (5-16) 
max L(8) 
lIe8 

where c is a suitably chosen constant. Intuitively, we reject Ho if the maximum of the 
likelihood obtained by allowing (J to vary over the set 8 0 is much smaller than 
the maximum of the likelihood obtained by varying (J over all values in e. When the 
maximum in the numerator of expression (5-16) is much smaller than the maximum 
in the denominator, 8 0 does not contain plausible values for (J. 

In each application of the likelihood ratio method, we must obtain the sampling 
distribution of the likelihood-ratio test statistic A. Then c can be selected to produce 
a test with a specified significance level u. However, when the sample size is large 
and certain regularity conditions are satisfied, the sampling distribution of -2ln A 
is well approximated by a chi-square distribution. This attractive feature accounts, in 
part, for the popularity of likelihood ratio procedures. 
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5.4 Confidence Regions and Simultaneous Comparisons 
of Component Means 

To obtain our primary method for making inferences from a sample, we need to ex
tend the concept of a univariate confidence interval to a multivariate confidence re
gion. Let 8 be a vector of unknown population parameters and e be th~ set ?f ~ 
possible values of 8. A confidence region is a region of likely 8 values. This regIOn IS 

determined by the data, and for the moment, we shall denote it by R(X), where 
X = [Xl> X2,· •. , XnJ' is the data matrix. 

The region R(X) is said to be a 100(1 - a)% confidence region if, before the 
sample is selected, 

P[R(X) will cover the true 8] = 1 - a (5-17) 

This probability is calculated under the true, but unknown, value of 8. ., 
The confidence region for the mean p. of a p-dimensional normal populatIOn IS 

available from (5-6). Before the sample is selected, 

p[ n(X - p.)'S-I(X - p.) s \: ~ 1;~ Fp,n_p(a)] = 1 - a 

whatever the values of the unknown p. and ~. In words, X will be within 

[en - l)pFp,n_p(a)/(n - p)j1f2 

of p., with probability 1 - a, provided that distance is defined in ~erm~ of nS~I. 
,For a particular sample, x and S can be computed, and the mequality 
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n~x ~ p.)'S-l(X - p.) s (~ - l)pFp,n_p(a)/(n - p) will define a region R(X) 
wI~hm .the space of all possible parameter values. In this case, the region will be an 
ellipsOid centered at X. This ellipsoid is the 100(1 - a)% confidence region for p.. 

~ 1~(1. - ~)% co~fidence region for the mean of a p-dimensional normal 
dlstnbutlOn IS the ellipsoid determined by all p. such that 

n(x - p.)'S-I(X - p.) s pen - 1) F _ (a) 
(n _ p) p,n p 

1 n 1 n 

(5-18) 

where i = - ~ x' S = ~ ( _ -) ( -)' d n ~ I' (n _ 1) £.i Xj x Xj - x an xI,x2"",Xn are I-I 1=1 
the sample observations. 

~o determine whether any P.o lies within the confidence region (is a 
pl~uslble ;a~~e_ for p.), we need to compute the generalized squared distance 
n(x - p.o~ S (x.- p.o) and compare it with [pen - l)/(n - p)]Fp,n_p(a). If the 
squared distance IS larger than [p(n -l)/(n - p)]F _ (a) " is not in the confi-d . S' .. p,n p , .-0 

ence regIOn. mce thiS IS analogous to testing Ho: P. = P.o versus HI: p. '" P.o [see 
(5-7)], we see that the confidence region of (5-18) consists of all P.o vectors for which 
the T

2
-test would not reject Ho in favor of HI at significance level a. 

For p 2:: 4, we cannot graph the joint confidence region for p.. However, we can 
calculate the axes of the confidence ellipsoid and their relative lengths. These are 
~etermined from the eigenvalues Ai and eigenvectors ei of S. As in (4-7), the direc
tions and lengths of the axes of 

n(x - p.)'S-I(X - p.) s c2 = pen - 1) F _ (a) 
(n _ p) p,n p 

are determined by going 

~c/Vn = ~Vp(n -l)Fp,n_p(a)/n(n _ p) 

units along the eigenvectors ei' Beginning at the center x the axes of the confidence 
ellipsoid are ' 

) pen - 1) 
±~ n(n _ p) Fp,n_p(a) ei where Sei = Aiei, i = 1,2, ... , P (5-19) 

The ratios of the A;,s will help identify relative amounts of elongation along pairs 
of axes. 

Ex:ample 5.3 (Constructing a confidence ellipse for p.) Data for radiation from 
microwave ovens were introduced in Examples 4.10 and 4.17. Let 

XI = ~measured radiation with door closed 

and 

X2 == ~ measured radiation with door open 
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For the n = 42 pairs of transformed observations, we find that 

- = [.564J S = [.0144 .0117J 
x .603' .0117 .0146 ' 

S-I = [ 203.018 -163.391J 
-163.391 200.228 

The eigenvalue and eigenvector pairs for S are 

Al = .026, et = [.704, .710] 

A2 = .002, e2 = [-.710, .704] 

The 95 % confidence ellipse for IL consists of all values (ILl, IL2) satisfying 

[ 
203.018 -163.391J [.564 - ILIJ 

42[ .564 - ILl, .603 -IL2] -163.391 200.228 .603 - IL2 

2(41) 
:s; 40 F2,40(.05) 

or, since F2.4o( .05) = 3.23, 

42(203,018) (.564 - ILd 2 + 42(200.228) (.603 - ILzf 
- 84( 163.391) (.564 - ILl) (.603 - IL2) :s; 6.62 

To see whether IL' = [.562, .589] is in the confidence region, we compute 

42(203.018) (.564 - .562)2 + 42(200.228) (.603 - .589f 

- 84(163.391) (.564 - .562)(.603 - .589) = 1.30 :s; 6.62 

We conclude that IL' = [.562, .589] is in the region. Equivalently, a test of Ho: 

[
.562J . d' f [.562J h 05 I IL = .589 would not be reJecte III avor of HI: IL if:. .589 at tea =. evel 

, of significance. 
The joint confidence ellipsoid is plotted in Figure 5.1. The center is at 

X' = [.564, .603], and the half-lengths of the major and minor axes are given by 

p(n - 1) 2(41) 
n(n _ p) Fp,n_p(a) = '1'.026 4z(4o) (3.23) = .064 

and 
/ p(n - 1) 2(41) 

v% \j n(n _ p) Fp,n_p(a) = \1.002 42(40) (3.23) = .018 

respectively. The axes lie along et = [.704, .710] and e2 = [-.710, .704] when these 
vectors are plotted with x as the origin. An indication of the elongation of the confi
dence ellipse is provided by the ratio of the lengths of the major and minor axes. 
This ratio is 

vx;- /p(n - 1) 
2 AI\j n(n _ p) Fp,n_p(a) \lA;" .161 
---;::==:======== = - = - = 3.6 

/ p(n - 1) \IX; .045 
2v%\j n(n _ p) Fp,n-p(a) 

2 

0.55 
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Figure 5.1 A 95% confidence 
ellipse for IL based on microwave
radiation data. 

The length of the major axis is 3.6 times the length of the minor axis. • 
Simultaneous Confidence Statements 

While the confidence region n(x - IL )'S-I(X - IL) :s; c2, for c a constant, correctly 
assesses the joint knowledge concerning plausible values of IL, any summary of con
clusions ordinarily includes confidence statements about the individual component 
means. In so doing, we adopt the attitude that all of the separate confidence state
ments should hold simultaneously with a specified high probability. It is the guaran
tee of a specified probability against any statement being incorrect that motivates 
the term simultaneous confidence intervals. We begin by considering simultaneous 
confidence statements which are intimately related to the joint confidence region 
based on the T2-statistic. 

Let X have an Np(lL, l:) distribution and form the linear combination 

Z = alXI + a2X2 + ... + apXp = a'X 

From (2-43), 

ILz = E(Z) = a' IL 

and 

(T~ = Var(Z) = a'l:a 

Moreover, by Result 4.2, Z has an N(a' IL, a'l:a) distribution. If a random sample 
Xl, X 2,··., Xn from the Np(lL, l:) popUlation is available, a corresponding sample 
of Z's can be created by taking linear combinations. Thus, 

j = 1,2, ... , n 

The sample mean and variance of the observed values ZI, Z2, ..• , Zn are, by (3-36), 

z = a'x 
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and 

s~ = a'Sa 

where x and S are the sample mean vector and covariance matrix of the xls, 
respectively. . . 

Simultaneous confidence intervals can be developed from a conslderatlOn of con
fidence intervals for a' p. for various choices of a. The argument proceeds as follows. 

For a fixed and u~ unknown, a 100(1 - 0')% confidence interval for /-Lz = a'p. 
is based on student's t-ratio 

Z-/-Lz Yn(a'i-a'p.) 
t = sz/Yn = Va'Sa (5-20) 

and leads to the st.!itement 

~ - ~ 
Z - tn_I(0'/2) Vn s; /-Lz 5 Z + tn-1(0'/2) Vn 

or 

Va'Sa _ Va'Sa 
a'x - (n-1(0'/2) Yn 5 a'p. 5 a'x + tn-1(0'/2) Vii (5-21) 

where tn_;(0'/2) is the upper 100(0'/2)th percentile of a (-distribution with n - 1 dJ. 
Inequality (5-21) can be interpreted as a statement about the components of the 

mean vector p.. For example, with a' = [1,0, ... ,0), a' p. = /-L1, and.(5-2~) becomes 
the usual confidence interval for a normal population mean. (Note, m this case, that 
a'Sa = Sll') Clearly, we could make se~eral confid~~ce statements abou~ the ~om
ponents of p. each with associated confidence coeffiCient 1 - a, by choos1Og differ
ent coefficie~t vectors a. However, the confidence associated with all of the 
statements taken together is not 1 - a. . 

Intuitively, it would be desirable to associate a "collective" confidence ~oeffi-
. t of 1 - a with the confidence intervals that can be generated by all chOIces of Clen . f 

a. However, a price must be paid for the convenience of a large slI~ultaneous con 1-

dence coefficient: intervals that are wider (less precise) than the 10terval of (5-21) 
for a specific choice of a. . . . 

Given a data set Xl, X2, ... , Xn and a particular a, the confidence 10terval m 
(5-21) is that set<>f a' p. values for which 

or, equivalently, 

1 

Yn (a'x - a'p.)1 
Itl= Va'Sa 5t,._1(0'/2) 

t2 = n(a'x - ai p.)2 
a'Sa 

n(a'(i - p.))2 5 t~_I(a/2) 
a'Sa 

(5-22) 

A simultaneous confidence region is given by the set of a' p. values such that t2 is rel
atively small for all choices of a. It seems reasonable to expect that the constant 
t~_1(0'/2) in (5-22) will be replaced by a larger value, c2

, when statements are devel
oped for many choices of a. 
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ConSidering the values of a for which t2 s; c2, we are naturally led to the deter
mination of 

2 n(a'(i - p.))2 
max t = max --'---'---=.-.:...:-

• a'Sa 

Using the maximization lemma (2-50) with X = a, d = (x - p.), and B = S, we get 

n(a'(i - p.)l [ (a'(i - p.))2J 
m,:u a'Sa = n m:x a'Sa = n(i - p.)'S-l(i - p.) = Tl (5-23) 

with the maximum occurring for a proportional to S-l(i _ p.). 

Result 5.3. Let Xl, Xl,"" Xn be a random sample from an N (p., 1:) population 
with J: positive definite. Then, simultaneously for all a, the inter:al 

(a'x - pen - 1) 
n(n _ p) Fp.n-p(O')a'Sa, a'X + pen - 1) ) 

n(n _'p) Fp.n_p(a)a'Sa 

will contain a' p. with probability 1 - a. 

Proof. From (5-23), 

n(a'x - a'p.)2 
implies s; c2 

a'Sa 
for every a, or 

,- )a'sa )a'sa a X - c -;;- 5 a' p. 5 a'i + c -;;-

for every a. Choosing c
2 

= pen - l)Fp ,,._p(a)/(n - p) [see (5-6)] gives intervals 
that will contain a' p. for all a, with probability 1 - a = P[T2 5 c2). • 

It is convenient to refer to the simultaneous intervals of Result 5.3 as 
Tl-intervals, since the coverage probability is determined by the di~tribution of T2, 
The successive choices a' = [1,0, .. ,,0], a' = [0,1, ... ,0), and so on through 
a' = [0,0, ... ,1) for the T2-intervals allow us to conclude that 

)p(n - 1) 
+ (n _ p) Fp,n-p(a) 

)p(n - 1) 
+ (n _ p) Fp,n-p(a) 

(5-24) 

all hold simultaneously with confidence coefficient 1 - a. Note that without modi
fying the coefficient 1 - a, we can make statements about the diffe~ences /-L' - /-Lk 

d' , [ , correspon mg to a = 0, ... ,0, ai, 0, ... ,0, ab 0, ... ,0], where ai = 1 and 
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ak = -1. In this case a'Sa = Sjj - 2Sik + Sa, and we have the statement 

Sii - 2Sik + Skk 
n :5 ILi - ILk 

~ <_._- +)p(n-1)F (»)Sii- 2Sik+ Skk 
-X, Xk (n-p) p.n-pa n (5-25) 

The simultaneous T2 confidence intervals are ideal for "data snooping." The 
confidence coefficient 1 - a remains unchanged for any choice of a, so linear com
binations of the components ILi that merit inspection based upon an examination of 
the data can be estimated. 

In addition, according to the results in Supplement 5A, we can include the state-
ments about (ILi, ILd belonging to the sample mean-centered ellipses . 

n[xi - ILi, Xk - ILk] [Sii Sik]-I[!i - ILi]:5 pen - 1) Fp.n_p(a) (5-26) 
Sik Sa Xk - ILk n - p 

and still maintain the confidence coefficient (1 - ex) for the whole set of statements. 
The simultaneous T2 confidence intervals for the individual components of a 

mean vector are just the shadows, or projections, of the confidence ellipsoid on the 
component axes. This connection between the shadows of the ellipsoid and the si
multaneous confidence intervals given by (5-24) is illustrated in the next example. 

Example 5.4 (Simultaneous confidence intervals as shadows of the confidence ellipsoid) 
In Example 5.3, we obtained the 95% confidence ellipse for the means of the fourth 
roots of the door-closed and door-open microwave radiation measurements. The 95% 
simultaneous T2 intervals for the two component means are, from (5-24), 

( 
Ip(n - 1) fSll _ Ip(n - 1) ~) 

XI - \j (n _ p) Fp,n_p(·05) \j~' Xl + \j (n _ p) Fp.n- p(·05) \j~ 

( 
2(41) /0144 2(41) /0144) 

= .564 - 403.23 42' .564 + 403.23 42 or (.516, .612) 

(
_ )p(n - 1) rs; _ )p(n - 1) ~) 
X2- (n-p) Fp,n_ p(.05)\j-;;' X2+ (n-p) Fp.n-p(.05)\j~ 

( 
2(41) /0146 2(41) /0146) = .603 - 40 3.23 42 ' .603 + 40 3.23 42 or (.555, .651) 

In Figure 5.2, we have redrawn the 95% confidence ellipse from Example 5.3. 
The 95% simultaneous intervals are shown as shadows, or projections, of this ellipse 
on the axes of the component means. _ 

Example 5.5 (Constructing simultaneous confidence intervals and ellipses) The 
scores obtained by n = 87 college students on the College Level Examination Pro
gram (CLEP) subtest Xl and the College Qualification Test (CQT) subtests X2 and 
X3 are given in Table 5.2 on page 228 for Xl = social science and history, 
X2 = verbal, and X3 = science. These data give 

00 

'" o 
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Figure 5.2 Si~ultaneous T2-intervals for the component means as shadows of the 
confidence ellipse on the axes-microwave radiation data. 

[

526.29] [5808.06 597.84 222.03] 
i = 54.69 and S = 597.84 126.05 23.39 

25.13 222.03 23.39 23.11 

Let us compute the 95% simultaneous confidence intervals for ll. 11 and 11 

We have ,....h ,....2, ,....3· 

pen - 1) F _ 3(87 - 1) 3(86) 
n - p p,n-p(a) - (87 _ 3) F3,84(·05) = s:4 (2.7) = 8.29 

and we obtain the simultaneous confidence statements [see (5-24)] 

526.29 - \18.29 )5808.06 :5 ILl :5 526.29 + \18.29 )5808.06 
87 . 87 

or 

503.06 :5 ILl :5 550.12 

54.69 - \18.29 )12:;05 :5 IL2 :5 54.69 + \18.29 )1~;05 
or 

51.22 :5 IL2 :5 58.16 

25.13 - \18.29 )2~~1 :5 IL3 :5 25.13 + \18.29 )2~~1 
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or 
23.65 s: IL3 s: 26.61 

Xl X 2 X3 Xl X 2 
With the possible exception of the verbal scores, the marginal Q-Q plots and two-(Social (Social 
dimensional scatter plots do not reveal any serious departures from normality for science and science and 

-(Verbal) (Science) Individual history) (Verbal) the college qualification test data. (See Exercise 5.18.) Moreover, the sample size is Individual history) 
large enough to justify the methodology, even though the data are not quite n~)fmally 

468 41 26 45 494 41 24 distributed. (See Section 5.5.) 1 
39 26 46 541 47 25 

The simultaneous T2-intervals above are wider than univariate intervals because 2 428 
514 53 21 47 362 36 17 

all three must hold with 95% confidence. They may also be wider than necessary, be-3 
48 408 28 17 4 547 67 33 

. cause, with the same confidence, we can make statements about differences. 61 27 49 594 68 23 5 614 
For instance, with a' = [0, 1, -1], the interval for IL2 - IL3 has endpoints 67 29 50 501 25 26 6 501 

421 46 22 51 687 75 33 
(- _ -) ± )p(n - 1) F (05»)S22 + S33 - 2S23 

7 
527 50 23 52 633 52 31 8 

55 19 53 647 67 29 X2 X3 (n _ p) p,n-p' n 9 527 
54 647 65 34 620 72 32 

~126.05 + 23.11 - 2(23.39) 10 
63 31 55 614 59 25 11 587 

56 633 65 28 = (54.69 - 25.13) ± \18.29 87 = 29.56 ± 3.12 
541 59 19 12 

53 26 57 448 55 24 13 561 
20 58 408 51 19 so (26.44,32.68) is a 95% confidence interval for IL2 - IL3' Simultaneous intervals 468 62 14 

65 28 59 441 35 22 can also be constructed for the other differences. 15 614 
Finally, we can construct confidence ellipses for pairs of means, and the same 527 48 21 60 435 60 20 16 

61 501 54 21 95% confidence holds. For example, for the pair (IL2, IL3)' we have 507 32 27 17 
62 507 42 24 580 64 21 18 
63 620 71 36 25 13 - 1 [ 126.05 23.39 J1 [54.69 - IL2 ] 19 507 59 21 

87[54.69 - JL2, 54 23 64 415 52 20 . IL3 23.39 23.11 25.13 - IL3 20 521 
65 554 69 30 574 52 25 21 
66 348 28 18 = 0.849(54.69 - IL2)2 + 4.633(25.13 - IL3f 587 64 31 22 
67 468 49 25 23 488 51 27 

- 2 X 0.859(54.69 - IL2) (25.13 - IL3) s: 8.29 488 62 18 68 507 54 26 24 
69 527 47 31 This ellipse is shown in Figure 5.3 on page 230, along with the 95 % confidence ellipses for 587 56 26 25 

16 70 527 47 26 the other two pairs of means. The projections or shadows of these ellipses on the axes are 26 421 38 
481 52 26 71 435 50 28 also indicated, and these projections are the T2-intervals. • 27 

72 660 70 25 428 40 19 28 
25 73 733 73 33 29 640 65 

A Comparison of Simultaneous Confidence Intervals 574 61 28 74 507 45 28 30 
75 527 62 29 

with One-at-a-Time Intervals 547 64 27 31 
76 428 37 19 580 64 28 32 

26 77 481 48 23 494 53 
An alternative approach to the construction of confidence intervals is to consider 33 

78 507 61 19 554 51 21 
the components ILi one at a time, as suggested by (5-21) with a' = [0, ... ,0, 34 

23 79 527 66 23 35 647 58 
ai, 0, ... ,0] where ai = 1. This approach ignores the covariance structure of the 65 23 80 488 41 28 36 507 

28 81 607 69 28 P variables and leads to the intervals 52 37 454 
82 561 59 34 

Xl - (n-l(a/2) ~ s: ILl s: Xl 
38 427 57 21 

~ 521 66 26 83 614 70 23 + (n-l(a/2) -;;-39 
468 57 14 84 527 49 30 40 

55 30 85 474 41 16 
x2 - (n-l(a/2) ~ s: IL2 s: X2 ~ 41 587 + (n-l(a/2) -;;-507 61 31 86 441 47 26 (5-27) 42 

31 87 607 67 32 43 574 54 
44 507 53 23 

xp - (n-l(a/2) J!¥ s: ILp s: xp + J!¥ Source: Data courtesy of Richard W. Johnson. tn-l(a/2) ~ 

~ 
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Figure S.3 95 % confidence ellipses for pairs of means and the simultaneous 
T2-intervals-college test data. 

Although prior to sampling, the ith interval has probabili~~ 1 - a o.f covering lLi, 

we do not know what to assert, in general, about the probability of all mtervals con
taining their respective IL/S. As we have pointed out, this probability is not 1 - a. 

To shed some light on the problem, consider the special case where the obser-
vations have a joint normal distribution and 

l
O"ll 0 
o 0"22 

li = : : 

o 0 

Since the observations on the first variable are independent of those on the second 
variable, and so on, the product rule for independent events can be applied. Before 

the sample is selected, 

P[allt_intervalsin(5-27)containthelL;'S) = (1 - a)(l- a)···(l - a) 

= (1 - aV 

If 1 - a = .95 and p = 6, this probability is (.95)6 = .74. 
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To guarantee a probability of 1 - a that' all of the statements about the compo
nent means hold simultaneously, the individual intervals must be wider than the sepa
rate t-intervals;just how much wider depends on both p and n, as well as on 1 - a. 

For 1 - a = .95, n = 15, and p = 4, the multipliers of ~ in (5-24) and 
(5-27) are 

)p(n - 1) 
(n _ p) Fp,n-p(.05) = 

4(14) 11 (3.36) = 4.14 

and tn-I(.025) = 2.145, respectively. Consequently, in this case the simultaneous in
tervals are lOD( 4.14 - 2.145)/2.145 = 93% wider than those derived from the one
at-a-time t method. 

Table 5.3 gives some critical distance multipliers for one-at-a-time t-intervals 
computed according to (5-21), as well as the corresponding simultaneous T 2-inter
vals. In general, the width of the T2-intervals, relative to the t-intervals, increases for 
fixed n as p increases and decreases for fixed p as n increases. 

Table ·S.3 Critical Distance Multipliers for One-at-a-Time t- Intervals and 
T2-Intervals for Selected nand p (1 - a = .95) 

)(n - l)p 
(n _ p) Fp,n_p(.05) 

n tn_I (·025) p=4 p = 10 

15 2.145 4.14 11.52 
25 2.064 3.60 6.39 
50 2.010 3.31 5.05 

100 1.970 3.19 4.61 
00 1.960 3.08 4.28 

The comparison implied by Table 5.3 is a bit unfair, since the confidence level 
associated with any collection of T2-intervals, for fixed nand p, is .95, and the over
all confidence associated with a collection of individual t intervals, for the same n, 
can, as we have seen, be much less than .95. The one-at-a-time t intervals are too 
short to maintain an overall confidence level for separate statements about, say, all 
p means. Nevertheless, we sometimes look at them as the best possible information 
concerning a mean, if this is the only inference to be made. Moreover, if the one-at
a-time intervals are calculated only when the T 2-test rejects the null hypothesis, 
some researchers think they may more accurately represent the information about 
the means than the T2-intervals do. 

The T2-intervals are too wide if they are applied only to the p component means. 
To see why, consider the confidence ellipse and the simultaneous intervals shown in 
Figure 5.2. If ILl lies in its T2-interval and 1L2lies in its T2-interval, then (ILl, IL2) lies in 
the rectangle formed by these two intervals. This rectangle contains the confidence 
ellipse and more. The confidence ellipse is smaller but has probability .95 of covering 
the mean vector IL with its component means ILl and IL2' Consequently, the probabil
ity of covering the two individual means ILl and f.L2 will be larger than .95 for the rec
tangle formed by the T2-intervals. This result leads us to consider a second approach 
to making· multiple comparisons known as the Bonferroni method. 
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The Bonferroni Method of Multiple Comparisons 
.' . small number of individual confidence statements. Often, attentIOn IS rest~lcted t?bla d better than the simultaneous intervals of h 't fons it IS pOSSI e to 0 . b" In t ese SI ua I T d component means ILi or linear corn matIons Result 5.3. If th: number m of spe~lle 11 simultaneous confidence intervals can be '+aJ.L2+···+ a J.Llssma, T 2 ' 3 ,... = alJ.LI 2 ( P ecise) than the simultaneous -mtervals. developed that are shorter ~~r~ pr mparisons is called the Bonferroni method, -_ 

The alte~n?tive method for ~u ~~b:~i~itY inequality carrying that name. -
because It IS develop.ed from !llection of data, confidence statements about m lin-Suppose that, pnor to the . , requI'red Let C. denote a confidence state-.' " 3 J.L are . I earcombmatlOnS311L,32/L';",.m [C ] = 1- a· i = 1,2, ... ,m. Now (see ment about the value of aiIL WIth P i true" . 
Exercise 5.6), 

P[ all C
i 
true] = 1 - P[ at least one Ci false] m 

;:, 1 - ~ p(C;false) = 1 - ~ (1 - P(Cjtrue» 
i=l 1-

= 1 - (al + a2 + ... + am) 
. f the Bonferroni inequality, allows an investi-Inequality (5-28), a special case 0 + + .,. + a regardless of the correla-

gator to control the. overall erro~ ~ate al stat::nents. The;; is also the flexibility of 
tion structure behmd the confl ence of important statements and balancing it by controlling the error rate for a group 

. f th I ss important ~atements. . . another chOice or .e e interval estimates for the restricted set consIstmg Let us develop slmultaneou~ . fonnation on the relative importance of these of the components J.Lj of J.L. Lackmg ID. I 

oompo",n~ we oooOd: :~.:(;)"~mre~.: I, 2, ...• m 

. P[X. ± t (a/2m)~ contains J.Lj] = 1 - a/m, with a· = a/m. SIDce I 11-1 

i = 1,2: ... , m, we have, from (5-28), 

p[x. ± t (~) rs;; contains J.Lj, all iJ ;:, 1 - (:1 + : + .,. + :) 
I 11-1 2m '1-;; . 

mtenns 
=1-a 

. h all confidence level greater than or equal to 1 - a, we can Therefore, Wit an over . 
make the following m = p statements. 

XI - tn-I(~) f¥:$ J.Ll:$ XI + ttl-I(2~) fij 
- _ t (!:...) fs2i.:$ J.L2 :$ X2 + tn-I(;p) rs2j X2 n-l 2p '1-; . : \j-; 

(5-29) 
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The statements in (5-29) can be compared with those in (5-24). The percentage 
point tn_l(a/2p) replaces V(n - l)pFp.n_p(a)/(n - p), but otherwise the inter
vals are of the same structure. 

Example S.6 (Constructing Bonferroni simultaneous confidence intervals and comparing them with T2-intervals) Let us return to the microwave oven radiation data 
in Examples 5.3 and 5.4. We shall obtain the simultaneous 95% Bonferroni confi
dence intervals for the means, ILl and ILz, of the fourth roots of the door-closed and door-open measurements with Cli = .05/2, i = 1,2. We make use of the results in Example 5.3, noting that n = 42 and 141(.05/2(2» = t41(.0125) = 2.327, to get 

fsU I0144 Xl ± t41(·0125) -y-;; = .564 ± 2.327 42 or .521 :$ ILl :$ .607 

rsn ).0146 X2 ± t41(·0125) \j-;; = .603 ± 2.327 42 or .560:$ IL2 :$ .646 

Figure 5.4 shows the 95% T2 simultaneous confidence intervals for ILl, IL2 from Figure 5.2, along with the corresponding 95% Bonferroni intervals. For each component mean, the Bonferroni interval falls within the T2-interval. Consequently, the rectangular Goint) region formed by the two Bonferroni intervals is contained in the rectangular region formed by the two T2-intervals. If we are interested only in the component means, the Bonferroni intervals provide more precise estimates than 
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Figure S.4 The 95% T2 and 95% Bonferroni simultaneous confidence intervals for the component means-microwave radiation data. 



-
234 Chapter 5 Inferences about a Mean Vector 

the T2-intervals. On the other hand, the 95% confidence region for IL gives the 
plausible values for the pairs (ILl, 1L2) when the correlation between the measured 
variables is taken into account. • 

The Bonferroni intervals for linear combinations a' IL and the tlH'''lUgOtlS 

T2-intervals (recall Result 5.3) have the same general form: 

_ ~a'sa a'X ± (critical value) -n-

Consequently, in every instance where Cli = Cl/ rn,. 

Length of Bonferroni interval = tn -I ( Cl/2m ) 

Length of T2-interval ~p(n - 1) 
-'---"- Fp' n-p( Cl) n - p , 

which does not depend on the random quantities X and S.As we have pointed out, for 
a small number m of specified parametric functions a' IL, the Bonferroni intervals will 
always be shorter. How much shorter is indicated in Table 5.4 for selected nand p. 

Table S.4 (Length of Bonferroni Interval)/(Length of T2-Interval) 
for 1 - Cl = .95 and Cli = .05/m 

m=p 

n 2 4 10 

15 .88 .69 .29 
25 .90 .75 .48 
50 .91 .78 .58 

100 .91 .80 .62 
00 .91 .81 .66 

We see from Table 5.4 that the Bonferroni method provides shorter intervals 
when m = p. Because they are easy to apply and provide the relatively short confi
dence intervals needed for inference, we will often apply simultaneous t-intervals 
based on the Bonferroni method. 

s.s Large Sample Inferences about a Population Mean Vector 
When the sample size is large, tests of hypotheses and confidence regions for IL can 
be constructed without the assumption of a normal population. As illustrated in 
Exercises 5.15,5.16, and 5.17, for large n, we are able to make inferences about the 
population mean even though the parent distribution is discrete. In fact, serious de
partures from a normal population can be overcome by large sample sizes. Both 
tests of hypotheses and simultaneous confidence statements will then possess (ap
proximately) their nominal levels. 

The advantages associated with large samples may be partially offset by a loss in 
sample information caused by using only the summary statistics X, and S. On the 
other hand, since (x, S) is a sufficient summary for normal populations [see (4-21)], 
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the closer the underlying population is to multivariate normal, the more efficiently 
the sample information will be utilized in making inferences. 

All large-sample inferences about IL are based on a ,i-distribution. From (4-28), 
we know that (X - 1L)'(n-1Srl(X - fL) = n(X - IL)'S-I(X - IL) is approxi
mately X2 with p d.f., and thus, 

P[n(X - IL)'S-I(X - fL) :5 A1,(a») == 1 - a (5-31) 

where x~(a) is the upper (l00a)th percentile of the x~-distribution. 
Equation (5-31) immediately leads to large sample tests of hypotheses and simul

taneous confidence regions. These procedures are summarized in Results 5.4 and 5.5. 

Result S.4. Let XI, X2, ... , Xn be a random sample from a population with mean 
IL and positive definite covariance matrix :to When n - p is large, the hypothesis 
Ho: fL = lLa is rejected in favor of HI: IL ,p lLa, at a level of significance approxi
mately a, if the observed 

n(x - lLa)'S-I(x - fLo) > A1,(a) 

Here X~( a) is the upper (100a )th percentile of a chi-square distribution with p dJ. • 

Comparing the test in Result 5.4 with the corresponding normal theory test in 
(5-7), we see that the test statistics have the same structure, but the critical values 
are different. A closer examination, however, reveals that both tests yield essential
ly the same result in situations where the x2-test of Result 5.4 is appropriate. This 
follows directly from the fact that (n - l)pFp,n_p(a)/(n - p) and x~(a) are ap
proximately equal for n large relative to p. (See Tables 3 and 4 in the appendix.) 

Result 5.5. Let XI, X 2, ... , Xn be a random sample from a population with mean 
IL and positive definite covariance :to If n - p is large, 

Ja'sa a'X ± V x~(a) --;;-

will contain a' IL, for every a, with probability approximately 1 - a. Consequently, 
we can make the 100(1 - a)% simultaneous confidence statements 

XI ± V A1,(a) fi} 
X2 ± V A1,(a) f¥ 

contains ILl 

contains 1L2 

contains ILp 

and, in addition, for all pairs (lLi, ILk)' i, k = 1,2, ... , p, the sample mean-centered 
ellipses 
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Proof. The first part follows from Result 5A.1, with c2 = x~(a). The probability 
level is a consequence of (5-31). The statements for the f.Li are obtained by the spe
cial choices a' = [0., ... ,0., ai, 0., ... ,0], where ai = 1, i = 1,2, ... , p. The ellipsoids 
for pairs of means follow from Result 5A.2 with c2 = X~( a). The overall confidence. 
level of approximately 1 - a for all statements is, once again, a result of the large 
sample distribtltion theory summarized in (5-31). • 

The question of what is a large sample size is not easy to answer. In one or two 
dimensions, sample sizes in the range 3D to 50. can usually be considered large. As 
the number characteristics bec9mes large, certainly larger sample sizes are required 
for the asymptotic distributions to provide good approximations to the true distrib
utions of various test statistics. Lacking definitive studies, we simply state that f'I - P 
must be large and realize that the true case is more complicated. An application 
with p = 2 and sample size 50. is much different than an application with p = 52 and 
sample size 100 although both have n - p = 48. 

It is good statistical practice to subject these large sample inference procedures 
to the same checks required of the normal-theory methods. Although small to 
moderate departures from normality do not cause any difficulties for n large, 
extreme deviations could cause problems. Specifically, the true error rate may be far 
removed from the nominal level a. If, on the basis of Q-Q plots and other investiga
tive devices outliers and other forms of extreme departures are indicated (see, for 
example, [2b, appropriate corrective actions, including transformations, are desir
able. Methods for testing mean vectors of symmetric multivariate distributions that 
are relatively insensitive to departures from normality are discussed in [11]. In some 
instances, Results 5.4 and 5.5 are useful only for very large samples. > 

The next example allows us to illustrate the construction of large sample simul
taneous statements for all single mean components. 

Example S.7 (Constructing large sample simultaneous confidence intervals) A music 
educator tested thousands of FInnish students on their native musical ability in order 
to set national norms in Finland. Summary statistics for part of the data setare given 
in Table 5.5. These statistics are based on a sample of n = 96 Finnish 12th graders. 

Table S.S Musical Aptitude Profile Means and Standard Deviations for 96 
12th-Grade Finnish Students Participating in a Standardization Program 

Raw score 

Variable Mean (Xi) Standard deviation (\t'S;;) 

Xl = melody 28.1 5.76 
X 2 = harmony 26.6 5.85 
X3 = tempo 35.4 3.82 
X 4 = meter 34.2 5.12 
X5 = phrasing 23.6 3.76 
X6 = balance 22.0. 3.93 
X 7 = style 22.7 4.0.3 

Source: Data courtesy ofY. Sell. 
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Let us construct 90.% simultaneous confidence intervals for the individual mean 
components f.Li' i = 1,2, ... ,7. 

From Result 5.5, simultaneous 90.% confidence limits are given by 

Xi ± V x~(.lO) Jf;, i = 1,2, ... ,7, where X~(.lO) = 12.0.2. Thus, with approxi

mately 90.% confidence, 

28.1 ±YI2.D2 ~ 
96 

contains f.LI or 26.06 :s f.LI :s 30..14 

26.6 ± Y12.D2 ~ 
96 

contains f.L2 or 24.53 :s f.L2 :s 28.67 

35.4 ± Y12.D2 ~ 
96 

contains f.L3 or 34.0.5 :s f.L3 :s 36.75 

34.2 ± Y12.D2 ~ 
96 

contains f.L4 or 32.39 :s f.L4 :s 36.0.1 

23.6 ± Y12.D2 ~ 
96 

contains f.L5 or 22.27 :s f.L5 :s 24.93 

22.0. ± Y12.D2 ~ 
96 

contains f.L6 or 20..61 :s f.L6 :s 23.39 

vT2.02 4.0.3 
22.7 ± 12.0.2 v'% contains f.L7 or 21.27 :s f.L7 :s 24.13 

Based, perhaps, upon thousands of American students, the investigator could hy
pothesize the musical aptitude profile to be 

1-'-0 = [31,27,34,31,23,22,22] 

We see from the simultaneous statements above that the melody, tempo, and meter 
components of 1-'-0 do not appear to be plausible values for the corresponding means 
of Finnish scores. '. 

When the sample size is large, the one-at-a-time confidence intervals for indi
vidual means are 

- (a) rs;; (a) rs;; Xi - Z "2 -y -; :s f.Li :s Xi + Z "2 V-; i = 1,2, ... ,p 

where z(a/2) is the upper l00(a/2)th percentile of the standard normal distribu
tion. The Bonferroni simultaneous confidence intervals for the m = p statements 
about the individual means take the same form, but use the modified percentile 
z( a/2p) to give 

- (a) rs;; (a) rs;; 
Xi - z 2p V -; :s f.Li :s Xi + Z 2p V-; i = 1,2, ... , P 
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Table 5.6 gives the individual, Bonferroni, and chi-square-based (or shadow of 
the confidence ellipsoid) intervals for the musical aptitude data in Example 5.7. 

Table 5.6 The Large Sample 95% Individual, Bonferroni, and T2-Intervals for 
the Musical Ap..titude Data 

The one-at-a-time confidence intervals use z(.025) = 1.96. 
The simultaneous Bonferroni intervals use z( .025/7) = 2.69. 
The simultaneous T2, or shadows of the ellipsoid, use .0(.05) = 14.07. 

One-at-a-time 
Lower Upper 

Bonferroni Intervals Shadow of Ellipsoid 
Variable Lower Upper Lower Upper 

Xl = melody 
X2 = harmony 
X3 = tempo 
X4 = meter 
Xs = phrasing 
X6 = balance 
X7 = style 

26.95 29.25 
25.43 27.77 
34.64 36.16 
33.18 35.22 
22.85 24.35 
21.21 22.79 
21.89 23.51 

26.52 
24.99 
34.35 
32.79 
22.57 
20.92 
21.59 

29.68 
28.21 
36.45 
35.61 
24.63 
23.08 
23.81 

25.90 
24.36 
33.94 
32.24 
22.16 
20.50 
21.16 

30.30 
28.84 
36.86 
36.16 
25.04 
23.50 
24.24 

Although the sample size may be large, some statisticians prefer to retain the 
F- and t-based percentiles rather than use the chi-square or standard normal-based 
percentiles. The latter constants are the infinite sample size limits of the· former 
constants. The F and t percentiles produce larger intervals and, hence, are more con
servative. Table 5.7 gives the individual, Bonferroni, and F-based, or shadow of the 
confidence ellipsoid, intervals for the musical aptitude data. Comparing Table 5.7 
with Table 5.6, we see that all of the intervals in Table 5.7 are larger. However, with 
the relatively large sample size n = 96, the differences are typically in the third, or 
tenths, digit. 

Table 5.7 The 95% Individual, Bonferroni, and T2-IntervaIs for the 
Musical Aptitude Data 

The one-at-a-time confidence intervals use t95(.025) = 1.99. 
The simultaneous Bonferroni intervals use t95(.025/7) = 2.75. 
The simultaneous T2, or shadows of the ellipsoid, use F7,89(.05) = 2.11. 

One-at-a-time Bonferroni Intervals Shadow of Ellipsoid 
Variable Lower Upper Lower Upper Lower Upper 

Xl = melody 26.93 29.27 26.48 29.72 25.76 30.44 
X2 = harmony 25.41 27.79 24.96 28.24 24.23 28.97 
X3 = tempo 34.63 36.17 34.33 36.47 33.85 36.95 
X4 = meter 33.16 35.24 32.76 35.64 32.12 36.28 
Xs = phrasing 22.84 24.36 22.54 24.66 22.07 25.13 
X6 = balance 21.20 22.80 20.90 23.10 20.41 23.59 
X7 = style 21.88 23.52 21.57 23.83 21.07 24.33 
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5.6 Multivariate Quality Control Charts 

To improve the quality of goods and services, data need to be examined for causes 
of variation. When a manufacturing process is continuously producing items or 
when we are monitoring activities of a service, data should be collected to evaluate 
the capabilities and stability of the process. When a process is stable, the variation is 
produced by common causes that are always present, and no one cause is a major 
source of variation. 

The purpose of any control chart is to identify occurrences of special causes of 
variation that come from outside of the usual process. These causes of variation 
often indicate a need for a timely repair, but they can also suggest improvements to 
the process. Control charts make the variation visible and allow one to distinguish 
common from special causes of variation. 

A control chart typically consists of data plotted in time order and horizontal 
lines, called control limits, that indicate the amount of variation due to common 
causes. One useful control chart is the X -chart (read X-bar chart). To create an 
X -chart, 

1. Plot the individual observations or sample means in time order. 

2. Create and plot the centerline X, the sample mean of all of the observations. 

3. Calculate and plot the controllirnits given by 

Upper control limit (UCL) = x + 3(standard deviation) 

Lower control limit (LCL) = x - 3(standard deviation) 

The standard deviation in the control limits is the estimated standard deviation 
of the observations being plotted. For single observations, it is often the sample 
standard deviation. If the means of subs am pies of size m are plotted, then 
the standard deviation is the sample standard deviation divided by Fm. The 
control limits of plus and minus three standard deviations are chosen so that 
there is a very small chance, assuming normally distributed data, of falsely signal
ing an out-of-control observation-that is, an observation suggesting a special 
cause of variation. 

Example 5.8 (Creating a univariate control chart) The Madison, Wisconsin, police 
department regularly monitors many of its activities as part of an ongoing quality 
improvement program. Table 5.8 gives the data on five different kinds of over
time hours. Each observation represents a total for 12 pay periods, or about half 
a year. 

We examine the stability of the legal appearances overtime hours. A computer 
calculation gives Xl = 3558. Since individual values will be plotted, Xl is the same as 
Xl' Also, the sample standard deviation is ~ = 607, and the controllirnits are 

UCL = Xl + 3(~) = 3558 + 3(607) = 5379 

LCL = Xl - 3(~) = 3558 - 3(607) = 1737 
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f 0 (me Hours for the Madison, Wisconsin, Police 
Table 5.8 Five'lYpes 0 ver I . 

Department 
X3 X4 Xs 

X2 
XI 

Extraordinary Holdover COAl Meeting 
~galAppearances 

Event Hours Hours Hours Hours 
Hours ~ 

2200 1181 14,861 236 
3387 875 3532 11,367 310 
3109 957 2502 13,329 1182 
2670 1758 45tO 12,328 1208 
3125 868 3032 12,847 1385 
3469 398 2130 13,979 1053 
3120 1603 1982 13,528 1046 
3671 523 4675 12,699 1100 
4531 2034 2354 13,534 1349 
3678 1136 4606 11,609 1150 
3238 5326 3044 14,189 1216 
3135 1658 3340 15,052 660 
5217 1945 2111 12,236 299 
3728 344 1291 15,482 206 
3506 807 1365 14,900 239 
3824 1223 1175 15 161 
3516 

1 Compensatory overtime allowed. 

1· d control limits are plotted as an X' -chart in 
The data, along with the center me an ' 

Figure 5.5. 
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<a 
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~ 
~ 

5500 
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2500 

1500 

Legal Appearances overtime Hours 
~~-~~~~==:=''-'::'''''-------IUCL=5379 

x\ = 3558 

LCL = 1737 

15 
o 

ObserVation Number 

• X- - h rt for X '" legal appearances overtime hours. 
Figure S.S The c a 1 
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The legal appearances overtime hours are stable over the period in which the 
data were collected. The variation in overtime hours appears to be due to common 
causes, so no special-cause variation is indicated. _ 

With more than one important characteristic, a multivariate approach should be 
used to monitor process stability. Such an approach can account for correlations 
between characteristics and will control the overall probability of falsely signaling a 
special cause of variation when one is not present. High correlations among the 
variables can make it impossible to assess the overall error rate that is implied by a 
large number of univariate charts. 

The two most common multivariate charts are (i) the ellipse format chart and 
(ii) the T2-chart. 

Two cases that arise in practice need to be treated differently: 

1. Monitoring the stability of a given sample of multivariate observations 

2. Setting a control region for future observations 

Initially, we consider the use of multivariate control procedures for a sample of mul
tivariate observations Xl, X2,"" X". Later, we discuss these procedures when the 
observations are subgroup means. 

Charts for Monitoring a Sample of Individual Multivariate 
Observations for Stability 

We assume that XI, X2, .•• , X" are independently distributed as Np(p" !,). By 
Result 4.8, 

X· - X = (1 - .!.)X - .!.XI - '" - '!'X'_I - .!.X. 1- .. , _.!.X ) n } n n } n J+ n n 

has 

and 

_ ( 1)2 (n-l) 
Cov(Xj - X) = 1 -;;- !, + (n - l)n-2!, = --n-!' 

Each X j - X has a normal distribution but, X j - X is not independent of the sam
ple covariance matrix S. However to set control limits, we approximate that 
(Xj - X)'S-I(Xj - X) has a chi-square distribution. 

Ellipse Format Chart. The ellipse format chart for a bivariate control region is the 
more intuitive of the charts, but its approach is limited to two variables. The two 
characteristics on the jth unit are plotted as a pair (Xjl, Xj2)' The 95% quality ellipse 
consists of all X that satisfy 

(x - i)'S-I(X - x) s; ¥Z(05) (5-32) 
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Example 5.9 (An ellipse format chart for overtime hours) Let us refer to Example 
5.8 and create a quality ellipse for the pair of overtime characteristics (legal appear
ances, extraordinary event) hours. A computer calculation gives 

~ _ [3558J [ 367,884.7 -72,093.8J 
x = 1478 and S = -72,093.8 1,399,053.1 

We illustrate the quality ellipse format chart using the 99% ellipse, which con

sists of all x that satisfy 

Here p = 2, so X~(.01) = 9.21, and the ellipse becomes 
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Extraordinary Event Hours 

6000 

5000 

4000 

" 3000 ::> 
Oi 
> 2000 
Oi 
::> 

~ 1000 
'6 .s 0 

-1000 

Slls22 (Xl -xd (Xl - xd (X2 - X2) (X2 - xd) -'-.:'----"':.... _ 2s
12 

+ LCL = - 2071 

SllS22 - SI2 Sll SllS22 S22 

-2000 

(367844.7 X 1399053.1) 

= 367844.7 X 1399053.1 - (-72093.8)2 

(

Xl - 3558)2 (XI - 3558) (X2 - 1478) (X2 - 1478)2) < 

X 367844.7 - 2( -72093.8) 367844.7 X 1399053.1 + 1399053.1 - 9.21 

This ellipse format chart is graphed, along with the pairs of data, in Figure 5.6. 

. --
§ 
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••• " ,. 
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" & ~ 

• • 
~ • • • • 
" • • 
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S 0 

tI\ 

~ 
I Figure 5.6 The quality control 

1500 2500 3500 4500 5500 99% ellipse for legal 
appearances and extraordinary 

Appearances Overtime event overtime. 

-3000 

o 5 10 15 

Observation Number 

Figure 5.7 TheX'" -chart for X2 = extraordinary event hours. 

Notice that one point, indicated with an arrow, is definitely outside of the el
lipse. When a point is out of the control region, individual X charts are constructed. 
TheX'" -chart for XI was given in Figure 5.5; that for X2 is given in Figure 5.7. 

When the lower control limit is less than zero for data that must be non
negative, it is generally set to zero. The LCL = 0 limit is shown by the dashed line in 
Figure 5.7 . 

Was there a special cause of the single point for extraordinary event overtime 
that is outside the upper control limit in Figure 5.?? During this period, the United 
States bombed a foreign capital, and students at Madison were protesting. A major
ity of the extraordinary overtime was used in that four-week period. Although, by its 
very definition, extraordinary overtime occurs only when special events occur and is 
therefore unpredictable, it still has a certain stability. • 

T2-Chart. A T2-chart can be applied to a large number of characteristics. Unlike the 
ellipse format, it is not limited to two variables. Moreover, the points are displayed in 
time order rather than as a scatter plot, and this makes patterns and trends visible . 

For the jth point, we calculate the T2-statistic 

(5-33) 

We then plot the T2-values on a time axis. The lower control limit is zero and we use 
the upper control limit ' 

ueL = x7,(.05) 

or, sometimes, x7,( .01). 
There is no centerline in the T2-chart. Notice that the T2-statistic is the same as 

the quantity dJ used to test normality in Section 4.6. 
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h 

Example 5.10 (A T2-chart for overtime hour~) Using the police department data· . 
Example 5.8, we construct a T2-plot based on the two variables Xl = legal . 
ances hours and X

2 
= extraordinary event hours. T

2
-charts with more than 

variables are considered in Exercise 5.26. We take a = .01 to be consistent 
the ellipse format chart in Example 5.9. . The T2-chart in Figure 5.8 reveals that the pair (legal appearances, "'Ylrr<..,,~"': 
nary event) hours for period 11 is out of control. Further investigation, as in 
pie 5.9, confirms that this is due to the large value of extraordinary event OV"rh~'" 
during that period. 

12 

• 
10 ---------------------------------------------------------------------------------

6 

4 

• 
• 

2 

• • • • • 0 

0 2 4 6 8 10 12 14 16 

Period 

Figure 5.8 The T 2-chart for legal appearances hours and extraordinary event hours, a = .01. 

When the multivariate T2-chart signals that the jth unit is out of control, it should 
be determined which variables are responsible. A modified region based on Bonferroni intervals is frequently chosen for this purpose. The kth variable is out of control if Xjk 

does not lie in the interval 
(Xk - tn_I(.OO5/p)~, Xk + tn_l(.005Ip)~) 

where p is the total number of measured variables. 

Example 5.11 (Control of robotic welders-more than T2 needed) The assembly of a 
driveshaft for an automobile requires the circle welding of tube yokes to a tube. The inputs to the automated welding machines must be controlled to be within certain 
operating limits where a machine produces welds of good quality. In order to con
trol the process, one process engineer measured four critical variables: 

Xl = Voltage (volts) 
X2 = Current (amps) 
X3 = Feed speed(in/min) 
X

4 
= (inert) Gas flow (cfm) 
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Table 5.9 gives the values of these variables at five-second intervals. 

Table 5.9 Welder Data 

Case Voltage (Xt> Current (X2 ) Feed speed (X3 ) Gas flow (X4 ) 

1 23.0 276 289.6 51.0 
2 22.0 281 289.0 51.7 
3 22.8 270 288.2 51.3 
4 22.1 278 288.0 52.3 
5 22.5 275 288.0 53.0 
6 22.2 273 288.0 51.0 
7 22.0 275 290.0 53.0 
8 22.1 268 289.0 54.0 
9 22.5 277 289.0 52.0 

10 22.5 278 289.0 52.0 
11 22.3 269 287.0 54.0 
12 21.8 274 287.6 52.0 
13- 22.3 270 288.4 51.0 
14 22.2 273 290.2 51.3 
15 22.1 274 286.0 51.0 
16 22.1 277 287.0 52.0 
17 21.8 277 287.0 51.0 
18 22.6 276 290.0 51.0 
19 22.3 278 287.0 51.7 
20 23.0 266 289.1 51.0 
21 22.9 271 288.3 51.0 
22 21.3 274 289.0 52.0 
23 21.8 280 290.0 52.0 
24 22.0 268 288.3 51.0 
25 22.8 269 288.7 52.0 
26 22.0 264 290.0 51.0 
27 22.5 273 288.6 52.0 
28 22.2 269 288.2 52.0 
29 22.6 273 286.0 52.0 
30 21.7 283 290.0 52.7 
31 21.9 273 288.7 55.3 
32 22.3 264 287.0 52.0 
33 22.2 263 288.0 52.0 
34 22.3 . 266 288.6 51.7 
35 22.0 263 288.0 51.7 
36 22.8 272 289;0 52.3 
37 22.0 217 287.7 53.3 
38 22.7 272 289.0 52.0 
39 22.6 274 287.2 52.7 
40 22.7 270 290.0 51.0 

Source: Data courtesy of Mark Abbotoy. 
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The normal assumption is reasonable for most variables, but we take the natur_ 
al logarithm of gas flow. In addition, there is no appreciable serial correlation for. 
successive observations on each variable. 

A T 2-chart for the four welding variables is given in Figure 5.9. The dotted line 
is the 95% limit and the solid line is the 99% limit. Using the 99% limit, no points 
are out of contf6l, but case 31 is outside the 95% limit. 

What do the quality control ellipses (ellipse format charts) show for two vari
ables? Most of the variables are in control. However, the 99% quality ellipse for gas 
flow and voltage, shown in Figure 5.10, reveals that case 31 is out of ~ntrol and 
this is due to an unusually large volume of gas flow. The univariate X chart for· 
In(gas flow), in Figure 5.11, shows that this point is outside the three sigma limits. . 
It appears that gas flow was reset at the target for case 32. All the other univariate 
X -charts have all points within their three sigma control limits. 
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UCL=4.005 

Mean = 3.951 

LCL= 3.896 

Figure S.II The univariate 
X -chart for In(gas flow). 

In this example, a shift in a single variable was masked with 99% limits, or almost 
masked (with 95% limits), by being combined into a single T2-value. • 

Control Regions for Future Individual Observations 

The goal now is to use data Xl, X2,"" Xn , collected when a process is stable, to set a 
control region for a future observation X or future observations. The region in which 
a future observation is expected to lie is called a forecast, or prediction, region. If the 
process is stable, we take the observations to be independently distributed as 
Np(/L, 1;). Because these regions are of more general importance than just for mon
itoring quality, we give the basic distribution theory as Result 5.6. 

Result S.6. Let Xl, X2, ... , Xn be independently distributed as Np(/L, 1;), and let 
X be a future observation from the same distribution. Then 

2 n -, I - (n - 1)p 
T = --1 (X - X) s- (X - X) is distributed as Fp n-p n+ n-p , 

and a 100(1 - a)% p-dimensional prediction ellipsoid is given by all X satisfying 

(. -)'S-l( -) (n
2 

- 1)p F () 
x - x x - X :5 n(n _ p) p,n-p a 

Proof. We first note that X - X has mean O. Since X is a future observation, X and 
X are independent, so 

_ _ 1 (n + 1) 
Cov(X - X) = Cov(X)' + Cov(X) = 1; + -1; = 1; 

n n 

and, by Result 4.8, v'nj(n + 1) (X - X) is distributed as Np (O,1;). Now, 

) n (X - X),S-l J n (X - X) 
n+1 n+1 
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which combines a multivariate normal, Np(O, I), random vector and an independent 
Wishart, Wp,II-I (I), random matrix in the form 

(
mUltiVariate normal)' (Wishart random matrix)-I (multivariate normal) 

random vector dJ, random vector 

has the scaled r distribution claimed according to (5-8) and the discussion on 
page 213. 

The constant for the ellipsoid follows from (5-6), 

Note that the prediction region in Result 5,6 for a future observed value x is an 
ellipsoid, It is centered at the initial sample mean X, and its axes are determined by 
the eigenvectors of S, Since 

[ 
- , _] - (n2 

- l)p ] 
P (X - X) S (X - X) :5 n(n _ p) Fp,lI_p(ex) = 1 - ex 

before any new observations are taken, the probability that X will fall in the predic
tion ellipse is 1 - ex. 

Keep in mind that the current observations must be stable before they can be 
used to determine control regions for future observations. 

Based on Result 5.6, we obtain the two charts for future observations. 

Control Ellipse for Future Observations 

With P = 2, the 95% prediction ellipse in Result 5.6 specializes to 

( -)'S-l( -) < (n
2 

- 1)2 F ( 05) x - x x - x - n(n _ 2) 2.11-2' (5-34) 

Any future observation x is declared to be out of control if it falls out of the con
trol ellipse. 

Example S.12 CA control ellipse for future overtime hours) In Example 5.9, we 
checked the stability of legal appearances and extraordinary event overtime hours. 
Let's use these data to determine a control region for future pairs of values. 

From Example 5.9 and Figure 5.6, we find that the pair of values for period 11 
were out of control. We removed this point and determined the new 99% ellipse. All 
of the points are then in control, so they can serve to determine the 95% prediction 
region just defined for p = 2. This control ellipse is shown in Figure 5.12 along with 
the initial 15 stable observations. 

Any future observation falling in the ellipse is regarded as stable or in control. 
An observation outside of the ellipse represents a potential out-of-control observa
tion or special-cause variation. _ 

T2-Chart for Future Observations 

For each new observation x, plot 

T2 = _n_ (x - x)'S-l(x - x) 
n + 1 
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5500 ellipse for future legal 

appearances and extraordinary 
event overtime. 

in time order. Set LCL = 0, and take 

(n - l)p 
VCL = ( ) Fp ll-p(.05) n - p' . 

Points above the upper control limit represent potential special cause variation 
and suggest that the process in question should be examined to determine 
whether immediate corrective action is warranted. See [9] for discussion of other 
procedures. 

Control Charts Based on Subsample Means 

It is ass~m~d that each random vector of observations from the process is indepen
dent~~ dIstnbuted as Np(O, I). We proceed differently when the sampling procedure 
specIfies that m > 1 units be selected, at the same time, from the process. From the 
first sample, we determine its sample mean XI and covariance matrix SI' When 
the population is normal, these two ra~o~ qua!!,!ities are independent. 

For a general subsample mean X j , Xj - X has a normal distribution with 
mean o and 

- = ( 1)2 _. n - 1 (n - 1) 
Cov(Xj - X) = 1 - - Cov(Xj) + -2- CoV (X1) = ~ 

n n nm 
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where 

_ 1~
X = - 4J Xj 

n j=1 

As will be .described in Section 6.4, the sample covariances from the n 
samples can be combined to give a single estimate (called Spooled in Chapter 6) of the. 
common covariance :to This pooled estimate is . 

Here (nm - n)S is independent of each Xj and, then~for~, of their mean X. 
Further, (nm - n)S is distributed as a Wishart random matrIX with nm - n degrees. 
of freedom. Notice that we are estimating I internally from the. data collected in 
any given period. These estimators are combined to give a single estimator with a 
large number of degrees of freedom. Consequently, 

is distributed as 
(nm - n)p 

( + 1) 
Fp,nm-n-p+1 

nm-n-p 

Ellipse Format Chart. In an analogous fashion to our. discussion on individu~ 
multivariate observations, the ellipse format chart for paIrs of subsample means IS 

_ _ = (n - 1)(m - 1)2 
(X - x)'S-l(x - x) ~ ) F2.nm-n-l('OS) 

m(nm - n - 1 
(S-36) 

although the right-hand side is usually approxi~ated as X~(·OS)/m .. 
Subsamples corresponding to points outside of the c~ntrol elhpse. s~ould .be 

carefully checked for changes in the behavior of the qu~h.ty cha~acter~st1cs bemg 
measured. The interested reader is referred to [10] for additIonal diSCUSSion. 

T2-Chart. To construct a T2-chart with subsample data and p characteristics, we 

plot the quantity 
- =, 1- = TJ = m(Xj - X) S- (Xj - X) 

for j = 1, 2, ... , n, where the 

(n - 1)(m - 1)p 
VCL = ) Fp,nm-n-p+1('OS) 

(nm - n - p + 1 

The VCL is often approximated as x;,(.OS) when n is large. 
Values of T~ that exceed the VCL correspond to potentially out-of-control or 

special cause va~iation, which should be checked. (See [10].) 
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Control Regions for Future Subsample Observations 

Once data are collected from the stable operation of a process, they can be used to 
set control limits for future observed subsample means. 

If X is a future subsample mean, then X - X has a multivariate normal distrib
ution with mean 0 and 

. _ = _ 1 _ (n + 1) 
Cov(X - X) = Cov(X) + - Cov(X I ) = :t 

n nm 

Consequently, 

is distributed as 

(nm - n)p 
(nm - n - p + 1) Fp,nm-n-p+1 

Control Ellipse for Future Subsample Means. The prediction ellipse for a future 
subsample mean for p = 2 characteristics is defined by the set of an X such that 

_ =, -1 _ = (n + l)(m - 1)2 
(x - x) S (x - x):5 ( 1) F2 nm-n-l('OS) m nm - n - ' 

(S-37) 

where, again, the right-hand side is usually approximated as x1( .OS)/m. 

T2-Cbart for Future Subsample Means. As before, we bring n/(n + 1) into the 
control limit and plot the quantity 

T2 = m(X - X)'S-I(X - X) 

for future sample means in chronological order. The upper control limit is then 

(n + 1) (m - l)p 
VCL = ( + 1) Fp nm-n-p+l(.OS) nm-n-p . , 

The VCL is often approximated as X~( .OS) when n is large. 
Points outside of the prediction ellipse or above the VCL suggest that the cur

rent values of the quality characteristics are different in some way from those of the 
previous stable process. This may be good or bad, but almost certainiy warrants a 
careful search for the reasons for the change. 

S.7 Inferences about Mean Vectors When Some 
Observations Are Missing 

Often, some components of a vector observation are unavailable. This may occur be
cause of a breakdown in the recording equipment or because of the unwillingness of 
a respondent to answer a particular item on a survey questionnaire. The best way to 
handle incomplete observations, or missing values, depends, to a large extent, on the 
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experimental context. If the pattern of missing values is closely tied to the value of 
the response, such as people with extremely high incomes who refuse to respond in a 
survey on salaries, subsequent inferences may be seriously biased. To date, no statisti_ 
cal techniques have been developed for these cases. However, we are able to treat sit
uations where data are missing at random-that is, cases in which the chance 
mechanism responsible for the missing values is not influenced by the value of the 
variables. 

A general approach for computing maximum likelihood estimates from incom
plete data is given by Dempster, Laird, and Rubin [5]. Their technique, called the 
EM algorithm, consists of an iterative calculation involving two steps. We call them 
the prediction and estimation steps: 

1. Prediction step. Given some estimate (j of the unknown parameters, predict 
the contribution of any missing observation to the (complete-data) sufficient 
statistics. 

2. Estimation step. Use the predicted sufficient statistics to compute a revised 
estimate of the parameters. 

The calculation cycles from one step to the other, until the revised estimates do 
not differ appreciably from the estimate obtained in the previous iteration. 

When the observations Xl, X 2, ... , Xn are a random sample from a p-variate 
normal population, the prediction-estimation algorithm is based on the complete
data sufficient statistics [see (4-21)] 

and 
n 

n 

Tl = 2: Xj = nX 
i=l 

T2 = 2: XiX; = (n - 1)S + nXX' 
j=1 

In this case, the algorithm proceeds as follows: We assume that the population mean 
and variance-IL and ~, respectively-are unknown and must be estimated. 

Prediction step. For each vector Xj with missing values, let xjI) denote the miss
ing components and x?) denote those components which are available. Thus, 

, _ [(I)' (2),] 
Xi - Xi ,xi . 

Given estimates ii and ~ from the estimation step, use the mean of the condi
tional normal distribution of x(l), given x(2), to estimate the missing values. That is,! 

~(I) _ E(X(I) I (2). ~ ~) - ~(I) + ~ ~-I( (2) ~(2» 
Xi - ; Xj ,IL,~ -IL ~12~22 Xi - IL (5-38) 

estimates.the contribution of x?) to T I . 

Next, the predicted contribution of xlI) to T2 is 

(i)(l), _ E(X(l)X(I)' I (2). ~ ~) _ ~ _ ~ ~-l~ + ~(I)~(I)' 
Xi Xi - i i Xi ,IL,~ -~11 · ..... 12~22 ..... 21 Xi Xi (5-39) 

1 If all the components Xj are missing, set Xj = j1. and x/x; = I + j1.j1.'. 
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and 
~ 

XP>Xj(2), = E(X,P)X(2)' I x(2). ~ ( 
, J' ii,~) = x/)x)2)' 

The contributions in (5-38) and (5 39) 
nents. The results are combined with t~ are1summed o~er ag Xi wit£ missing com~ 

e samp e data to Yield TI and T2 . 

Estimation step. Compute the revised m' '. . 
_ ax:Jmum likelihood estImates (see Result 4.11): 

- _ Tl - 1-
IL - -;:;, ~ = -;; T2 - ii'ji' (5-40) 

We illustrate the computational as et. . 
in Example 5.13. p c s of the predIctIon-estimation algorithm 

.Example 5.13 (Illustrating the EM algorithm . 
IL and covariance ~ using the incom I t d) EstImate the normal population mean 

pe e ata set 

Here n = 4 P = 3 and t f b . , , par s 0 0 servatlOn t 
We obtain the initial sample averages vec ors XI and X4 are missing. 

_ 7 + 5 
- 0+2+1 ILl = -2- = 6, p.,2 = = 1, 

3 
- 3+6+2+5 
p.,3 = = 4 

4 
from the available observations. Substitutin 
so that XII = 6, for example, we can obt .g ~h~s.e averag~s for any missing values, 
construct these estimates using th d" alllblllltIal covanance estimates. We shall 
d 'e IVlsor n ecause the I 'th 

uces the maximum likelihood estimate i Thus, a gon m eventually pro-

Uu = (6 - 6)2 + (7 - 6)2 + (5 - 6)2 + (6 6)2 1 

4 
- 1 _ 5 
U22=-2' U 33 = 2 

Ul2 = (6 - 6)(0 - 1) + (7 - 6)(2 - 1) + (5 

1 
4 

_ 3 

U23 = 4' 

4 

2 

6)(1. 1) + (6 6)(1 1) 

The prediction step consists of usin th . . . . _ _ 
contributions of the missing values to t~ e :~I~Ial estlll~at.es IL and ~ to predict the 
and (5-39).J e su Clent statIstIcs Tl and T2. [See (5-38) 
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The first component of Xl is missing, so we partition ii and ~ as 

and predict 

~ ~ ~ ~-1 [X!2 - IL2J - 6 + [1 
xlI = ILl + I12I22 ~ - 4' 

X13 - f.L3 
[1 ~J-l [0 -1J 

1] i i 3 - 4 = 5.73 

[1 3J-l [lJ ~ ~ ~ 2 1 [1 1"2 -54

2 
-14 + (5.73)2 = 32.99 

XII = U11 - ~12I2~I21 + Xli = 2 - 4' 1 ~ 

~[X12' ~) =Xll[XI2, X13) =5.73[0, 3) = [0, 17.18) 

For the two missing components of X4, we partition ii and ~ as 

~ [~11 ~12 \ ~13J = [~!.d .. ~.I.~] I = 0"12 0"22: 0"23 ~: ~ 
·~········~····1··~···· I21 i In 
0"13 0"23 i 0"33 ' 

~ [~lJ [1i(1)] 
IL = f.L2 = ;':;(2)' 

.;.:;'" f.L 
f.L3 

and predict 

[8 = E([~:J \ X43 = 5;ii,I) = [~J + I!2~2Hx43 -1L3) 

= [~J + [nm-1
(5 - 4) = [~::J 

for the contribution to T1. Also, from (5-39), 

and 
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are the contributions to T2 • Thus, the predicted complete-data sufficient statistics 
are 

[

Xll + X21 + X31 + ~41] [5.73 + 7 + 5 + 6.4] [24.13] 
== X12 + X22 + X32 + X42 = 0 + 2 + 1 + 1.3 = 4.30 

X13 + X23 + x33 + X43 3 + 6 + 2 + 5 16.00 

[

32.99 + 72 + 52 + 41.06 
= 0 + 7(2) + 5(1) + 8.27 

17.18 + 7(6) + 5(2) + 32 

[

148.05 27.27 101.18] 
= 27.27 6.97 20.50 

101.18 20.50 74.00 

02 + 22 + 12 + 1.97 
0(3) + 2(6) + 1(2) + 6.5 

This completes one prediction step. 
The next esti!llation step, using (5-40), provides the revised estimates2 

1 [24.13] [6.03] Ii = ;;1\ = ~ 4.30 = 1.08 
16.00 4.00 

_ ! [148.05 27.27 
- 4 27.27 6.97 

101.18 20.50 

[ 

.61 
= .33 

1.17 

.33 1.17] 

.59 .83 

.83 2.50 

101.18] [6.03] 20.50 - 1.08 [6.03 
74.00 4.00 

1.08 4.00] 

Note that U11 = .61 and U22 = .59 are larger than the corresponding initial esti
mates obtained by replacing the missing observations on the first and second vari
ables by the sample means of the remaining values. The third variance estimate U33 

remains unchanged, because it is not affected by the missing components. 
The iteration between the prediction and estimation steps continues until the 

elements of Ii and ~ remain essentially unchanged. Calculations of this sort are 
easily handled with a computer. _ 

2The final entries in I are exact to two decimal places. 
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Once final estimates jL and i are obtained and relatively few missing compo_ 
nents occur in X, it seems reasonable to treat 

allpsuchthatn(jL - p)'i-I(it - p):5 x~(a) (5-41) 

as an approximate 100(1 - a)% confidence ellipsoid. The simultaneous confidence·. 
statements would then follow as in Section 5.5, but with x replaced by jL and S re
placed by I. 

Caution. The prediction-estimation algorithm we discussed is developed on the. 
basis that component observations are missing at random. If missing values are re
lated to the response levels, then handling the missing values as suggested may in
troduce serious biases into the estimation procedures; 'TYpically, missing values are 
related to the responses being measured. Consequently, we must be dubious of any 
computational scheme that fills in values as if they were lost at random. When more 
than a few values are missing, it is imperative that the investigator search for the sys
tematic causes that created them. 

5.8 Difficulties Due to Time Dependence in Multivariate 
Observations 

For the methods described in this chapter, we have assumed that the multivariate 
observations Xl, X2,.··, Xn constitute a random sample; that is, they are indepen
dent of one another. If the observations are collected over time, this assumption 
may not be valid. The presence of even a moderate amount of time dependence 
among the observations can cause serious difficulties for tests, confidence regions, 
and simultaneous confidence intervals, which are all constructed assuming that in
dependence holds. 

We will illustrate the nature of the difficulty when the time dependence can be 
represented as a multivariate first order autoregressive [AR(l)] model. Let the 
p X 1 random vector X t follow the multivariate AR(l) model 

X t - P = <I>(Xt - I - p) + et (5-42) 

where the et are independent and identically distributed with E [et] = 0 and 
Cov (et) = lE and all of the eigenvalues of the coefficient matrix <I> are between -1 
and 1. Under this model Cov (Xt' Xt-,) = <1>'1. where 

00 

Ix = L <I>'IEct>'j 
j=O 

The AR(l) model (5-42) relates the observation at time t, to the observation at time 
t - 1, through the coefficient matrix <1>. Further, the autoregressive model says the 
observations are independent, under multivariate normality, if all the entries in the 
coefficient matrix <I> are o. The name autoregressive model comes from the fact that 
(5-42) looks like a multivariate version of a regression with X t as the dependent 
variable and the previous value X t - I as the independent variable. 
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As shown in Johnson and Langeland [8], 

1 n * 
S =. n _ 1 ~ (Xt - X)(Xt - X)' ~ Ix 

where the arrow above indicates convergence in probability, and 

(5-43) 

Moreover, for large n, Vn (X - JL) is approximately normal with mean 0 and covari
ance matrix given by (5-43). 

To make the calculat~ons easy, suppose the underlying process has <I> = cpI 
where I cp I < 1. Now consIder the large sample nominal 95% confidence ellipsoid 
for JL. 

{all JL such that n(X - JL )'S-I(X - JL) :5 x~(.05)} 

This ellipsoid has large sample coverage probability .95 if the observations are inde
pe~de~t.1f the observations are related by our autoregressive model, however, this 
ellIpsOId has large sample coverage probability 

P[x~ :5 (1 - CP)(l + <p)-IX~(.05)J 

Table 5.10 shows how the coverage probability is related to the coefficient cp and the 
number of variables p. 

According to Table 5.10, the coverage probability can drop very low to 632 
even for the bivariate case. ' . , 

. The independ:nce a.ssuI?ption is crucial, and the results based on this assump
tIOn can be very mlsleadmg If the observations are, in fact, dependent. 

Ta~le 5: I 0 Coverage Probability of the Nominal 95% Confidence 
EllIpSOId 

cp 
-.25 0 .25 .5 

1 .989 .950 .871 .742 2 .993 .950 .834 .632 
P 5 .998 .950 .751 .405 10 .999 .950 .641 .193 15 1.000 .950 .548 .090 
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Supplement 

SIMULTANEOUS CONFIDENCE 
INTERVALS AND ELLIPSES AS SHADOWS 
OF THE p-DIMENSIONAL ELLIPSOIDS 

We begin this supplementary section by establishing the general result concerning 
the projection (shadow) of an ellipsoid onto a line. 

Result SA. I. Let the constant c > 0 and positive definite p x p matrix A deter
mine the ellipsoid {z: z' A-Iz ::s c2

}. For a given vector u *' 0, and z belonging to the 
ellipsoid, the 

(
Projection (shadow) Of) = c Vu'Au u {z'A-1z::sc2}onu u'u 

",hich extends from 0 along u with length cVu' Au/u'u. When u is a unit vector, the 
shadow extends cVu'Au units, so Iz'ul:;; cVu'Au. The shadow also extends 
cVu' Au units in the -u direction. 

Proof. By Definition 2A.12, the projection of any z on u is given by (z'u) u/u'u. Its 
squared length is (z'u//u'u. We want to maximize this shadow over all z with 
z' A-Iz ::s c2• The extended Cauchy-Schwarz inequality in (2-49) states that 
(b'd)2::s (b'Bd) (d'B-1d), with equality when b = kB-1d. Setting b = z, d = u, 
and B = A-I, we obtain 

(u'u) (length of projection? = (z'u)2::s (z'K1z)(u'Au) 

:;; c2u' Au for all z: z' A-1z ::s c2 

The choice z = cAul Vu' Au yields equalities and thus gives the maximum shadow, 
besides belonging to the boundary of the ellipsoid. That is, z' A-lz = cZu' Au/u' Au 
= c2 for this z that provides the longest shadow. Consequently, the projection of the 
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elli~soi~ o~is cVu' ~u ~/u'u, and its length is cVu' Au/u'u. With the unit vector 
eu - u/ v u'u, the proJectlOn extends 

The projection of the ellipsoid also extends the same length in the direction -u. • 

Result SA.2. Suppose that the ellipsoid {z' z' A-lz < c2}" d 
U = [UI i U2] is arbitrary but of rank two. Then' - IS given an that 

based on A-I 2 implies that ra, z IS 1U t ~ ellIpSOId { 
zin the ellipsoid } {fO II U U' .. h . .} 

and c based on (U' AU) 1 and c2 
or 

for all U 

. Proof. We fjr2st establish a basic inequality. Set P = AI/2U(U' AU)-lU' AI/2 
where A. = A/_~1/2. Nlote that P = P' and p2 = P, so (I - P)P' = P _ p2 = 0' 
Next, usmg A = A- /2A-I/2, we write z' Alz = (A-1/2z)' (A-1/2 ) d A-I/2' 
= PA-l/2z + (I - P)A-I/2z. Then z an z 

z' A-lz = (A-I/2z)' (A-l/2z) 

= (PA-
l
/2z + (I - P)KI/2Z)'(PA-l/2z + (I _ P)KI/2z) 

= (PA
1
/2Z), (PAI/2Z) + ((I - P)A-l/2z)' «I - P)Kl/2Z) 

2: z'A-
1
/2p'PA-l/2z = z'A-1/2PA-I/2z = z'U(U'AUrIU'z (SA-I) 

S' '-I 2 
mce z A Z::S C and U was arbitrary, the result follows. • 

Our next result establishes the two-dimensional confidence ell' . . 
f th d· . '. Ipse as a proJectlOn 

o e p- lIDenslOnal ellipsoId. (See Figure 5.13.) 

3 

---"'2 
UU'z 

Figure 5.13 The shadow of the 
ellipsoid z' A -Iz ::s c2 on the 
UI, u2 plane is an ellipse. 
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Projection on a plane is simplest when the two vectors UI and Uz determining 
the plane are first converted to perpendicular vectors of unit length. (See 
Result 2A.3.) 

Result SA.3. Given the ellipsoid {z: z' A-Iz :s; C
Z

} and two perpendicular unit 
vectors UI and Uz, the projection (or shadow) of {z'A-1z::;;; CZ} on the u1o U2 
plane results in the two-dimensional ellipse {(U'z)' (V' AVrl (V'z) ::;;; c

2
}, where 

V = [UI ! U2]' 

Proof. By Result 2A.3, the projection of a vector z on the Ul, U2 plane is 

The projection of the ellipsoid {z: z' A-Iz :s; c2
} consists of all VV'z with 

z' A-Iz :s; c2. Consider the two coordinates V'z of the projection V(V'z). Let z belong to the set {z: z' A-1z ::;;; cz} so that VV'z belongs to the shadow of the ellipsoid. 
By Result SA.2, 

(V'z)' (V' AVrl (U'z) ::;;; c2 

so the ellipse {(V'z)' (V' AVrl (V'z) ::;;; c2
} contains the coefficient vectors for the 

shadow of the ellipsoid. 
Let Va be a vector in the UI, U2 plane whose coefficients a belong to the ellipse 

{a'(U' AVrla ::;;; CZ}. If we set z = AV(V' AVrla, it follows that 

V'z = V' AV(V' AUrla = a 

and 

Thus, U'z belongs to the coefficient vector ellipse, and z belongs to the ellipsoid z' A-Iz :s; c2. Consequently, the ellipse contains only coefficient vectors from the 
projection of {z: z' A-Iz ::;;; c2

} onto the UI, U2 plane. -

Remark. Projecting the ellipsoid z' A-Iz :s; c2 first to the UI, U2 plane and then to 
the line UJ is the same as projecting it directly to the line determined by UI' In the 
context of confidence ellipsoids, the shadows of the two-dimensional ellipses give 
the single component intervals. 

Remark. Results SA.2 and SA.3 remain valid if V = [Ub"" uq ] consists of 
2 < q :s; p linearly independent columns. 
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Exercises -
5.1. (a) Evaluate y2, for testing Ho: p.' = [7, 11], using the data 

5.2. 

5.3. 

5.4. 

5.5. 

5.6. 

5.7. 

r
2 12] X = 8 9 
6 9 
8 10 

(b) Specify the distribution of T2 for the situation in (a). 
(c) Using (a) and (b), test Ho at the Cl! = .05Ieve!. What conclusion do you reach? 

~:~n!: t~~ 2~~~~si~e~I:~:f~y 5C1~j~e~~r~hat T Z 
remains unchanged if each obser~ation 

Note that the observations 

yield the data matrix 

[
(6 - 9) (10 - 6) (8 - 3)J' 
(6+9) (10+6) (8+3) 

(a) Use expression (5-15) to evaluate y2 for the data in Exercise 5.1. 
(b) Use the data in Exercise 5.1 to evaluate A in (5-13). Also, evaluate Wilks' lambda. 
Use the sweat data in Table 5.1. (See Example 5.2.) 
(a) ~:~:r:::s~ the axes of the 90% confidence ellipsoid for p. Determine the lengths of 

(b) Const~uct Q-Q plots for the observations on sweat rate sodium content a ~~~~:~~~~i~:~e6;::~~~tivelj~.co~struct the three possibl~ scatter plots for'pa~~ case? Commen~. mu Ivanate normal assumption seem justified in this 

The quantities X, S, and S-I are give i E I 53 f radiation data. Conduct a test of the ~ul~ hyxpa:::he~is 'H ~r ~h~ tra5n5sf06rOmed microwavelev lof' T I o· P - [. " ] atthe Cl! = 05 tur:d in s:.fgn~rleca5n1c~·Es Ylo~rresult consistent with the 95% confidence ellipse for p ~ic-.. xpam. . 

V~rify the Bonferroni inequality in (5-28) for m = 3 
Hmt: A Venn diagram for the three events C C 'nd ChI . I, 2, a 3 may e p. 
Use the sweat data in Table 51 (S E I dence interval f . e~ xamp e 5.2.) Find simultaneous 95% y2 confi-
vals using (5_2~)0~::r;p~2re' atnhd

e 
tP3 usm

t
g Rf~Sult 5.3. Construct the 95% Bonferroni intei-. wo se s 0 mtervals. 
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5.8. 

5.9. 

k that rZ is equal to the largest squared univariate t-value From (5-23), we nOewlinear combination a'xj with a = s-tcx - ILo), Using the constructed from th 3 d th H, in Exercise 5.5 evaluate a for the transformed· It . Example 5. an eo' . h" I Z resu s ID .' d ¥ 'fy that the tZ-value'computed with t IS a IS equa to T microwave-radiatIOn ata. en , 
in Exercise 5.5. 

~ I' t < the Alaska Fish and Game department, studies grizzly H Roberts a natura IS lor. 61 b arry. e ' oal of maintaining a healthY population. ~easurements on n = ears bear~ wldthhth fgllOwing summary statistics (see also ExerCise 8.23): prOVide t eO· 

Neck Girth Head Variable Weight 
(kg) 

Body 
length 
(cm) 

(cm) (cm) length 
Head 
width 
(cm) (cm) 

Sample 
95.52 164.38 55.69 93.39 17.98 31.13 mean x 

Covariance matrix 

3266.46 1343.97 731.54 1175.50 162.68 238.37 

1343.97 721.91 324.25 537.35 80.17 117.73 

731.54 324.25 179.28 281.17 39.15 56.80 
S= 1175.50 537.35 281.17 474.98 63.73 94.85 

162.68 80.17 39.15 63.73 9.95 13.88 

238.37 117.73 56.80 94.85 13.88 21.26 

I 95°;( simultaneous confidence intervals for the six popula-(a) Obtain the large samp e ° 
tion mean body measurements. . I 95°;( simultaneous confidence ellipse for mean weight and (b) Obtain the large samp e ° 
mean girth. . . P t , h 950' Bonferroni confidence intervals for the SIX means ID ar a. (c) ObtaID t e 10 .' I f h t th 95°;' Bonferrom confidence rectang e or t e mean (d) Refer to Part b. Co?struc. e =°6 Compare this rectangle with the confidence weight and mean girth usmg m . 
ellipse in Part b. . 

. h 950/. Bonferroni confidence mterval for (e) Obtam t e, ° 
mean head width - mean head length 

. _ 6 1 = 7 to alloW for this statement as well as statements about each usmg m - + 
individual mean. . 

th data in Example 1.10 (see Table 1.4). Restrict your attention to 5.10. Refer to the bear grow 
the measurements oflength. . s . h 950;' rZ simultaneous confidence intervals for the four populatIOn mean (a) Obtam t e ° 
, for length. ' . a1 f h th ee , Obt' the 950/. TZ simultaneous confidence mterv sort e r (b) Refer to Part a. am . ° h . e yearly increases m mean lengt . succeSSlV . . I th from 2 to 3 . h 950/. TZ confidence ellipse for the mean mcrease ID eng 
(c) Obtam td~he r:ean increase in length from 4 to 5 years. years an 
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(d) Refer to Parts a and b. Construct the 95% Bonferroni confidence intervals for the set consisting of four mean lengths and three successive yearly increases in mean length. 
(e) Refer to Parts c and d. Compare the 95% Bonferroni confidence rectangle for the mean increase in length from 2 to 3 years and the mean increase in length from 4 to 5 years with the confidence ellipse produced by the T2-procedure. 

5.1 1. A physical anthropologist performed a mineral analysis of nine ancient Peruvian hairs. The results for the chromium (xd and strontium (X2) levels, in parts per million (ppm), were as follows: 

.48 40.53 2.19 .55 .74 .66 .93 .37 .22 
X2(St) 12.57 73.68 11.13 20.03 20.29 .78 4.64 .43 1.08 

Source: Benfer and others, "Mineral Analysis of Ancient Peruvian Hair," American 
Journal of Physical Anthropology, 48, no. 3 (1978),277-282. 

It is known that low levels (less than or equal 'to .100 ppm) of chromium suggest the presence of diabetes, while strontium is an indication of animal protein intake. 
(a) Construct and plot a 90% joint confidence ellipse for the population mean vector IL' = [ILl' ILZ], assuming that these nine Peruvian hairs represent a random sample from individuals belonging to a particular ancient Peruvian culture. 
(b) Obtain the individual simultaneous 90% confidence intervals for ILl and ILz by"projecting" the ellipse constructed in Part a on each coordinate axis. (Alternatively, we could use Result 5.3.) Does it appear as if this Peruvian culture has a mean strontium level of 10? That is, are any of the points (ILl arbitrary, 10) in the confidence regions? Is [.30, 10]' a plausible value for IL? Discuss. 
(c) Do these data appear to be bivariate normal? Discuss their status with reference to Q-Q plots and a scatter diagram. If the data are not bivariate normal, what implications does this have for the results in Parts a and b? 
(d) Repeat the analysis with the obvious "outlying" observation removed. Do the inferences change? Comment. 

5.12. Given the data 

with missing components, use the prediction-estimation algorithm of Section 5.7 to estimate IL and I. Determine the initial estimates, and iterate to find the first revised estimates. 

5.13. Determine the approximate distribution of -n In( I i 1/1 io i) for the sweat data in Table 5.1. (See Result 5.2.) 

5.14. Create a table similar to Table 5.4 using the entries (length of one-at-a-time t-interval)/ (length of Bonferroni t-interval). 
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Exercises 5.15, 5.16, and 5.17 refer to the following information: 

Frequently, some or all of the population characteristics of interest are in the form of 
attributes. Each individual in the population may then be described in terms of the 
attributes it possesses. For convenience, attributes are usually numerically coded with re
spect to their presence or absence. If we let the variable X pertain to a specific attribute, 
then we can distinguish between the presence or absence of this attribute by defining 

X = {I if attribute present 
o if attribute absent 

In this way, we can assign numerical values to qualitative characteristics. 
When attributes are numerically coded as 0-1 variables, a random sample from the 

population of interest results in statistics that consist of the counts of the number of 
sample items that have each distinct set of characteristics. If the sample counts are 
large, methods for producing simultaneous confidence statements can be easily adapted 
to situations involving proportions. 

We consider the situation where an individual with a particular combination of 
attributes can be classified into one of q + 1 mutually exclusive and exhaustive 
categories. The corresponding probabilities are denoted by PI, P2, ... , Pq, Pq+I' Since 
the categories include all possibilities, we take Pq+1 = 1 - (PI + P2 + .,. + Pq ). An 
individual from category k will be assigned the «( q + 1) Xl) vector value [0, ... , 0, 
1,0, ... , O)'with 1 in the kth position. 

The probability distribution for an observation from the population of individuals in 
q + 1 mutually exclusive and exhaustive categories is known as the multinomial distrib
ution. It has the following structure: 

Category 1 2 k q q + 1 

1 0 0 0 0 
0 1 0 0 
0 0 0 0 0 

Outcome (value) 1 
0 0 

1 0 
0 0 0 0 1 

Probability q 

(proportion) PI P2 Pk Pq Pq+1 = 1 2: Pi 
;=1 

Let Xj,j = 1,2, ... , n, be a random sample of size n from the multinomial 
distribution. 

The kth component, Xj k, of Xj is 1 if the observation (individual) is from category k 
and is 0 otherwise. The random sample X I, X 2, ... , Xn can be converted to a sample 
proportion vector, which, given the nature of the preceding observations, is a sample 
mean vector. Thus, 

[

PI l ' P2 1 n . 
p = : = - 2: Xj WIth 

, . n j=1 
Pq+1 

E(p) = P = [ ~: l 
Pq+1 
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and 

[ 

(TII 

,1 1 1 (T21 
Cov(p) = -Cov(X) = -I = - . 

n ) n n : 

C7'I,q+l 

(TI,q+1 l 
(T2,q+1 

(T q+:,q+1 (T2,q+1 

For large n, the approximate sampling distribution of p is provided by the central limit 
theorem. We have 

vn(p - p) is approximately N(O,I) 

where the elements of I are (Tkk = Pk(l - Pk) and (Tik = -PiPk' The normal approx
imation remains valid when (Tkk is estimated by Ukk = Pk(l - Pk) and (Tik is estimated 
by Uik = -P;Pb i * k. 

Since each individual must belong to exactly one category, Xq+I,j = 

1 - (Xlj + X 2j + ... + X qj), so Pq+1 = 1 - (PI + Pz + ... + Pq), and as a result, i 
has rank q. The usual inverse of i does not exist, but it is still possible to develop simul
taneous 100(1 - a)% confidence intervals for all linear combinations a'p. 

Result. Let XI, X 2, ... , Xn be a random sample from a q + 1 category multinoinial 
distribution with P[Xjk = 1] = Pt. k = 1,2,.,., q + 1, j = 1,2, ... , n. Approximate 
simultaneous 100(1 - a)% confidence regions for all linear combinations a'p 
= alPl + a2P2 + .,. + aq+IPq+1 are given by the observed values of 

n 

provided that n - q is large, Here p = (l/n) 2: Xj' and i = {uid is a (q + 1) x (q + 1) 
j=1 

matrix with Ukk = Pk(1 - Pk) and Uik = -PiPt, i * k. Also, x~(a) is the upper 
(100a )th percentile of the chi-square distribution with q d.t • 

In this result, the requirement that n - q is large is interpreted to mean npk is 
about 20 or more for each category. 

We have only touched on the possibilities for the analysis of categorical data. Com
plete discussions of categorical data analysis are available in [1] and [4J. 

5.15. Le,t X ji and X jk be the ith and kth components, respectively, of Xj' 

(a) Show that JLi = E(Xji) = Pi and (Tjj = Var(Xj ;) = p;(l - p;), i = 1,2, ... , p. 

(b) Show that (Tik = Cov(Xji,Xjk ) = -PiPbi * k. Why must this covariance neceS
sarily be negative? 

5.16. As part of a larger marketing research project, a consultant for the Bank of Shorewood 
wants to know the proportion of savers that uses the bank's facilities as their primary ve
hicle for saving. The consultant would also like to know the proportions of savers who 
use the three major competitors: Bank B, Bank C, and Bank D. Each individual contact
ed in a survey responded to the following question: 
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Which bank is your primary savings bank? 

Bank of I I I I Another I No Response: Shorewood Bank B Bank C Bank D Bank Savings 

A sample of n = 355 people with savings accounts produced.the follo~ing . 
when asked to indicate their primary savings banks (the people with no savmgs Will 
ignored in the comparison of savers, so there are five categories): 

Bank (category) Bank of Shorewood BankB BankC BankD Another bank 

Observed 
number 105 119 56 25 50 

populatio~ PI P2 P3 P4 

proportIOn 

Observed .sample 
, _ 105 = 30 P5 = .14 proportIOn P2 = .33 P3 =.16 P4 = .D7 PI - 355 . 

Let the population proportions be 

PI = proportion of savers at Bank of Shorewood 

P2 = proportion of savers at Bank B 

P3 = proportion of savers at Bank C 

P4 = proportion of savers at Bank D 

1 - (PI + P2 + P3 + P4) = proportion of savers at other banks 

(a) Construct simultaneous 95% confidence intervals for PI , P2, ... , P5' 
• ()"f • • I th t Ilows a comparison of the (b) Construct a simultaneous 95/0 confidence mterva a a .. 

Bank of Shorewood with its major competitor, Bank B. Interpret thiS mterval. 
b h' h school students in a 

S.I 7. In order to assess the prevalence of a drug pro lem among I~ , ive hi h schools 

P
articular city a random sample of 200 students from the city s f g 

, . h onding responses are were surveyed. One of the survey questIOns and t e corresp 
as follows: 

What is your typical weekly marijuana usage? 

Category 

None Moderate Heavy 

(1-3 joints) (4 or more joints) 

Number of 
21 responses 117 62 
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Construct 95% simultaneous confidence intervals for the three proportions PI, P2' and 
P3 = 1 - (PI + P2)' 

The following exercises may require a computer. 

5.18. Use the college test data in Table 5.2. (See Example 5.5.) 
(a) Test the null hypothesis Ho: P' = [500,50, 30J versus HI: P' *' [500,50, 30J at the 

a = .05 level of significance. Suppose [500,50,30 J' represent average scores for 
thousands of college students over the last 10 years. Is there reason to believe that the 
group of students represented by the scores in Table 5.2 is scoring differently? 
Explain. . 

(b) Determine the lengths and directions for the axes of the 95% confidence ellipsoid for p. 

(c) Construct Q-Q plots from the marginal distributions of social science and history, 
verbal, and science scores. Also, construct the three possible scatter diagrams from 
the pairs of observations on different variables. Do these data appear to be normally 
distributed? Discuss. 

5.19. Measurements of Xl = stiffness and X2 = bending strength for a sample of n = 30 pieces 
of a particular grade of lumber are given in Thble 5.11. The units are pounds/(inches)2. 
Using the data in the table, 

Table 5.11 Lumber Data 

Xl X2 

(Stiffness: 
modulus of elasticity) (Bending strength) 

1232 
1115 
2205 
1897 
1932 
1612 
1598 
1804 
1752 
2067 
2365 
1646 
1579 
1880 
1773 

4175 
6652 
7612 

10,914 
10,850 

7627 
6954 
8365 
9469 
6410 

10,327 
7320 
8196 
9709 

10,370 

Source: Data courtesy of U.S. Forest Products Laboratory. 

Xl 
(Stiffness: . 

modulus of elasticity) 

1712 
1932 
1820 
1900 
2426 
1558 
1470 
1858 
1587 
2208 
1487 
2206 
2332 
2540 
2322 

Xz 

(Bending strength) 

7749 
6818 
9307 
6457 

10,102 
7414 
7556 
7833 
8309 
9559 
6255 

10,723 
5430 

12,090 
10,072 

(a) Construct and sketch a 95% confidence ellipse for the pair [ILl> IL2J', where 
ILl = E(XI ) and IL2 = E(X2)' 

(b) Suppose ILIO = 2000 and IL20 = lO,DOO represent "typical" values for stiffness and 
bending strength, respectively. Given the result in (a), are the data in Table 5.11 con
sistent with thesevalues? Explain. 
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(c) Is the bivariate normal distribution a viable population model? Explain with refer- . ence to Q_Q plots and a scatter diagram. 
. 5.20: A wildlife ecologist measured XI = taillength (in millim:ters) and X2 = wing. length (in millimeters) for a sample of n = 45 female hook-billed kites. These data are displayed in Table 5.12. Usi~g the data in the table, 

Xl X2 Xl X2 Xl x2 

(Tail (Wing . (Tail (Wing (Tail (Wing 

length) length) length) length) length) length) 

191 284 186 266 173 271 

197 285 197 285 194 280 

208 288 201 295 198 300 

180 273 190 282 180 272 

180 275 209 305 190 292 

188 280 187 285 191 286 

210 283 207 297 196 285 

196 288 178 268 207 286 

191 271 202 271 209 303 

179 257 205 285 179 261 

208 289 190 280 186 262 

202 285 189 277 174 245 

200 272 211 310 181 250 

192 282 216 305 189 262 

199 280 189 274 188 258 

Source: Data courtesy of S. Temple. 

(a) Find and sketch the 95% confidence ellipse for the population means ILl and IL2' Suppose it is known that iLl = 190 mm and iL2 = 275 mm for male hook-billed kites. Are these plausible values for the mean tail length and mean wing length for 
the female birds? Explain. (b) Construct the simultaneous 95% T2_intervals for ILl and IL2 and the 95% Bonferroni intervals for iLl and iL2' Compare the two sets of intervals. What advantage, if any, do the T2_intervals have over the Bonferroni intervals? (c) Is the bivariate normal distribution a viable population model? Explain with reference to Q-Q plots and a scatter diagram. 

5.21. Using the data on bone mineral content in Table 1.8, construct the 95% Bonfer
roni 

intervals for the individual means. Also, find the 95% simultaneous T
2

-intervals. Compare the two sets of intervals. 
5.22. A portion of the data contained in Table 6.10 in Chapter 6 is reproduced in Table 5.13. These data represent various costs associated with transporting milk from farms to dairy plants for gasoline trucks. Only the first 25 multivariate observations for gasoline trucks are given. Observations 9 and 21 have been identified as outliers from the full data set of 

36 observations. (See [2].) 
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Table 5.13 Milk Transportation-Cost Data 
Fuel (xd 

'-- Repair (xz) Capital (X3) 
16.44 12.43 11.23 7.19 2.70 3.92 9.92 1.35 9.75 4.24 5.78 7.78 11.20 5.05 10.67 14.25 5.78 9.88 13.50 10.98 10.60 13.32 14.27 . 9.45 29.11 15.09 3.28 12.68 7.61 10.23 7.51 5.80 8.13 9.90 3.63 9.13 10.25 5.07 10.17 11.11 6.15 7.61 12.17 14.26 14.39 10.24 2.59 6.09 10.18 6.05 12.14 8.88 2.70 12.23 12.34 7.73 11.68 8.51 14.02 12.01 26.16 17.44 16.89 12.95 8.24 7.18 16.93 13.37 17.59 14.70 10.78 14.58 10.32 5.16 17.00 

(a) Construct Q-Q pI t f h . o sot e margInal distributio . ~lso, construct the three possible scatt d' ns of fuel, repair, and capital costs. d~fferent va~iables. Are the outliers ev~~e~:~rams from the pairs of observations on dlagran;ts ~Ith, the apparent outliers remov' :zeat the Q-Q plots and the scatter mally dlstnbuted? Discuss. e. 0 the data now appear to be nor-
(b) Constr~ct 95% Bonferroni intervals for t . .. 95% T -intervals. Compare the two t f~e mdlvldual cost means. Also find the se S 0 Intervals. ' 

5.23. Consider the 30 observations on male E . Table 6.13 on page 349. gyphan skulls for the first time period given in 
(a) Construct Q-Q plots of the mar inal . . . basl~ngt~ and nasheight variabYes. ~~s~nbuhons of the ~axbreath, basheight, mulhvanate observations Do th d' construct a chi-square plot of the Explain. . ese ata appear to be normally distributed? 
(b) Construct 95% Bonferroni intervals for .. . Also, find the 95% TZ-intervals C the IndlVldual skull dimension variables. 

5 2" . ompare the two sets of intervals. 
. 4. !:!smg the Madison, Wisconsin Police D t X charts .fo! X3 = holdover hours and e.!'a~ ment data in Table 5.8, construct individual charactenshcs seem to be in contro\? (Tb 4

t . COA hours. Do these individual process . a IS, are they stable?) Comment. 
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5.25. Refer to Exercise 5.24. Using the data on the holdover and COA overtime hours, con- TABLE 5.14 Car Body Assembly Data struct a quality ellipse and a r2-chart .. Does the process represented by the bivariate observations appear to be in control? (That is, is it stable?) Comment. Do you 
Index Xl X2 

I 
something from the multivariate control charts that was not apparent in the' 

X3 X4 X5 X6 

\ 
X -charts? 

1 -0.12 0.36 0040 
2 -0.60 -0.35 

0.25 1.37 -0.13 

5.26. Construct a r 2-chart using the data on Xl = legal 
appearances overtime 3 -0.13 0.05 

0.04 -0.28 -0.25 -0.15 
0.84 0.61 

\ 

X2 = extraordinary event overtime hours, and X3 = holdover overtime 
4 -0046 -0.37 0.30 

1.45 0.25 

Table 5.8. Compare this chart with the chart in Figure 5.8 of Example 5.10. Does 
5 -0046 -0.24 0.37 

0.00 -0.12 -0.25 

\ 

r2 with an additional characteristic change your conclusion about process 
6 -0046 -0.16 0.Q7 

0.13 0.78 -0.15 

Explain. 
7 -0046 -0.24 0.13 

0.10 1.15 -0.18 

8 -0.13 0.05 -0.01 
0.02 0.26 -0.20 

5.27. Using the data on X3 = holdover hours and X4 = COA hours from Table 5.8, 
9 -0.31 -0.16 -0.20 

0.09 -0.15 -0.18 

a prediction ellipse for a future observation x' = (X3' X4)' Remember, a 
10 -0.37 -0.24 0.37 

0.23 0.65 0.15 

ellipse should be calculated from a stable process. Interpret the result. 
11 -1.08 -0.83 -0.81 

0.21 1.15 0.05 

12 -0042 -0.30 0.37 
0.05 0.21 0.00 

5.28 
As part of a study of its sheet metal assembly process, a major automobile manufacturer 

13 -0.31 0.10 -0.24 
-0.58 0.00 -0045 

uses sensors that record the deviation from the nominal thickness (miJIimeters) at six 10-
14 -0.14 0.06 0.18 

0.24 0.65 0.35 

cations on a car. The first four are measured when the car body is complete and the 
15 -0.61 -0.35 

-0.50 1.25 0.05 

16 -0.61 
-0.24 0.75 0.15 

two are measured on the underbody at an earlier stage of assembly. Data on 50 cars are 
-0.30 -0.20 

-0.20 

17 -0.84 
-0.21 -0.50 

given in Table 5.14. 
-0.35 -0.14 

-0.25 

18 -0.96 -0.85 
-0.22 1.65 -0.05 

(a) The process seems stable for the first 30 cases. Use these cases to estimate Sand i. 
19 -0.90 -0.34 

0.19 -0.18 1.00 -0.08 

Then construct a r2 chart using all of the variables. Include all 50 cases. 
20 -0046 

-0.78 -0.15 0.25 
0.36 0.24 

0.25 

(b) Which individual locations seem to show a cause for concern? 
21 -0.90 -0.59 0.13 

-0.58 0.15 0.25 

22 -0.61 -0.50 -0.34 
0.13 0.60 -0.08 

5.29 
Refer to the car body data in Exercise 5.28. These are all measured as deviations from 

23 -0.61 -0.20 -0.58 
-0.58 0.95 -0.08 

target value so it is appropriate to test the null hypothesis that the mean vector is zero. 
24 -0046 -0.30 -0.10 

-0.20 1.10 0.00 

Using the first 30 cases, test Ho: JL = 0 at ll' = .05 
25 -0.60 -0.35 -0045 

-0.10 0.75 -0.10 

26 -0.60 -0.36 -0.34 
0.37 1.18 -0.30 

5.30 
Refer to the data on energy consumption in Exercise 3.18. 

27 -0.31 0.35 
-0.11 1.68 -0.32 

-0045 -0.10 

(a) Obtain the large sample 95% Bonferroni confidence intervals for the mean con· 

28 -0.60 -0.25 -0042 
1.00 -0.25 

29 -0.31 0.25 
0.28 0.75 0.10 

sumption of each of the four types, the total of the four, and the difference, petrole- 30 -0.36 -0.16 
-0.34 -0.24 0.65 0.10 

urn minus natural gas. 
31 

0.15 -0.38 
-0040 -0.12 -0048 

1.18 -0.10 

(b) Obtain the large sample 95% simultaneous r intervals for the mean consumption 
32 -0.60 -0040 

-0.34 0.30 -0.20 
-0.20 

of each of the four types, the total of the four, and the difference, petroleum minus 
33 -0047 -0.16 -0.34 

0.32 0.50 0.10 

natural gas. Compare with your results for Part a. 
34 -0046 -0.18 0.16 

-0.31 0.85 0.60 

35 -0044 
0.01 0.60 

....:0.12 -0.20 
0.35 

36 -0.90 -0040 
-0048 1040 0.10 

0.75 -0.31 0.60 -0.10 
5.31 Refer to the data on snow storms in Exercise 3.20. 37 -0.50 -0.35 

(a) Find a 95% confidence region for the mean vector after taking an appropriate trans-
0.84 

formation. 

38 -0.38 0.08 0.55 
-0.52 0.35 -0.75 

39 -0.60 
-0.15 0.80 

-0.35 -0.35 
-0.10 

(b) On the same scale, find the 95% Bonferroni confidence intervals for the two compo-
40 0.11 0.24 0.15 

-0.34 0.60 0.85 

nent means. 
41 0.05 0.12 

0.40 0.00 -0.10 

42 -0.85 -0.65 
0.85 0.55 1.65 -0.10 

43 -0.37 -0.10 
0.50 0.35 0.80 -0.21 

-0.10 -0.58 1.85 -0.11 44 -0.11 0.24 0.75 -0.10 0.65 -0.10 ~ .. 
45 -0.60 -0.24 0.13 0.84 0.85 0.15 46 -0.84 -0.59 0.05 0.61 1.00 0.20 47 -0046 -0.16 0.37 -0.15 0.68 0.25 ~ 

l 
48 -0.56 -0.35 
49 -0.56 -0.16 

-0.10 0.75 0045 0.20 

50 -0.25 -0.12 
0.37 -0.25 1.05 0.15 

"1 

-0.05 -0.20 1.21 

k" 
Source: Data Courtesy of Darek Ceglarek. 

0.10 
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COMPARISONS OF SEVERAL 
MULTIVARIATEMEANS 

6.1 Introduction 
The ideas developed in Chapter 5 can be extended to handle problems involving the 
comparison of several mean vectors. The theory is a little more complicated and 
rests on an assumption of multivariate normal distributions or large sample sizes. 
Similarly, the notation becomes a bit cumbersome. To circumvent these problems, 
we shall often review univariate procedures for comparing several means and then 
generalize to the corresponding multivariate cases by analogy. The numerical exam
ples we present will help cement the concepts. 

Because comparisons of means frequently (and should) emanate from designed 
experiments, we take the opportunity to discuss some of the tenets of good experi
mental practice. A repeated measures design, useful in behavioral studies, is explicitly 
considered, along with modifications required to analyze growth curves. 

We begin by considering pairs of mean vectors. In later sections, we discuss sev
eral comparisons among mean vectors arranged according to treatment levels. The 
corresponding test statistics depend upon a partitioning of the total variation into 
pieces of variation attributable to the treatment sources and error. This partitioning 
is known as the multivariate analysis o/variance (MANOVA). 

6.2 Paired Comparisons and a Repeated Measures Design 

, Paired Comparisons 

Measurements are often recorded under different sets of experimental conditions 
to see whether the responses differ significantly over these sets. For example, the 
efficacy of a new drug or of a saturation advertising campaign may be determined by 
comparing measurements before the "treatment" (drug or advertising) with those 

273 
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after the treatment. In other situations, two or more treatments can be aOInm:istelrl'j 
to the same or similar experimental units, and responses can be compared to 
the effects of the treatments. 

One rational approach to comparing two treatments, or the presence and 
sence of a single treatment, is to assign both treatments to the same or identical 
(individuals, stores, plots of land, and so forth). The paired responses may then 
analyzed by computing their differences, thereby eliminating much of the 
of extraneous unit-to-unit variation. 

In the single response (univariate) case, let X jI denote the response 
treatment 1 (or the response before treatment), and let X jZ denote the response 
treatment 2 (or the response after treatment) for the jth trial. That is, (Xjl, 
are measurements recorded on the jth unit or jth pair of like units. By design, 
n differences . 

j = 1,2, ... , n 

should reflect only the differential effects of the treatments. 
Given that the differences Dj in (6-1) represent independent observations 

an N (0, u~) distribution, the variable 

l5 - 8 
t=--

Sd/Yn 
where 

_ 1 n 1 " 
D = - 2: Dj and s~ = -_- 2: (Dj _l5)z 

n j=I n 1 j=l 

has a t-distribution with n - 1 dJ. Consequently, an a-level test of 

Ho: 0 = 0 (zerome~ndifferencefortreatments) 
versus 

HI: 0 * 0 
may be conducted by comparing I t I with tll_l(a/2)-the upper l00(a/2)th per
centile of a t-distribution with n - 1 dJ. A 100(1 - a) % confidence interval for the 
mean difference 0 = E( Xi! - X j2 ) is provided the statement 

_ Sd - Sd 
d - t,,_I(a/2) Vn :5 8 :5 d + fll -I(a/2) Yn (6-4) 

(For example, see [11].) 
Additional notation is required for the multivariate extension of the paired

comparison procedure. It is necessary to distinguish between p responses, two treat
ments, and n experimental units. We label the p responses within the jth unit as 

Xli! = variable 1 under treatment 1 

Xl j2 = variable 2 under treatment 1 

Xlj p = variab!.~.~.~.~.~~.~.e~~~~.~~.~ .... 
-X;-;~-';;;'~~;:f~ble 1 under treatment 2 

X2jZ = variable 2 under treatment 2 

X2j p = variable p under treatment 2 
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and the p paired-difference random variables become 

Dj~ = X lj1 - X ZiI 

Dj2 = X lj2 - X 2j2 

Djp = X ljp - X 2jp 

Let Dj = fDjI , Djz , ••• , Djp), and assume, for j = 1,2, ... , n, that 

(6-5) 

(6-6) 

If, in addition, D I , D 2, ... , Dn are independent Np ( 8, l:d) random vectors, infer
ences about the vector of mean differences 8 can be based upon a TZ-statistic. 

S pecificall y, 

T Z = n(D - 8)'S;?(D - 8) (6-7) 
where 

_ 1 Il 1 n 

D = - 2: Dj and Sd = -_- 2: (Dj - D)(Dj - D)' (6-8) 
n J=I n 1 j=I 

Result 6.1. Let the differences Db Oz, ... , Dn be a random sample from an 
Np ( 8, l:d) population. Then 

T Z = n(D - 8)'SdI (D - 8) 

is distributed as an [( n - 1 )p/ (n - p) )Fp.n-p random variable, whatever the true 8 
and l:d' . 

If nand n - p are both large, TZ is approximately distributed as a ~ random 
variable, regardless of the form of the underlying population of difference~. 
Proof. The exact distribution of T2 is a restatement of the summary in (5-6), with 
vectors of differences for the observation vectors. The approximate distribution of 
TZ, for n andn - p large, follows from (4-28). • 

The condition 8 = 0 is equivalent to "no average difference between the two 
treatments." For the ith variable, 0; > 0 implies that treatment 1 is larger, on aver
age, than treatment 2. In general, inferences about 8 can be made using Result 6.1. 

Given the observed differences dj = [djI , dj2 , .•• , dj p), j = 1,2, ... , n, corre
sponding to the random variables in (6-5), an a-level test of Ho: 8 = 0 versus 
HI: 8 * 0 for an Np ( 8, l:d) population rejects Ho if the observed 

TZ = nd'S-Id > (n - l)p F () 
d (n _ p) ~n-p a 

where Fp,n_p(a) is tEe upper (l00a)th percentile of an F-distribution with p 
and n - p dJ. Here d and Sd are given by (6-8). 
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A lOD( 1 - a)% confidence region for B consists of all B such that 

_ ,-t- (n-1)p 
(d - B) Sd (d - B) ~ ( ) Fp,lI_p(a) n n - p . 

(6-9) 

Also, 100( 1 - ~a)% simultaneous confidence intervals for the individual mean 

differences [Ji are given by 
en - 1)p g 
(n _ p) Fp,n-p(a) \j-; (6-10) 

where d
i 
is the ith element of ii.and S~i is the ith diagon~l e~ement of Sd' , 

For n - p large, [en - l)p/(n - p)JFp,lI_p(a) = Xp(a) and normalIty 

need not be assumed. . ' 
The Bonferroni 100(1 - a)% simultaneous confidence mtervals for the 

individual mean differences are 

ai: di ± tn-I(2~) ~ (6-10a) 

where t
n
_t(a/2p) is the upper 100(a/2p)th percentile of a t-distribution with 

n - 1 dJ. 

E I 6 I (Checking for a mean difference with paired observations) Municipal 
xamp e . . h' d' h . 

t t treatment plants are required by law to momtor t elr lSC arges mto 
was ewa er . b'l' fd t f 
rivers and streams on a regular basis. Concern about the rella 1 Ity 0 a a rom one 
of these self-monitoring programs led to a study in whi~h samples of effluent were 
divided and sent to two laboratories for testing. One-half of each sample ,:"as sent to 
the Wisconsin State Laboratory of Hygiene, and one-half was sent to a prIvate co~
merciallaboratory routinely used in the monitoring pr~gram. Measuremen~s of biO
chemical oxygen demand (BOD) and suspended solIds (SS~ were o?tamed, for 
n = 11 sample splits, from the two laboratories. The data are displayed 111 Table 6.1. 

Table 6.1 Effluent Data 

Commercial lab State lab of hygiene 

Samplej Xljl (BOD) Xlj2 (SS) X2jl (BOD) X2j2 (SS) 

1 6 27 25 15 

2 6 23 28 13 

3 lR 64 36 22 

4 8 44 35 29 

5 11 30 15 31 

6 34 75 44 64 

7 28 26 42 30 

8 71 124 54 64 

9 43 54 34 56 

10 33 30 29 20 

11 20 14 39 21 

Source: Data courtesy of S. Weber. 
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Do the two laboratories' chemical analyses agree? If differences exist, what is 
their nature? 

The T2-statistic for testing Ho: 8' = [01, a2) = [O,OJ is constructed from the 
differences of paired observations: 

dj! = Xljl - X2jl -19 -22 -18 -27 -4 -10 -14 17 9 4 -19 

dj2 = Xlj2 - X2j2 12 10 42 15 -1 11 -4 60 -2 10 -7 

Here 

d = [~IJ = [-9.36J 
d2 13.27 ' 

s = [199.26 88.38J 
d 88.38 418.61 

and 

T2 = l1[ -9.36 13.27J [ .0055 
, -.0012 

-.0012J [-9.36J = 6 
.0026 13.27 13. 

Taking a = .05, we find that [pen -1)/(n - p»)Fp.n_p(.05) = [2(1O)/9)F2,9(·05) 

= 9.47. Since T2 = 13.6 > 9.47, we reject Ho and conclude that there is a nonzero 
mean difference between the measurements of the two laboratories. It appears, 
from inspection of the data, that the commercial lab tends to produce lower BOD 
measurements and higher SS measurements than the State Lab of Hygiene. The 
95% simultaneous confidence intervals for the mean differences a1 and 02 can be 
computed using (6-10). These intervals are 

- ~(n-1)p J?j;~J J199.26 
01: d] ± ( ) Fp n-p(a) - = -9.36 ± V9.47 --.-

n-p' n 11 

or (-22.46,3.74) 

)418.61 
[J2: 13.27 ± V9.47 -1-1 - or (-5.71,32.25) 

The 95% simultaneous confidence intervals include zero, yet the hypothesis Ho: iJ = 0 
was rejected at the 5% level. What are we to conclude? 

The evideQ.ce points toward real differences. The point iJ = 0 falls outside 
the 95% confidence region for li (see Exercise 6.1), and this result is consistent 
with the T 2-test. The 95% simultaneous confidence coefficient applies to the 
entire set of intervals that could be constructed for all possible linear com
binations of the form al01 + a202' The particular intervals corresponding to the 
choices (al = 1, a2 '" 0) and (aJ = 0, a2 = 1) contain zero. Other choices of a1 
and a2 will produce siIl1ultaneous intervals that do not contain zero. (If the 
hypothesis Ho: li '" 0 were not rejected, then all simultaneous intervals would 
include zero.) 

The Bonferroni simultaneous intervals also cover zero. (See Exercise 6.2.) 
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Our analysis assumed a normal distribution for the Dj. In fact, the situation 
further complicated by the presence of one or, possibly, two outliers. (See 
6.3.) These data can be transformed to data more nearly normal, but with 
small sample, it is difficult to remove the effects of the outlier(s). (See Exercise 

The numerical results of this example illustrate an unusual circumstance 
can occur when.making inferences. 

The experimenter in Example 6.1 actually divided a sample by first shaking it 
then pouring it rapidly back and forth into two bottles for chemical analysis. This 
prudent because a simple division of the sample into two pieces obtained by 
the top half into one bottle and the remainder into another bottle might result in 
suspended solids in the lower half due to setting. The two laboratories would then 
be working with the same, or even like, experimental units, and the conclusions 
not pertain to laboratory competence, measuring techniques, and so forth. 

Whenever an investigator can control the aSSignment of treatments to experi
mental units, an appropriate pairing of units and a randomized assignment of 
ments can' enhance the statistical analysis. Differences, if any, between supposedly 
identical units must be identified and most-alike units paired. Further, a random as
signment of treatment 1 to one unit and treatment 2 to the other unit will help elim
inate the systematic effects of uncontrolled sources of variation. Randomization can 
be implemented by flipping a coin to determine whether the first unit in a pair re
ceives treatment 1 (heads) or treatment 2 (tails). The remaining treatment is then 
assigned to the other unit. A separate independent randomization is conducted for 
each pair. One can conceive of the process as follows: 

Experimental Design for Paired Comparisons 

2 3 n 

{6 D D ••• 0 Like pairs of 
experimental 

units D D ···0 
t t t t 

Treatments Treatments Treatments Treatments 
I and 2 I and 2 I and2 ••• I and2 

assigned assigned assigned assigned 
at random at random at random at random 

We conclude our discussion of paired comparisons by noting that d and Sd, and 
hence T2, may be calculated from the full-sample quantities x and S. Here x is the 
2p x 1 vector of sample averages for the p variables on the two treatments given by 

x' == [XII, X12,"" Xl p' X2l> Xn,·.·, X2p] (6-11) 

and S is the 2p x 2p matrix of sample variances and covariances arranged as 

S == [(~;~) (~~~)] 
S21 522 

(pXp) (pxp) 
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~:t:~~~~ SS~ c~nt~in~ the sample variances and covariances for the p variables on 
f th . .I~~ ar y, 22 contaIns the sample variances and covariances computed 
or .e p vana es on treatment 2. Finally, S12 = Sh are the matrices of sample 

cov.arbIa
l 
nces computed from Observations on pairs of treatment 1 and treatment 2 

vana es. 
Defining the matrix 

r 0 0 -1 0 
. 0 1 0 0 -1 e = 
(px2p) ~ 

0 1 0 0 

(6-13) 

j 

(p + 1 )st column 

we can verify (see Exercise 6.9) that 

j = 1,2, ... , n 

d = ex and Sd = esc' (6-14) 

Thus, 

(6-15) 

and it .is. not necessary first to calculate the differences d d d 0 th th 
hand t . t I I 1, 2"", n' n eo er 

, ~ IS WIse 0 ca cu ate these differences in order to check normality and the as
sumptIOn of a random sample. 

Each row e of the m t' e' (6 1 ) . 
t A 

I . . a nx In - 3 IS a contrast vector because its elements 
sum 0 zero. ttention IS usually t d ' Ea h . . cen ere on contrasts when comparing treatments. 

c contrast IS perpendIcular to the vector l' = [1 1 1]' '1 - 0 Th 
com t 1" , "", smce Ci -. e 
t t ·p?neT~ Xj, rep~ese~tmg the overall treatment sum, is ignored by the test 

s a IShc presented m thIS section. 

A Repeated Measures Design for Comparing Treatments 

q
Atnothter generalization of the univariate paired t-statistic arises in situations where 

rea ments are compared with res t t . I 
o . I" pec 0 a smg e response variable. Each subject 

Th
r e~Pthenbmenta .Ulll~ receIves each treatment once over successive periods of time 

eJ 0 servatlOn IS . 

j = 1,2, ... ,n 

where X ji is the response to the ith treatment on the ,'th unl't The d 
m as t fr . name repeate 

e ures s ems om the fact that all treatments are administered to each unit. 
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For comparative purposes, we consider contrasts of the components 

IL = E(Xj ). These could be 

jJm~c,p r-~J [' -1 0 

ILl -:- IL3 = ~ 0 -1 
. . 

~. . 
ILl - ILq 1 0 0 

or 

l :~ ~ :: ] = l~ ~ -: ~ ... . ~ ~ ll~~J = C21L 

ILq - ILq-l 0 0 0 -1 1J ILq 

Both Cl and C
2 

are called contrast matrices, because their q - 1 rows are linearly' 
independent and each is a contrast vector. The nature of the design eliminates much 
of the influence of unit-to-unit variation on treatment comparisons. Of course, . 
experimenter should randomize the order in which the treatments are presented to 

each subject. 
When the treatment means are equal, C1IL = C2IL = O. In general, the hypoth-

esis that there are no differences in treatments (equal treatment means) becomes 
CIL = 0 for any choice of the contrast matrix C. 

Consequently, based on the contrasts CXj in the observations, we have means 
C x and covariance matrix CSC', and we test CIL = 0 using the T

2
-statistic 

T2 = n(Cx),(CSCTlCX 

Test for Equality of Treatments in a Repeated Measures Design 

Consider an N
q

( IL, l:) population, and let C be a contrast matrix. An a-level test 
of Ho: CIL = 0 (equal treatment means) versus HI: CIL *- 0 is as follows: 

Reject Ho if 
(n - 1)(q - 1) 

T2 = n(Cx)'(CSCTICX > (n _ q + 1) Fq-I.n-q+l(a) 
(6-16) 

where F
q
-1.n-q+l(a) is the upper (lOOa)th percentile of an F-distribution wit~ 

q _ 1 and n - q + 1 dJ. Here x and S are the sample mean vector and covan-

ance matrix defined, respectively, by 

1 ~ 1 ~ ( -) ( -)' x = - LJ Xj and S = --=1 LJ Xj - x Xj - x 
n j=1 n j=1 

It can be shown that T2 does not depend on the particular choice of C.
l 

I Any pair of contrast matrices Cl and C2 must be related by Cl = BC2, with B nonsingular. 
This follows because each C has the largest possible number, q - 1. of linearly independent rows, 
all perpendicular to the vector 1. Then (BC2),(BC2SCiBTI(BC2) = CiB'(BTI(C2SCirIB~IBC2 = 
Q(C

2
Sq)-IC2 • so T2 computed with C2 orC I = BC2gives the same result. 
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. A co~fidence region for contrasts CIL, with IL the mean of a normal population, 
IS determmed by the set of all CIL such that 

n(Cx - CIL),(CSCT\Cx - CIL) :5 (n - 1)(q - 1) F ( ) 
(n - q + 1) q-l,n-q+1 ex (6-17) 

whe~e x an~ S are as defined in (6-16). Consequently, simultaneous 100(1 - a)% 
c?nfIdence mtervals for single contrasts c' IL for any contrast vectors of interest are 
gIven by (see Result 5A.1) 

C'IL: c'x ± )(n - 1)(q - 1) F ( ) )CIsc 
(n - q + 1) q-1.n-q+1 a n (6-18) 

Example .6.2 (Testing for equal treatments in a repeated measures design) Improved 
anesthetIcs are often developed by first studying their effects on animals. In one 
st~~y, 19 dogs were initially given the drug pentobarbitol. Each dog was then ad
mIlllstered carbon dioxide CO2 at each of two pressure levels. Next halothane (H) 
was added, and the administration of CO2 was repeated. The respon~e, milliseconds 
between heartbeats, was measured for the four treatment combinations: 

Present 

Halothane 

Absent 

Low High 

C02 pressure 

Table 6.2 contains the four measurements for each of the 19 dogs, where 

Treatment 1 = high CO2 pressure without H 

Treatment 2 = Iow CO2 pressure without H 

Treatment 3 = high CO2 pressure with H 

Treatment 4 = Iow CO2 pressure with H 

. We shall analyze the anesthetizing effects of CO2 pressure and halothane from 
thIS repeated-measures design. 

There are three treatment contrasts that might be of interest in the experiment. 
Let ILl , IL~' IL3, and IL4 correspond to the mean responses for treatments 1,2,3, and 
4, respectIvely. Then 

(

Halothane contrast representing the) 
(IL3 + 1L4) - (ILl + IL2) = difference between the presence and 

absence of halothane 

(ILl + IL3) - (IL2 + IL4) = (C02 contrast. representing the difference) 
between hIgh and Iow CO2 pressure 

(

Contrast representing the influence ) 
(ILl + IL4) - (IL2 + IL3) = of halothane on CO2 pressure differences 

(H -C02 pressure "interaction") 
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Table 6.2 Sleeping-Dog Data 

Treatment 
Dog 1 2 3 4 

1 426 609 556 600 

2 ~ 253 236 392 395 

3 359 433 349 357 

4 432 431 522 600 

5 405 426 513 513 

6 324 438 507 539 

7 310 312 410 456 

8 326 326 350 504 

9 375 447 547 548 

10 286 286 403 422 

11 349 382 473 497 

12 429 410 488 547 

13 348 377 447 514 

14 412 473 472 446 

15 347 326 455 468 

16 434 458 637 524 

17 364 367 432 469 

18 420 395 508 531 

19 397 556 645 625 

Source: Data courtesy of Dr. 1. Atlee. 

With p.' = [P.l, ILz, IL3, IL4j, the contrast matrix C is 

C = [-~1 =~ ~ -~] 
-1 -1 1 

The data (see Table 6.2) give 

f

368.21J 
404.63 

i = 479.26 

502.89 f

2819.29 
3568.42 7963.14 

and S = 2943.49 5303.98 6851.32 

2295.35 4065.44 4499.63 

It can be verified that 

Cx = -60.05 ; 
[ 

209.31] 

-12.79 
[

9432.32 1098.92 

CSC' = 1098.92 5195.84 

927.62 914.54 

927.62] 
914.54 

7557.44 

and 

rZ = n(Cx)'(CSCTl(Ci) = 19(6.11) = 116 
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With a = .05, 

(n - l)(q - 1) 18(3) 18(3) 

(n - q + 1) Fq- I ,Il_q+l(a) = ~ F3,16(·05) = 16 (3.24) = 10.94 

From (6-16), rZ = 116> 10.94, and we reject Ho: Cp. =: 0 (no treatment effects). 

To see which of the contrasts are responsible for the rejection of HQ, we construct 

95% simultaneous confidence intervals for these contrasts. From (6-18), the 
contrast 

cip. = (IL3 + IL4) - (J.LI + J.L2) =: halothane influence 

is estimated by the interval 

18(3) )CiSCl . ~ )9432.32 
(X3 + X4) - (XI + X2) ± 16" F3, 16(.05) ~ = 209.31 ± v 10.94 -1-9 -

= 209.31 ± 73.70 

where ci is the first row of C. Similarly, the remaining contrasts are estimated by 

CO2 pressure influence = (J.Ll + J.L3) - (J.Lz + J.L4): 

)5195.84 
- 60.05 ± VlO.94 -- = -60.05 ± 54.70 

19 

H-C02 pressure "interaction" = (J.Ll + J.L4) - (J.L2 + J.L3): 

)7557.44 
- 12.79 ± VlO.94 -1-9 - = -12.79 ± 65.97 

The first confidence interval implies that there is a halothane effect. The pres

ence of halothane produces longer times between heartbeats. This occurs at both 

levels of CO2 pressure, since the H-C02 pressure interaction contrast, 

(J.LI + J.L4) - (li2 - J.L3), is not significantly different from zero. (See the third 

confidence interval.) The second confidence interval indicates that there is an 

effect due to CO2 pressure: The lower CO2 pressure produces longer times between 
heartbeats. 

Some caution must be exercised in our interpretation of the results because the 

trials with halothane must follow those without. The apparent H-effect may be due 

to a time trend. (Ideally, the time order of all treatments should be determined at 
random.) _ 

The test in (6-16) is appropriate when the covariance matrix, Cov (X) = l:, 

cannot be assumed to have any special structure. If it is reasonable to assume that l: 

has a particular structure, tests designed with this structure in mind have higher 

power than the one in (6-16). (For l: with the equal correlation structure (8-14), see 

a discussion of the "randomized block" design in (17J or [22).) 
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6.3 Comparing Mean Vectors from Two Populations 
A TZ-statistic for testing the equality of vector means from two multivariate 
tions can be developed by analogy with the univariate procedure. (See [l1J for 
cussion of the univariate case.) This T 2-statistic is appropriate for <-Ulnn,.r ... ;;;' 

responses from one-set of experimental settings (population 1) with independent 
sponses from another set of experimental settings (population 2). The COlnD,ari~:nn. 
can be made without explicitly controlling for unit-to-unit variability, as in 
paired-comparison case. 

If possible, the experimental units should be randomly assigned to the sets 
experimental conditions. Randomlzation will, to some extent, mitigate the 
of unit"to-unit variability in a subsequent comparison of treatments. Although 
precision is lost relative to paired comparisons, the inferences in the tW'O-~)oDluhlti('ln 
case are, ordinarily, applicable to a more general collection of experimental units 
simply because unit homogeneity is not required. 

. Consider a random sample of size nl from population 1 and a sample of', 
size n2 from population 2. The observations on p variables can be arranged as 
follows: 

Sample Summary statistics 

(Population 1) 
XII,xI2"",XlnJ 

(Population 2) 
X21, XZ2, ... , X2n2 

In this notation, the first subscript-l or 2-denotes the population. 
We want to make inferences about 

(mean vector of population 1) - (mean vector of population 2) = ILl - ILz. 

For instance, we shall want to answer the question, Is ILl = IL2 (or, equivalently, is 
ILl - IL2 = O)? Also, if ILl - IL2 *- 0, which component means are different? 

With a few tentative assumptions, we are able to provide answers to these questions. 

Assumptions Concerning the Structure of the Data 

1. The sample XII, X I2,.·., X ln1 , is a random sample of size nl from a p-variate 
population with mean vector ILl and covariance matrix ~I' 

2. The sample X 21 , X 2Z, ... , X 2n2 , is a random sample of size n2 from a p-variate 
population with mean vector IL2 and covariance matrix ~2' 

3. Also, XII, X IZ ,"" XlnJ' are independent ofX2!,Xzz"", X 2n2 . (6-19) 

We shall see later that, for large samples, this structure is sufficient for making 
inferences about the p X 1 vector ILl - IL2' However, when the sample sizes nl and 
n2 are small, more assumptions are needed. 
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Further Assumptions When nl and n2 'Are Small 

1. Both populations are muItivariate normal. 

2. Also, ~I = ~z (same covariance matrix). (6-20) 

The second assumption, that ~I = ~z, is much stronger than its univariate counter
part. Here we are assuming that several pairs of variances and covariances are 
nearly equal. 

n1 

When ~I = ~2 = ~, L (xlj - XI) (Xlj - xd is an estimate of (n} - 1)~ and 
j=1 n2 

L(X2j - X2)(X2j - xz)'isanestimateof(n2 - 1)~.Consequently,wecanpoolthe 
j=1 
information in both samples in order to estimate the common covariance ~. 

We set 

(6-21) 

~ ~ 
Since L (Xlj - XI) (xlj - xd has nl - 1 dJ. and L (X2j - X2) (X2j - xz)' has 

j=1 j=1 

n2 - 1 dJ., the divisor (nl - 1) + (nz - 1) in (6-21) is obtained by combining the 
two component degrees of freedom. [See (4-24).J Additional support for the pool
ing procedure comes from consideration of the multivariate normal likelihood. (See 
Exercise 6.11.) 

To test the hypothesis that ILl - IL2 = 80 , a specified vector, we consider the 
squared statistical distance from XI - Xz to 80 , Now, 

£(XI - X2) = £(XI) - £(X2) = ILl - ILz 

Since the independence assumption in (6-19) implies that Xl and X 2 are indepen
dent and thus Cov (Xl, Xz) = 0 (see Result 4.5), by (3-9), it follows that 

- - - - 1 1 (1 1) COV(XI - Xz) = Cov(Xd + Cov(Xz) = -~ + -~ = - + - ~ (6-22) 
nl nz nl nz 

Because Spooled estimates ~, we see that 

(:1 + :J Spooled 

is an estimator of Cov (X I - X2). 
The likelihood ratio test of 

Ho: ILl - ILz = 8 0 

is based on the square of the statistical distance, T2, and is given by (see [1]). 
Reject Ho if 

T
Z 

= (XI - X2 - ( 0)' [ (:1 + :JSPooled JI (XI - X2 - ( 0) > CZ (6-23) 
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where the critical distance cZ is determined from the distribution of the two-sample 
T2.statistic. 

Result 6.2. IfXll , X 12 ' ... , XlIII is a random sample of size nl from Np(llj, I) 
X 2 1> X22, ••. ' X 21lZ is an independent random sample of size nz from Np(1l2, I), 

2 - - - , [( 1 1 ) J-l - - ( T = [Xl - Xz - (Ill - Ilz)] nl + nz Spooled [XI - Xz - III - Ilz)j 

is distributed as 
(n! + nz - 2)p 

( + 1) Fp.",+I7,-p-l 
nl nz - P -

Consequently, 

[ 
- - , [( 1 1 ) J-I - - zJ P (Xl - Xz - (Ill - Ilz» III + nz Spooled (Xl - X2 - (Ill - 1l2» s c = 1 - er . 

(6-24) 

where 

Proof. We first note that 

_ - 1 1 1 IX 1X IX X - X = - X ll + - X I2 + '" + - XI - - 21 - - 22 - '" - - 2 
1 2 n1 n1 nl "I n2 nZ nZ "2 

is distributed as 

by Result 4.8, with Cl = C2 = .. , = C'" = llnl and C",+I = C"I+2 = .. , = C"'+"2 = 
-l/nz. According to (4-23), 

(n1 - 1 )SI is distributed as w,'I- l (I) and (nz - 1 )Sz as W1l2- j Cl) 

By assumption, the X1/s and the X2/s are independent, so (nl - l)SI and 
(nz - 1 )Sz are also independent. From (4-24), Cnl - 1 )Sj + (nz - 1 )Sz is then dis
tributed as Wnl+nz-z(I). Therefore, 

T2 = - + - (Xl - Xz - (Ill - Ilz» S~ooled - + - (Xl - Xz - (Ill - IlZ) 
( 

1 1 )-1/2 _ - , 1 ( 1 1 )-l/Z - -
nl nZ nl nZ 

= (multivariate normal)' (Wishart random matrix)-I (multivariate normal) 
random vector dJ. random vector 

= N (0, I)' [Wn l +nr 2(I)J-1 N (0, I) 
P nl + nz - 2 P 

which is the TZ·distribution specified in (5-8), with n replaced by nl + n2 - 1. [See 
(5-5). for the relation to F.] • 
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We are primarily interested in confidence regions for III - 1l2' From (6-24), we 
conclude that all III - 112 within squared statistical distance CZ of Xl - xz constitute 
the confidence region. This region is an ellipsoid centered at the observed difference 
Xl - Xz and whose axes are determined by the eigenvalues and eigenvectors of 
Spooled (or S;;';oled)' 

Example 6.3 (Constructing a confidence region for the difference of two mean vectors) 
Fifty bars of soap are manufactured in each of two ways. Two characteristics, 
Xl = lather and Xz = mildness, are measured. The summary statistics for bars 
produced by methods 1 and 2 are 

X = [8.3J 
I 4.1' 

X = [1O.2J 
2 3.9' 

SI = U !J 
Sz = [~ !J 

Obtain a 95% confidence region for III - 1l2' 
We first note that SI and S2 are approximately equal, so that it is reasonable to 

pool them. Hence, from (6-21), 

49 49 [2 51J Spooled = 98 SI + 98 Sz = 1 

Also, 

- - [-1.9J Xl - X2 = 
.2 

so the confidence ellipse is centered at [ -1.9, .2)'. The eigenvalues and eigenvectors 
of Spooled are obtained from the equation 

0= ISpooled - All = /2 - AI/ = A2 - 7A + 9 
15- A 

so A = (7 ± y49 - 36)/2. Consequently, Al = 5.303 and A2 = 1.697, and the 
corresponding eigenvectors, el and ez, determined from 

i = 1,2 
are 

[
.290J [ .957J 

el = .957 and ez = _ .290 

By Result 6.2, 

( 
1 1) 2 (1 1 ) (98)(2) 
nl + n2 C = 50 + 50 (97) F2•97(·05) = .25 

since F2,97(.05) = 3.1. The confidence ellipse extends 

v'A; 1(1.. + 1..) c2 = v'A; v'25 \j nl n2 

.. 
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2.0 

-1.0 Figure 6.1 95% confidence ellipse 
forlLl - IL2' 

units along the eigenvector ei, or 1.15 units in the el direction and .65 units in the ez 
direction. The 95% confidence ellipse is shown in Figure 6.1. Clearly, ILl - ILz == 0 
is not in the ellipse, and we conclude that the two methods of manufacturing soap 
produce different results. It appears as if the two processes produce bars of soap 
with about the same mildness (Xz), but lhose from the second process have more 
lather (Xd. • 

Simultaneous Confidence Intervals 

It is possible to derive simultaneous confidence intervals for the components of the 
vector ILl - ILz· These confidence intervals are developed from a consideration of 
all possible linear combinations of the differences in the mean vectors. It is assumed 
that the parent multivariate populations are normal with a common covariance 1:. 

Result 6.3. Let cZ == [(111 + I1Z - 2)p/(nl + I1Z - P - 1)]Fp.l1l+n2-p-I(a). With 
probability 1 - a. 

will cover a'(ILI - ILz) for all a. In particular ILli - ILZi will be covered by 

(~ + ~) Sii,pooled 
111 112 

for i == 1,2, ... , p 

Proof. Consider univariate linear combinations of the observations 

XII,XIZ,,,,,X1nl and X21,X22"",XZn2 

given by a'Xlj == alXljl + aZX lj2 + ., . + apXljp and a'XZj == alXZjl '+ azXZjz 
+ ... + apX2jp ' These linear combinations have~ample me~s and covariances 
a'X1 , a'Sla and a'Xz, a'S2a, respectively, where Xl> SI, and X2 , Sz are the mean 
and covariance statistics for the two original samples, (See Result 3.5.) When both 
parent populations have the same covariance matrix, sf.a == a'Sla and s~,a == a'Sza 
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are both estimators of a'1:a, the common popUlation variance of the linear combi
nations a'XI and a'Xz' Pooling these estimators, we obtain 

(111 - I)Sf,a + (I1Z - l)s~,a 
S~, pooled == ':"---:~-'---'-----:-'--"'-

(nl + 112 - 2) 

== a' [111 '; ~ ~ 2 SI + 111 '; ~ ~ 2 S2 J a (6-25) 

== a'Spooleda 

To test Ho: a' (ILl - ILz) == a' 00, on the basis of the a'Xlj and a'XZj , we can form 
the square of the univariate two-sample '-statistic 

[a'(XI - X2 - (ILl ~ ILz»]z 
(6-26) 

,( 1 1 ) a - + - Spooleda 
111 I1Z 

According to the maximization lemma 
B == (1/111 + 1/11z)Spooled in (2-50), 

with d = (XI - X 2 - (ILl - IL2» and 

z - - , [( 1 1 ) J-I -ta:s: (XI - Xz - (ILl - ILz» - + - Spooled (XI 
11.1 I1.z 

== TZ 

for all a # O. Thus, 

(1 - a) == P[Tz:s: cZ] = P[t;:s: cZ, for all a] 

==p[la'(XI ~ Xz) - a'(ILI - ILz)1 :s: c 

where cZ is selected according to Result 6,2. 

,( 1 1 ) a - + - Spooleda 
nl I1Z 

for all a] 
• 

Remark. For testing Ho: ILl - ILz == 0, the linear combination a'(X1 - xz), with 
coefficient vector a ex S~60Icd(Xl - xz), quantifies the largest popUlation difference, 
That is, if T Z rejects Ho, then a'(xI - Xz) will have a nonzero mean. Frequently, we 
try to interpret the components of this linear combination for both subject matter 
and statistical importance. 

Example 6.4 (Calculating simultaneous confidence intervals for the differences in 
mean components) Samples of sizes 111 == 45 and I1Z == 55 were taken of Wisconsin 
homeowners with and without air conditioning, respectively, (Data courtesy of Sta
tistical Laboratory, University of Wisconsin,) Two measurements of electrical usage 
(in kilowatt hours) were considered, The first is a measure of total on-peak consump
tion (XI) during July, and the second is a measure of total off-peak consumption 
(Xz) during July. The resulting summary statistics are 

- [204.4J . [13825.3 23823.4J 
XI = 556.6' SI == 23823.4 73107.4 ' 

- [130.0J [8632,0 19616.7J 
Xz == 355.0' Sz == 19616.7 55964.5 ' nz == 55 
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(The off-peak consumption is higher than the on-peak consumption because there 
are more off-peak hours in a month.) 

Let us find 95% simultaneous confidence intervals for the differences in the 
mean components. 

Although there appears to be somewhat of a discrepancy in the sample vari
ances, for illustrative purposes we proceed to a calculation of the pooled sample co
variance matrix. Here 

nl - 1 n2 - 1 [10963.7 21505.5J 
Spooled = nl + n2 - 2 SI + nl + n2 - 2 S2 ~ 21505.5 63661.3 

and 

= (2.02)(3.1) = 6.26 

With ILl - IL2 = [JLll - JL2!> JL12 - JL22), the 95% simultaneous confidence inter
vals for the population differences are 

JLlI - JL2l: (204.4 - 130.0) ± v'6.26 (~ + ~) 10963.7 
45 55 

or 
21.7 :s: JLlI - JL2l :s: 127.1 (on-peak) 

JL12 - JL22: (556.6 - 355.0) ± V6.26 J(4~ + 5
1
5)63661.3 

or 
74.7 :s: JL12 - JL22 :s: 328.5 (off-peak) 

We conclude that there is a difference in electrical consumption between those with 
air-conditioning and those without. This difference is evident in both on-peak and 
off-peak consumption. 

The 95% confidence ellipse for JLI - IL2 is determined from the eigenvalue
eigenvector pairs Al = 71323.5, e; = [.336, .942) and ,1.2 = 3301.5, e2 = [.942, -.336). 

Since 

and 

vx; ) (~l + ~J c2 = v'3301.5 ) U5 + ;5) 6.26 = 28.9 

we obtain the 95% confidence ellipse for ILl - IL2 sketched in Figure 6.2 on page 291. 
Because the confidence ellipse for the difference in means does not cover 0' = [0,0), 
the T2-statistic will reject Ho: JLl - ILz = 0 at the 5% level. 
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300 

200 

100 

o L---1--'00---2....t00---~ P" - P21 
Figure 6.2 95% confidence ellipse for 
JLI - JL2 = (f.L]] - f.L2], f.L12 - f.L22)· 

The coefficient vector for the linear combination most responsible for rejection 
isproportionaltoSp~oled(xl - X2)' (See Exercise 6.7.) -

The Bonferroni 100(1 - a)% simultaneous confidence intervals for the p popu
lation mean differences are 

where tnJ +nz-2( a/2p) is the upper 100 ( a/2p )th percentile of a t-distribution with 

nl + n2 - 2 dJ. 

The Two-Sample Situation When 1: 1 =F 1:2 
When II *" I 2 . we are unable to find a "distance" measure like T2, whose distribu
tion does not depend on the unknowns II and I 2 • Bartlett's test [3] is used to test 
the equality of II and I2 in terms of generalized variances. Unfortunately, the con
clusions can be seriously misleading when the populations are nonnormal. Nonnor
mality and unequal covariances cannot be separated with Bartlett's test. (See also 
Section 6.6.) A method of testing the equality of two covariance matrices that is less 
sensitive to the assumption of multivariate normality has been proposed by Tiku 
and Balakrishnan [23]. However, more practical experience is needed with this test 
before we can recommend it unconditionally. 

We suggest, without much factual support, that any discrepancy of the order 
eTI,ii = 4eT2,ii, or vice versa, is probably serious. This is true in the univariate case. 
The size of the discrepancies that are critical in the multivariate situation probably 
depends, to a large extent, on the number of variables p. 

A transformation may improve things when the marginal variances are quite 
different. However, for nl and n2 large, we can avoid the complexities due to 
unequal covariaI1ce matrices. 



292 Chapter 6 Comparisons of Several Multivariate Means 

Result 6.4. Let the sample sizes be such that 11) - P and 112 - P are large. Then, 
approximate 100(1 - a)% confidence ellipsoid for 1'1 - 1'2 is given by all 1'1 -

satisfying 

[x\ - Xz - (PI - I'z)]' [~S) + ~SzJ-) [x) - xz - (I') - I'z)] $ ~(a) 
111 112 

where ~ (a) is the upper (l00a }th percentile of a chi-square distribution with p d.f. 
Also, 100(1 - a)% simultaneous confidence intervals for all linear combinations 
a'(I') - I'z) are provided by 

a'(I') - 1'2) belongs to a'(x) - Xz) :;I: V ~(a) la' (l..81 + l..sz)a \j; I1r 112 

Proof. From (6-22) and (3-9), 

£(Xl - Xz) = 1'1 - I'z 

and 

By the central limit theorem, X) - Xz is nearly Np[l') - ILz, I1~Il ~ 11Z-
II z]· If Il 

and I2 were known, the square of the statistical distance from Xl - X2 to 1') - I'z 
would be 

This squared distance has an approximate x7,-distribution, by Result 4.7. When /11 and 
/12 are large, with high probability, S) will be close to I) and 8z will be close to I z· 
Consequently, the approximation holds with SI and S2 in place of I) and I 2, 
respectively. 

The results concerning the simultaneous confidence intervals follow from 

Result 5 A.1. • 

Remark. If 11) = I1Z = 11, then (11 - 1)/(11 + 11 - 2) = 1/2, so 

1 1 1 (11 - 1) SI + (11 - 1) 82 (1 1 ) 
- SI + - S2 = - (SI + S2) = - + -
/1) 112 /1 11 + n - 2 11 n 

= SpoOJedG +;) 
With equal sample sizes, the large sample procedure is essentially the same as the 
procedure based on the pooled covariance matrix. (See Result 6.2.) In one dimen
sion, it is well known that the effect of unequal variances is least when 11) = I1Z and 
greatest when /11 is much less than I1Z or vice versa. 
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Example 6 .• S (Large sample procedures for inferences about the difference in means) 
We shall analyze the electrical-consumption data discussed in Example 6.4 using the 
large sample approach. We first calculate 

and 

1 S 1 S 1 [13825.3 23823.4J 1 [ 8632.0 
111 1 + I1Z 2 = 45 23823.4 73107.4 + 55 19616.7 

[
464.17 886.08J 

= 886.08 2642.15 

19616.7J 
55964.5 

The 95% simultaneous confidence intervals for the linear combinations 

'( ) [0][1'11 - I'ZIJ a 1') - ILz = 1, = 1'1) - I'ZI 
1')2 - I'Z2 

'( ) [ ] [1')) - 1'21] a ILl - ILz = 0,1 = 1'12 - 1'2Z 
1'12 - 1'22 

are (see Result 6.4) 

1')) - I'ZI: 74.4 ± v'5.99 v'464.17 or (21.7,127.1) 

J.L12 - J.L2Z: 201.6 ± \15.99 \12642.15 or (75.8,327.4) 

Notice that these intervals differ negligibly from the intervals in Example 6.4, where 
the pooling procedure was employed. The T2-statistic for testing Ho: ILl - ILz = 0 is 

[
1 1 J-l T Z = [XI - xz]' -81 + -82 [XI - X2] 

11) I1Z 

[
204.4.- 130.0J' [464.17 886.08J-I [204.4 - 130.0J 

= 556.6 - 355.0 886.08 2642.15 556.6 - 355.0 

= [74.4 201.6] (10-4) [ 59.874 -20.080J [ 74.4J = 1566 
-20.080 10.519 201.6 . 

For er = .05, the critical value is X~(.05) = 5.99 and, since T Z = 15.66 > x~(.05) 
= 5.99, we reject Ho. 

The most critical linear combination leading to the rejection of Ho has coeffi
cient vector 

a ex: (l..8 + l..8 )-1 (- _ -) = (10-4) [ 59.874 
/11 I /12 2 Xl Xz -20.080 

-20.080J [ 74.4J 
10.519 201.6 

= [.041J 
.063 

The difference in off-peak electrical consumption between those with air condi
tioning and those without contributes more than the corresponding difference in 
on-peak consumption to the rejection of Ho: ILl - ILz = O. • 
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A statistic similar to T2 that is less sensitive to outlying observations for 
and moderately sized samples has been developed byTiku and Singh [24]. lOvvev'~rE 
if the sample size is moderate to large, Hotelling's T2 is remarkably unaffected 
slight departures from normality and/or the presence of a few outliers. 

An Approximation to the Distribution of r2 for Normal 
Populations When Sample Sizes Are Not Large 

" 
One can test Ho: ILl - IL2 = .a when the population covariance matrices are un
equal even if the two sample sizes are not large, provided the two populations are 
multivariate normal. This situation is often called the multivariate Behrens-Fisher 
problem. The result requires that both sample sizes nl and n2 are greater than p, the 
number of variables. The approach depends on an approximation to the distribution 
of the statistic 

which is identical to the large sample statistic in Result 6.4. However, instead of 
using the chi-square approximation to obtain the critical value for testing Ho the 
recommended approximation for smaller samples (see [15] and [19]) is given by 

2 _ vp F 
T - + 1 P.v-p+1 v-p 

where the d!,!grees of freedom v are estimated from the sample covariance matrices 
using the relation 

(6-29) 

where min(nJ> n2) =:; v =:; nl + n2' This approximation reduces to the usual Welch 
solution to the Behrens-Fisher problem in the univariate (p = 1) case. 

With moderate sample sizes and two normal populations, the approximate level 
a test for equality of means rejects Ho: IL I - ""2 = 0 if 

[ 
1 1 J- I 

- - vp 
(XI - Xz - (ILl - IL2»' -SI + -S2 (Xl - Xz - (ILl - ILz» > _ + 1 Fp.v_p+l(a) 

nl n2 v p 

where the degrees of freedom v are given by (6-29). This procedure is consistent 
with the large samples procedure in Result 6.4 except that the critical value x~(a) is 

vp 
replaced by the larger constant v _ p + 1 Fp.v_p+l(a). 

Similarly, the approximate 100(1 - a)% confidence region is given by all 
#LI - ILz such that 

[ 
1 1 ]-1 _ _ vp 

(XI - X2 - (PI - IL2»' nl SI + n2 Sz (Xl - Xz - (""1 - ""2» =:; v _ p + 1 Fp, v-p+l(a) 

(6-30) 

Comparing Mean Vectors fromTho Populations 295 

For normal populations, the approximation to the distribution of T2 given by 
(6-28) and (6-29) usually gives reasonable results. 

Example 6.6 (The approximate T2 distribution when l:. #= l:2) Although the sample 
sizes are rather large for the electrical consumption data in Example 6.4, we use 
these data and the calculations in Example 6.5 to illustrate the computations leading 
to the approximate distribution of TZ when the population covariance matrices are 
unequal. 

We first calculate 

~S - ~ [13825.2 23823.4J = [307.227 529.409J 
nl I - 45 23823.4 73107.4 529.409 1624.609 

1 1 [8632.0 19616.7] = [156.945 356.667] 
nz S2 = 55 19616.7 55964.5 356.667 1017.536 

and using a result from Example 6.5, 

(~SI + ~Sz]-I = (10-4) [ 59.874 -20.080] 
nl n2 -20.080 10.519 

Consequently, 

[307.227 529.409] (10-4) [ 59.874 -20.080] = [ .776 -.060J 
529.409 1624.609 -20.080 10.519 -.092 .646 

and 

(~SI [~Sl + ~Sz]-I)Z = [ .776 -.060][ .776 -.060] = [ .608 -.085] 
nl nl nz -.092 .646 -.092 .646 -.131 .423 

Further, 

[
156.945 356.667](10-4)[ 59.874 -20.080] = [.224 - .060] 
356.667 1017.536 -20.080 10.519 .092 .354 

and 

(~S2[~SI + l...sz]-I)Z = [ .224 .060][ .224 .060] [.055 .035] 
n2 nl n2 -.092 .354 -.092 .354 = .053 .131 
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6.4 

Then 

= 5
1
5 {(.055 + .131) + (.224 + .354f} = 

Using (6-29), the estimated degrees of freedom v is 

2 + 2z 

v = .0678 + .0095 = 77.6 

and the a = .05 critical value is 

vp 77.6 X 2 155.2 

1
0' ,·_p+I(.05) = 7 6 F?776-,+l05) = --6 3.12 = 6.32 v - p +. 7. - 2 + 1 -. . - 76. 

From Example 6.5, the observed value of the test statistic is rZ = 15.66 so 
hypothesis Ho: ILl - ILz = 0 is rejected at the. 5% level. This is the same cOUlclu:sioIi 
reached with the large sample procedure described in Example 6.5. 

As was the case in Example 6.6, the Fp•v - p+1 distribution can be defined 
noninteger degrees of freedom. A slightly more conservative approach is to use 
integer part of v. 

Comparing Several Multivariate Population Means 
(One-Way MANOVA) 

Often, more than two populations need to be compared. Random samples, "V'.n .. ",,,u.,,,,,,, 
from each of g populations, are arranged as 

Population 1: Xll,XI2, ... ,Xlnl 

Population 2: X ZI , Xzz, ... , X2", 

Population g: XgI , Xgb ... , Xgng 

MANOVA is used first to investigate whether the population mean vectors are the 
same and, if not, which mean components differ significantly. 

Assumptions about the Structure of the Data for One-Way 

L XCI, X C2 ,"" Xcne,is a random sample of size ne from a population with mean 
e = 1, 2, ... , g. The random samples from different populations are 
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2. AIl populations have a common covariance matrix I. 
3. Each population is multivariate normal. 

Condition 3 can be relaxed by appealing to the central limit theorem (Result 4.13) 
when the sample sizes ne are large. 

A review of the univariate analysis of variance (ANOVA) will facilitate our 
discussion of the multivariate assumptions and solution methods. 

A Summary of Univariate ANOVA 

In the univariate situation, the ass~mptions are that XCI, Xez, ... , XCne is a random 
sample from an N(/Le, a 2

) population, e = 1,2, ... , g, and that the random samples 
are independent. Although the nuIl hypothesis of equality of means could be formu
lated as /L1 = /L2 = ... = /Lg, it is customary to regard /Lc as the sum of an overalI 
mean component, such as /L, and a component due to the specific population. For 
instance, we can write /Le = /L + (/Le - IL) or /Lc = /L + TC where Te = /Le - /L. 

Populations usually correspond to different sets of experimental conditions, and 
therefore, it is convenient to investigate the deviations Te associated with the eth 
population (treatment). 

The reparameterization 

ILe + Te 

(
eth pOPUlation) 

mean (
OVerall) 
mean ( 

eth population ) 
( treatment) effect 

(6-32) 

leads to a restatement of the hypothesis of equality of means. The null hypothesis 
becomes 

Ho: Tt = T2 = ... = Tg = 0 

The response Xc;, distributed as N(JL + Te, a 2), can be expressed in the suggestive 
form 

XC; = /L + Te + ec; 

(overall mean) (
treatment) (random) (6-33) 

effect error 

where the et; are independent N(O, a 2) random variables. To define uniquely 
the model parameters and their least squares estimates, it is customary to impose the 

constraint ± nfTf = O. 
t=1 

Motivated by the decomposition in (6-33), the analysis of variance is based 
upon an analogous decomposition of the observations, 

XCj x + 

( observation) (
overall ) 

sample mean 

(XC - x) 

(
estimated ) 

treatment effect 

+ (xe; - xc) 
(6-34) 

(residual) 

where x is an estimate of /L, Te = (xc - x) is an estimate of TC, and (xCi - xc) is an 
estimate of the error eej. 
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Example 6.1 (The sum of squares decomposition for univariate ANOVA) Consider 
the following independent samples. 

Population 1: 9,6,9 
population 2: 0,2 
Population 3: 3, I, 2 

Since, for example, X3 = (3 + 1 + 2)/3 = 2 and x = (9 + 6 + 9 + 0 + 2 
3 + 1 + 2)/8 = 4, wefind that 

3 = X31 = ~ + (X3 - x) + (.~31 - X3) 
= 4 + (2 - 4) + (3 - 2) 
= 4 + (-2) + 1 

Repe(a~T~)operatio(n:,,: '':)07'("::' w~ tru:)fu' ~a(y,_: _ ~ ') 
3 1 2 4 4 4 -2 -2 -2 1 -1 0 

+ treatment effect + residual observation 
(xCi) 

mean 
(x) (xe - x) (xCi - XC) 

Th uestion of equality of means is answered by assessing whether the 
t 

'be t~ f the treatment array is large relative to the residuals. (Our esti-con n u IOn 0 g 

t 
~ - - - x of Te always satisfy ~ neTe = O. Under Ho, each Tc is an ma es Te - Xe ~ 

estimate of zero.) If the treatment contribution is large, Ho should. be rejected. The 
size of an array is quantified by stringing the ~ows of the array out mto a vector and 
calculating its squared length. This quantity IS, called the sum of squares (SS). For 
the observations, we construct the vector y = [9,6,9,0,2,3,1, 2J. Its squared 
length is 

Similarly, 
SS = 42 + 42 + 42 + 42 + 42 + 42 + 42 + 42 = 8(4

2
) = 128 

;~n = 42 + 42 + 42 + (_3)2 + (-3f + (-2)2 + (_2)2 + (_2)2 Ir 
= 3(42) + 2(-3f + 3(-2j2 = 78 

and the residual sum of squares is 
SSre. = 12 + (_2)2 + 12 + (-If + 12 + 12 + (-1)2 + 0

2 
= 10 

The sums of squares satisfy the same decomposition, (6-34), as the observations. 
Consequently, 

SSobs = SSmean + SSlr + SSre. 
or 216 = 128 + 78 + 10. The breakup into sums of sq~ares apportions variability in 
the combined samples into mean, treatment, and re~ldu~1 (error) components. An 
analysis of variance proceeds by comparing the relative SIzes of S~lr and SSres· If Ho 
is true, variances computed from SSlr and SSre. should be approxImately equal. -
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The sum of squares decomposition illustrated numerically in Example 6.7 is so basic that the algebraic equivalent will now be developed. 
Subtracting x from both sides of (6-34) and squaring gives 

(XCi - X)2 = (xc - x/ + (xCj - xd + 2(xt - x)(xej - xc) 

We can sum both sides over j, note that .t (XCi - xel = 0, and obtain 
j:1 

~ Z ~ 2.- (XCi - x) = n(xc - x/ + 2.- (Xti - xel
z 

/=1 j:] 

Next, summing both sides over e we get 

± ~ (XCi - x)2 = ± ncCxc - x)2 + ± i; (XCj - xe)2 (6-35) 

co,~~ ~::;;~ro) SS } ~ (:"we<n ~::;'Pl":·;S + (Wifuin (~;~1") SS) 
or 
g "i' 

~ 2: x7i 
(:1 j:1 

(SSobs) 

g 
(n] + n2 + ... + ng )x2 + 2: nc(xc - x)2 + 

c:] 

(SSme.n) + + 

g ~ 2 
~ 2.- (XCj - xc) 
{:I j:1 

(SSres) (6-36) 
In the course of establishing (6-36), we have verified that the arrays representing the mean, treatment effects, and residuals are orthogonal. That is, these arrays, considered as vectors, are perpendicular whatever the observation vector 

y' = [XlI, .. ·, XI,,!, X2I'···' xz Il2 '.·., Xgll ]. Consequently, we could obtain SSre. by subtraction, without having to calculate' the individual residuals because SS = , res SSobS - SSme.n - SSlr' However, this is false economy because plots of the residuals provide checks on the assumptions of the model. 
The vector representations of the arrays involved in the decomp~sition (6-34) also have geometric interpretations that provide the degrees of freedom. For an ar-

bitrar~ set of observatio~s, let [XII,' .. : Xl "l' Xz j, .•. , X21l2' ... , XgngJ. = Y". The ob-servatIOn vector y can he anywhere m n = nl + n2 + ... + n climensIOns; the mean vector xl = [x" .. , x]' must lie along the equiangular line ~f I, and the treatment effect vector 

1 

}n, 0 0 

1 0 0 
(XI - x) 0 + (X2 - x) 1 } + ... + (x, - x) 0 

n2 
0 1 0 
0 0 1 

}n, 
0 0 1 

= (Xl - X)UI + (X2 - x)uz + .. , + (Xg - x)ug 
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lies in the hyperplane of linear combinations of the g vectors 1I1, U2,"" ug • Since 
1 = Ul + U2 + ." + ug , the mean vector also lies in this hyperplane, and it is 
always perpendicular to the treatment vector. (See Exercise 6.10.) Thus, the mean 
vector has the freedom to lie anywhere along the one-dimensional equiangular line 
and the treatment vector has the freedom to lie anywhere in the other g - 1 di~> 
mensions. The residual vector,e = y - (Xl) - [(Xl - X)Ul + .. , + (xg - x)ug ] is 
perpendicular to both the mean vector and the treatment effect vector and has the 
freedom to lie anywhere in the subspace of dimension n - (g - 1) ,- 1 = n -
that is perpendicular to their hyperplane. 

To summarize, we attribute 1 d.f. to SSmean,g -.1 d.f. to SSt" and n - g '" 
(nl + n2 + ... + ng) - g dJ. to SS,es' The total number of degrees of freedom is 
n = n~ + n2 + .. , + ng• Alternatively, by appealing to the univariate distribution 
theory, we find that these are the degrees of freedom for the chi-square distributions' 
associated with the corresponding sums of squares. 

The calculations of the sums of squares and the associated degrees of freedom 
are conveniently summarized by an ANOVA table. 

ANOVA Table for Comparing Univariate Population Means 

Source 
of variation 

neatments 

Residual 
(error) 

Total (corrected 
for the mean) 

Sum of squares (SS) 

g 

SSt, = 2: ne(xc - x)2 
C=1 

g ne 
SS,es = 2: 2: (XCj - XC)2 

f=l j=1 

The usual F-test rejects Ho: 71 = 72 = ... = 7 g = 0 at level a if 

SSt,/(g - 1) 

Degrees of 
freedom (d.f.) 

g-1 

g 

Lne - g 
C=1 

± ne- 1 
C=1 

where F -1 :2:n _g(O') is the upper (I00O')th percentile of the F-distribution with 
g _ 1 a~d '2:ric - g degrees of freedom. This is equivalent to rejecting Ho for 
large values of SSt,/SS,es or for large values of 1 + SSt,/S5,.es· The statistic 
appropriate for a multivariate generalization rejects Ho for small values of the 

reciprocal 

1 SS,es 

1 + SSt, /SS,es SS,es + SSt, 
(6-37) 
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Example 6.8 CA univariate ANOVA table and F-test for treatment effects) Using the 
information in Example 6.7, we have thefoIlowingANOVA table: 

Source 
of variation 

neatments 

Residual 

Total (corrected) 

Consequently, 

Sum of squares 

SStr = 78 

SS,es = 10 

SScor = 88 

Degrees of freedom 

g-1=3-1=2 

± ne - g = (3 + 2 + 3) - 3 = 5 
(=1 

g 

L nc - 1 = 7 
C=1 

F = SSt,/(g - 1) = 78/2 = 195 
SSres/(l;nc - g) 10/5 . 

Since F = 19.5 > F2,s(.01) = 13.27, we reject Ho: 71 = 72 = 73 = 0 (no treatment 
effect) at the 1 % level of significance. _ 

Multivariate Analysis of Variance (MANOVA) 

Paralleling the univariate reparameterization, we specify the MANOVA model: 

MANOVA Model For Comparing g Population Mean Vectors 

X Cj =,." + Te + eCj, j = 1,2, ... ,nc and e = 1,2, ... ,g (6-38) 

~here the eCj are independent Np(O, l;) variables. Here the parameter vector,." 
IS an overall mean (level), and TC represents the eth treatment effect with 

g 

L neTc = O. 
C=1 

According to the model in (6-38), each component of the observation vector XC' sat
isfies the univariate model (6-33). The errors for the components of Xc' are c~rre-
lated, but the covariance matrix l; is the same for all populations. ] 

A vector of observations may be decomposed as suggested by the model. Thus, 

XCj x + (xe - x) + (XCj - Xe) 

(observation) (
overall sa~Ple) 

mean,." (

estimated) (res~dual) (6-39) 
treatment _ 
effectTc eCj 

The decomposition in (6~39) leads to the muItivariate analog of the univariate 
sum of squares breakup in (6-35). First we note that the product 

(XCj - x)(XCj - x)' 
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can be written as 
(XCj - x)(XCj - x)' = [(x!,j - xc) + (Xt - x)] [(XCj - ic) + (xc - x)J' 

= (XCj - ic)(xCj - i c)' + (Xt; - xc) (xc - x)' 
+ (Xt - X)(Xtj - xc)' + (Xe - X)(Xc - i)' 

The sum over j of the middle two expressions is the zero matrix, 
~ (xc; - it) = O. Hence, summing the cross product over e and j yields ~I 

. 

~ ~ (x. - x) (xc' - i)' = ± nc(xc - x){xc - x)' + 1: ~ (xc; - xc) (XCj - xc)' "'-' ~ (/ / c=) (=1 /=1 C=1 /=1 

. 

( 
d») 

(

treatment <_Between») (residual (Within) sum) (6-40) 
total (correcte sum 

d sum of squares and of squares and cross of squares an cross 
products / cross products products 

The within sum of squares and cross products matrix can be expressed as 
g "I 

W = 2: L (xej - Xe)(Xfj - xc)' 
C=I j=1 

= (n) - 1)SI + (n2 - 1)~ + ... + (ng - I)Sg 
(6-41) 

where Se is the sample covariance matrix for the fth sam~le. This matrix is a gener-}. . f the (n + n2 - 2) S ) d matrix encountered III the two-sample case. It 
a Izat)on 0) poo e plays a dominant role in testing for the presence of t~eatment effects. Analogous to the univariate result, the hypotheSIS of no treatment effects, 

Ho: T) = T2 = ... =T g = 0 
. t ted by considering the relative sizes of the treatment and residual sums of Ises 

. I" fth 
squares and crosS products. Equivalently, we may conSIder the re atlve SlZes 0 e residual and total (corrected) sum of squares and cross products. Formally, we summarize the calculations leading to the test statistic in a MAN OVA table. 

MANOVA Table for Comparing Population Mean Vectors 
Source 

of variation 

Treatment 

Residual (Error) 

Total (corrected 
for the mean) 

Matrix of sum of squares and 
cross products (SSP) 

g 
B = 2: ne(xe - x) (ic - x)' 

(=1 

g "f 

W = L 2: (xc; - ic) (XCj - xc)' 
t=1 j=1 

g nl 

B + W = ~ ~ (xc; - x)(XCj - x)' 
(=1 j=1 

Degrees of 
freedom (dJ.) 

g-1 

g 

2: ne - g 
C=I 

g 

~ ne- 1 
e=1 
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This table is exactly the same form, component by component, as the ANOVA table, except that squares of scalars are replaced by their vector counterparts. For example, (xc - x? becomes (xc - x)(xc - x)'. The degrees of freedom correspond to the univariate geometry and also to some multivariate distribution theory involving Wishart densities. (See [1].) 
One test of Ho: TI = TZ = '" = Tg = 0 involves generalized variances. We reject Ho if the ratio of generalized variances 

A* = Iwl 
IB+wl 

I ± .s(Xt; - x)(XCj - x)'1 
C=I j=1 

(6-42) 

is too small. The quantity A * = I Will B + w I, proposed originally by Wilks (see [25]), corresponds to the equivalent form (6-37) of the F-test of Ho: no treatment effects in the univariate case. Wilks' lambda has the virtue of being convenient and related to the likelihood ratio criterion.z The exact distributIon of A * can be derived for the special cases listed in Table 6.3. For other cases and large sample sizes, a modification of A * due to Bartlett (see [4]) can be used to test Ho. 

Table 6.3 Distribution ofWilks' Lambda, A* = Iwl/lB + wl 
No. of No. of 

variables groups Sampling distribution for multivariate normal data 

p = 1 g;;::2 (Lnc - g) e -A * ) g - 1 A* ~ Fg-I,'I:.ne-g 

p=2 g;;::2 (Lnc - g - 1) e -VA*) g - 1 VA* ~ FZ(g-I),Z('I:.ne-rl) 

p;;::1 g=2 (Lne - P - 1) (~) ~ P A * Fp,'I:.ne-p-1 

p;;:: 1 g=3 (Lne - p - 2) e -VA*) p VA* ~ FZp,Z('I:.n,-p-2) 

2Wilks' lambda can also be expressed as a function of the eigenvalues of Ab A2, .•• , As of W-1B as 

A'=llC~J 
where s = min (p, g - 1), the rank of B. Other statistics for checking the equality of se~eral multivariate means, such as Pillai's statistic, the Lawley-Hotelling statistic, and Roy's largest root statistic can also be written as particular functions ofthe eigenvalues ofW-1B. For large samples, all of these statistics are, essentially equivalent. (See the additional discussion on page 336.) 
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Bartlett (see [4]) has shown that if Ho is true and Ln( = n is large, 

-(n-1-(P+g»)lnA*=-(n-1-(P+g»)ln( IWI) 
2 2 IB+ WI (6-43) 

has approximately a chi-square distribution with peg - 1) dJ. Consequently, for 
Lne = n large, we reject Ho at significance level a if 

( 
(p + g») ( Iwl ) 

- n - 1 - 2 In IB + wl > x7,(g-l)(a) (6-44) 

where x;,(g-l)(a) is the upper (l00a)th percentile of a chi-square distribution with 
peg - 1) dJ. 

Example 6.9 CA MANOVA table and Wilks' lambda for testing the equality of three 
mean vectors) Suppose an additional variable is observed along with the variable 
introduced in Example 6.7, The sample sizes are nl = 3, n2 = 2, and n3 = 3. 
Arranging the observation pairs Xij in rows, we obtain 

[~] [~] [~] 
[~] [~] 
[~] [~] [~J 

WithXl = [!l x2 = [~l X3 = [~]. 
andx = [:J 

We have already expressed the observations on the first variable as the sum of an 
overall mean, treatment effect, and residual in our discussion of univariate 
ANOVA. We found that 

(P:) G::) + (=~ =~ J + (-: ~: :) 

(observation) (mean) (
treatment) 

effect 
(residual) 

and 
SSobs = SSmean + SStr + SSres 

216 = 128 + 78 + 10 

Total SS (corrected) = SSobs - SSmean = 216 - 128 = 88 

Repeating this operation for the obs,ervations on the second variable, we have 

(! ~ 7) (~~ 5) + (=~ =~ -1) + (-~ =~ 3) 
8 9 7 5 5 5 3 3 3 0 1-1 

(observation) (mean) (
treatment) 

effect 
(residual) 

and 
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SSobs = SSmean + SStr + SSres 

272 = 200 + 48 + 24 

Total SS (corrected) = SSobs - SSmean = 272 - 200 = 72 

These two single-component analyses must be augmented with the sum of entry
by-entry cross products in order to complete the entries in the MANOVA table. 
Proceeding row by row in the arrays for the two variables, we obtain the cross 
product contributions: 

Mean: 4(5) + 4(5) + '" + 4(5) = 8(4)(5) = 160 

Treatment: 3(4)(-1) + 2(-3)(-3) + 3(-2)(3) = -12 

Residual: 1(-1) + (-2)(-2) + 1(3) + (-1)(2) + ... + 0(-1) = 1 

Total: 9(3) + 6(2) + 9(7) + 0(4) + ... + 2(7) = 149 

Total (corrected) cross product = total cross product - mean cross product 

= 149 - 160 = -11 

Thus, the MANOVA table takes the following form: 

Source Matrix of sum of squares 
of variation and cross products Degrees of freedom 

Treatment [ 78 
-12 

-12J 
48 

3 - 1 = 2 

Residual [ 10 

2!J 1 
3+2+3-3=5 

Total (corrected) [ 88 
-11 

-l1J 
72 

7 

Equation (6-40) is verified by noting that 

Using (6-42), we get 

1
10 11 
1 24 10(24) - (1)2 239 

_~-,----,c..:--:- = -- = .0385 
88(72) - (-11? 6215 

. IWI 
A* = IB + WI = 

I 88 -111 
-11 72 
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Since p = 2 and g = 3, Table 6.3 indicates that an exact test (assuming normal_ 
ity and equal group covariance matrices) of Ho: 1'1 = 1'2 = 1'3 = 0 (no treatment 
effects) versus HI: at least one Te * 0 is available. To carry out the test, we compare 
the test statistic 

(
1 - v'A*) (Lne - g -'- 1) = (1 - \f.0385) (8 - 3 - 1) = 8 19 v'A* (g - 1) V.0385 3 - 1 .. 

with a percentage point of an F-distribution having Vi = 2(g - 1) == 4 
V2 == 2( Lne - g - 1) == 8 dJ. Since 8.19 > F4,8(.01) = 7.01, we reject Ho at 
a = .01 level and conclude that tI:eatment differences exist. 

When the number of variables, p, is large, the MANOVA table is usually not 
constructed. Still, it is good practice to have the computer print the matrices Band 
W so that especially large entries can be located. Also, the residual vectors 

eej == Xej - Xf 

should be examined for normality and the presence of outhers using the techniques 
discussed in Sections 4.6. and 4.7 of Chapter 4. 

Example 6.10 CA multivariate analysis of Wisconsin nursing home data) The 
Wisconsin Department of Health and Social Services reimburses nursing homes in 
the state for the services provided. The department develops a set of formulas for 
rates for each facility, based on factors such as level of care, mean wage rate, and 
average wage rate in the state. 

Nursing homes can be classified on the basis of ownership (private party, 
nonprofit organization, and government) and certification (skilled nursing facility, 
intermediate care facility, or a combination of the two). 

One purpose of a recent study was to investigate the effects of ownership Or 
certification (or both) on costs. Four costs, computed on a per-patient-day basis and 
measured in hours per patient day, were selected for analysis: XI == cost of nursing 
labor,X2 = cost of dietary labor,X3 = cost of plant operation and maintenance labor, 
and X 4 = cost of housekeeping and laundry labor. A total of n = 516 observations 
on each of the p == 4 cost variables were initially separated according to ownership. 
Summary statistics for each of the g == 3 groups are given in the following table. 

Group 

e = 1 (private) 

e = 2 (nonprofit) 

e = 3 (government) 

Number of 
observations 

n2 = 138 

3 

:2:: ne = 516 
e=1 

Sample mean vectors 

l

2.066] l2.167] l2.273] _ .480 _ .596 _ .521 
XI = .082; x2 = .124; X3 = .125 

.360 .418 .383 
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Sample covariance matrices 

l·291 

oJ lS61 oJ -.001 .011 S = .011 .025 
SI = .002 .000 . 001 2 .001 .004 . .005 

.010 .003 .000 .037 .007 .002 

.030 l~l .017 .J S3 = .003 -.000 .004 

.018 .006 .001 

Source: Data courtesy of State of Wisconsin Department of Health and SociatServices. 

Since the Se's seem to be reasonably compatible,3 they were pooled [see (6-41)] 
to obtain 

W = (ni - l)SI + (n2 - 1)S2 + (n3 - I)S3 

l

182.962 ] 
4.408 8.200 . 
1.695 .633 1.484 
9.581 2.428 .394 6.538 

Also, 

and 

B - ~ (- -) (- -)' l~:;~~ 1.225 - £.; nc Xe - X Xc - x = 
C=1 .821 .453 .235 

.584 .610 .230 

To test Ho: 1'1 = 1'2 = 1'3 (no ownership effects or, equivalently, no difference in av
erage costs among the three types of owners-private, nonprofit, and government), 
we can use the result in Table 6.3 for g = 3. 

Computer-based calculations give 

IWI 
A* = IB + WI = .7714 

3However, a normal-theory test of Ho: I1 = I2 = I3 would reject Ho at any reasonable signifi
cance level because ofthe large sample sizes (see Example 6.12). 
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and 

(
2:. n e - p - 2) (1 - v'A*) = (516 - 4 - 2) (1 - v:77I4) = 17.67 

p v'A* 4 v.7714 

Let a = .01, so that F2(4),i(51O)(.01) == /s(.01)/8 = 2.51. Since 17.6? > F8•1020( .01) == 
2.51, we reject Ho at the 1 % level and conclude that average costs differ, depending on 

type of ownership. ." " . 
It is informative to compare the results based on this exact test With those 

obtained using the large-sample procedure summarized in (6-43) and (6-44). For the 
present example, 2:.nr = n = 516 is large, and Ho can be tested at the a = .01 level 
by comparing 

-en - 1 - (p + g)/2) InCBI:~I) = -511.5 In (.7714) = 132.76 

with X~(g-l)(.01) = X§(·01) =: 20.09 .. Since 1~2.76 > X§(·Ol) = 20.09, we reject .Ho 
at the 1 % level. This result IS consistent With the result based on the foregomg 

F-statistic. • 

6.S Simultaneous Confidence Intervals for Treatment Effects 
When the hypothesis of equal treatment effects is rejected, those effects that led to 
the rejection of the hypothesis are of interest. For pairwise. comparisons, th~ Bon
ferroni approach (see Section 5.4) can be used to construct sImultaneous confI~ence 
intervals for the components of the differences Tk - Te (or ILk - lLe)· These mter
vals are shorter than those obtained for all contrasts, and they require critical values 
only for the univariate t-statistic. . .. • _ _ 

Let Tki be the ith component of Tk· Smce Tk IS estimated by Tk = Xk - X 

(6-45) 

and Tki - Tfi = XA-; - XCi is the difference between two independent sample means. 
The two-sample (-based confidence interval is valid with an appropriately 
modified a. Notice that 

_ _ (1 1) 
Var(Tki - Te;) = Var(Xki - Xli) = - + - Uii 

nk. ne 

where U·· is the ith diagonal element of:t. As suggested by (6-41), Var (Xki - Xei) 
is estim~~ed by dividing the corresponding element of W by its degrees of freedom. 

That is, 

___ _ - ( 1 1) Wii 
Var(Xki - Xe;) = - + - --

nk ne n - g 

where Wji is the ith diagonal element of Wand n = n l + ... + n g • 
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It remains to apportion the error rate over the numerous confidence state
~ents. Relation (5-28) still applies. There are p variables and g(g - 1)/2 pairwise 
differences, so each two-sample t-interval will employ the critical value tn- g ( a/2m), 
where 

m = pg(g - 1)/2 (6-46) 

is the number of simultaneous confidence statements. 

Result 6.S. Let n = f nk. For the model in (6-38), with confidence at least 
k=I 

(l - a), 

belongs to xki - Xc; ± tn - g( a ) J~ (1. + 1.) 
pg(g - 1) n - g nk ne 

for all components i = 1, ... , p and all differences e < k == 1, ... , g. Here Wii is the 
ith diagonal element of W. 

We shall illustrate the construction of simultaneous interval estimates for the 
pairwise differences in treatment means using the nursing-home data introduced in 
Example 6.10. 

Example 6.11 (Simultaneous intervals for treatment differences-nursing homes) 
We saw in Example 6.10 that average costs for nursing homes differ, depending on 
the type of ownership. We can use Result 6.5 to estimate the magnitudes of the dif
ferences. A comparison of the variable X 3 , costs of plant operation and maintenance 
labor, between privately owned nursing homes and government-owned nursing 
homes can be made by estimating T13 - T33. Using (6-39) and the information in 
Example 6.10, we have 

• _ _ -.039 

[

-.D70j 
71=(X1- X)= , 

[

.137j • _ _ .002 
73 = (X3 - x) = -.020 

-.020 

W = 4.408 8.200 

[

182.962 

Consequently, 

1.695 .633 1.484 
9.581 2.428 .394 .J 

T13 - 7-33 = -.020 - .023 = -.043 

and n = 271 + 138 + 107 = 516, so that 

.023 

.003 

J( 1 1) W33 ~( 1 1) 1.484 
n1 + n3 n - g = 271 + 107 516 - 3 = .00614 
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• _ == 3 for 95% simultaneous confidence stat~ments we require ~~:~~5~(~~:~~2~ == 2:87. (See Appendix, Table 1.) The 95% SImultaneous confi-
dence statement is 

belongs to. J( 1 1) W33 
T13 - T33 ± t513(.00208) nl + n3 n - g 

== -.043 ± 2.87(.00614) 
== - .043 ± .018, or ( - .061, - .025) 

maintenance and labor cost for government-owned We ~onclude th~t h~ehave~age025 to .061 hour per patient day than for privately nursmg homes IS Ig er y. . th t 
d 

. h mes With the same 95% confIdence, we can say a owne nursmg 0 . 

_ ~ belongs to the interval (-.058, -.026) 'T13 • 23 

and 
_ ~ belongs to the interval (- .021, .019) 7"23 • 33 

. . th's cost exists between private and nonprofit nursing homes, Thus a difference m I . h 
d

'ff' 's observed between nonprofit and government nursmg omes. -but no I erence 1 
,-

6.6 Testing for Equality of Covariance Matrices 
. d when comparing two or more multivariate mean vec-One of the assumptI~ns ma et' of the potentially different populations are the tors is that the cova~lanc~ ma nces . m' Chapter 11 when we discuss discrimina-(Th' umptlon wIll appear agam -s~me. d IS

l 
ass'fi f n) Before pooling the variation across samples to fo~m a tlOn an c as.sl ca 10 ~ . hen comparing mean vectors, it can be worthwhile to 

pooled covanl~:ce f~:enp:pwulation covariance matrices. One commonly employed test the equa I y 0 M ([8] [9]) test for equal covariance matrices is Box'~ . -test , . 
With g populations, the null hypothesIs IS 

Ho: 'i.
1 

== 'i.2 = ... = 'i.g = 'i.(6-47) 

. r" ance matrix for the eth population, e ~ 1, 2, ... , g, and I is where Ie IS the cova 1 . trix The alternative hypothesis is that at least the presumed common covanance ma . 
. e matrices are not equal. two of the covanan~. I I f ons a likelihood ratio statistic for test-Assuming multlvanate norma popu aI, 

ing (&-47) is given by (see [1]) 

( 
I Se I )(nC-I)12 (6-48) 

A= n e I Spooled I 
Here ne is the sample size for the eth group,.Se is the e~h ~roup sample covariance 

. d S 'IS the pooled sample covanance matnx given by matnx an pooled 

Spooled == 
1 {(nl _ l)SI + (nz - 1)S2 + ... + (ng - l)Sg} (6-49) 

~(ne - 1) 
t 
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Box's test is based on his X2 approximation to the sampling distribution of - 2 In A (see Result 5.2). Setting -21n A = M (Box's M statistic) gives 

M = [2:(ne - 1)]ln I Spooled I - 2:[(ne - l)ln ISell (6-50) e e 
If the null hypothesis is true, the individual sample covariance matrices are not expected to differ too much and, consequently, do not differ too much from the pooled covariance matrix. In this case, the ratio of the determinants in (6-48) will all be close to 1, A will be near 1 and Box's M statistic will be small. If the null hypoth

esis is false, the sample covariance matrices can differ more and the differences in their determinants will be more pronounced. In this case A will be small and M will be relatively large. To illustrate, note that the determinant of the pooled covariance 
matrix, I Spooled I, will lie somewhere near the "middle" of the determinants I Se I's of the individual group covariance matrices. As the latter quantities become more disparate, the product of the ratios in (6-44) will get closer to O. In fact, as the I Sf I's 
increase in spread, I S(1) I1I Spooled I reduces the product proportionally more than I S(g) I1I Spooled I increases it, where I S(l) I and I S(g) I are the minimum and maximum determinant values, respectively. 

Box's Test for Equality of Covariance Matrices 
Set 

u - [2: 1 - 1 J[ 2p2 + 3p - 1 ] 
- e (ne - 1) ~(ne _ 1) 6(p + l)(g - 1) 

(6-51) 

where p is the number of variables and g is the number of groups. Then 

C = (1 - u)M = (1 - u){[ ~(ne -l)Jtn I Spooled I - ~[(ne -l)ln I Se IJ}(6-52) 

has an approximate X2 distribution with 

111 v = gzp(p + 1) - Zp(p + 1) = Zp(p + 1)(g - 1) (6-53) 

degrees of freedom. At significance level (1', reject Ho if C > ~(p+l)(g-I)I2«I'). 

Box's K approximation works well if each ne exceeds 20 and if p and g do not exceed 5. In situations where these conditions do not hold, Box ([7J, [8]) has provided 
a more precise F approximation to the sampling distribution of M. 

Example 6.12 (Testing equality of covariance matrices-nursing homes) We intro
duced the Wisconsin nursing home data in Example 6.10. In that example the sample covariance matrices for p = 4 cost variables associated with g = 3 groups of nursing homes are displayed. Assuming multivariate normal data, we test the 
hypothesis HO::I1 = :I2 = :I3 = 'i.. 
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Using the information in Example 6.10, we have nl = 271, n2 == 138, 
n3 = 107 and 1 SI 1 = 2.783 X 10-8,1 s21 = 89.539 X 10-8,1 s31 = 14.579 X 10-8, and 
1 Spooled 1 = 17.398 X 10-8

. Taking the natural logarithms of the determinants gives 

In 1 SI 1 = -17.397, In 1 Sz 1 = -13.926, In 1 s31 = -15.741 and In 1 Spooled 1 = -15.564. 
We calculate 

[
If 1 1 ][2W) + 3(4) - 1] 

u = 270 + 137 + 106 - 270 + 137 + 106 6(4 + 1)(3 _ 1) = .0133 

M = [270 + 137 + 106)(-15.564) - [270(-17.397) + 137( -13.926) + 106( -15.741) J 

= 289.3 

and C = (1- .0133)289.3 = 285.5. Referring C to a i table with v = 4(4 + 1)(3 -1)12 
= 20 degrees of freedom, it is clear that Ho is rejected at any reasonable level of sig
nificance. We conclude that the covariance matrices of the cost variables associated 
with the three populations of nursing homes are not the same. _ 

Box's M-test is routinely calculated in many statistical computer packages that 
do MANOVA and other procedures requiring equal covariance matrices. It is 
known that the M-test is sensitive to some forms of non-normality. More broadly, in 
the presence of non-normality, normal theory tests on covariances are influenced by 
the kurtosis of the parent populations (see [16]). However, with reasonably large 
samples, the MANOVA tests of means or treatment effects are rather robust to 
nonnormality. Thus the M-test may reject Ho in some non-normal cases where it is 
not damaging to the MANOVA tests. Moreover, with equal sample sizes, some 
differences in covariance matrices have little effect on the MANOVA tests. To 
summarize, we may decide to continue with the usual MANOVA tests even though 
the M-test leads to rejection of Ho. 

6.7 Two-Way Multivariate Analysis of Variance 
Following our approach to tile one-way MANOVA, we shall briefly review the 
analysis for a univariate two-way fixed-effects model and then simply generalize to 
the multivariate case by analogy. 

Univariate Two-Way Fixed-Effects Model with Interaction 

We assume that measurements are recorded at various levels of two factors. In some 
cases, these experimental conditions represent levels of a single treatment arranged 
within several blocks. The particular experimental design employed will not concern 
us in this book. (See (10) and (17) for discussions of experimental design.) We shall, 
however, assume that observations at different combinations of experimental condi
tions are independent of one another. 

Let the two sets of experimental conditions be the levels of, for instance, factor 
1 and factor 2, respectively.4 Suppose there are g levels of factor 1 and b levels of fac
tor 2, and that n independent observations can be observed at each of the gb combi-

4The use of the tenn "factor" to indicate an experimental condition is convenient. The factors dis
cussed here should not be confused with the unobservable factors considered in Chapter 9 in the context 
of factor analysis. 
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,nations of levels. Denoting the rth observation at level e of factor 1 and level k of 
factor 2 by X fkr , we specify the univariate two-way model as 

Xekr = JL + Te + f3k + 'Yek + eekr 
e = 1,2, ... ,g 
k = 1,2, ... , b 

(6-54) 

r = 1,2, ... ,n 

g b g b 

where 2: Te = 2: f3k = 2: 'Yek = 2: 'Yek = 0 and the elkr are independent 
e=1 k=1 e=1 k=1 

N(O, (T2) random variables. Here JL represents an overall level, Te represents the 
fixed effect of factor 1, f3 k represents the fixed effect of factor 2, and 'Ye k is the inter
action between factor 1 and factor 2. The expected response at the eth level of factor 
1 and the kth level of factor 2 is thus 

JL + Tt + f3k + 'Yek 

( overall) ( effect Of) ( effect Of) (fa~tOr1-fa~tor 2 ) + 
factor 1 

+ + level factor 2 InteractIOn (
mean) 

response 

e=I,2, ... ,g, k = 1,2, ... , b (6-55) 

The presence of interaction, 'Yek> implies that the factor effects are not additive 
and complicates the interpretation of the results. Figures 6.3(a) and (b) show 

2 3 

Level of factor 2 

(a) 

2 3 

Level of factor 2 

(b) 

4 

4 

Level I offactor I 

Level 3 offactor I 
Level 2 offactor I 

Level 3 of factor I 

Level I offactor I 

Level 2 offactor I 

Figure 6.3 Curves for expected 
responses (a) with interaction and 
(b) without interaction. 
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expected responses as a function of the factor levels with and without interaction, 
respectively. The absense of interaction means 'Yek = 0 for all e .and k. 

In a manner analogous to (6-55), each observation can be decomposed as 

where x is the overall average, Xf· is the average for the eth level of factor 1, x'k is 
the average for the kth level of factor 2, and Xlk is the average for the eth level 
factor 1 and the kth level of factor 2. Squaring and summing the deviations 
(XCkr - x) gives 

or 

g b n g b 

2: 2: 2: (Xtkr - x)2 = 2: bn(xf· - X)2 + 2: gn(x'k - X)2 
(=1 k=1 ,=1 f=1 k=1 

g b 

+ 2: 2: n(Xfk - Xc- - X'k + X)2 
f=1 k=1 

SSco, = SSfacl + SSfac2 + SSint + SSres 

The corresponding degrees of freedom associated with the sums of squares in the 
breakup in (6-57) are 

gbn - 1 = (g - 1) + (b - 1) + (g - 1) (b - 1) + gb(n - 1) (6-58) 

TheANOVA table takes the following form: 

ANOVA Table for Comparing Effects of Two Factors and Their Interaction 

Source Degrees of 
of variation Sum of squares (SS) freedom (d.f.) 

g 

Factor 1 SSfac1 = 2: bn(xe. - x)2 g-1 
(=1 

Factor 2 
b 

SSfac2 = 2: gn(x'k - x)2 b - 1 
k=1 
g b 

Interaction SSint = 2: 2: n(xCk - Xc· - X'k + X)2 (g - 1)(b - 1) 
C=I k=1 

Residual (Error) 
± b " SSres = 2: 2: (XCkr - fed 
f=1 k=l r=1 

gb(n - 1) 

± b n 
Total (corrected) SScor = 2: 2: (Xek' - x)2 gbn - 1 

C=1 k=! ,=1 
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The F-ratios of the mean squares, SSfact/(g - 1), SSfaczl(b - 1), and 
SSintl (g - 1)( b - 1) to the mean square, SS,es I (gb( n - 1» can be used to test for 
the effects of factor 1, factor 2, and factor I-factor 2 interaction, respectively. (See 
[11] for a discussion of univariate two-way analysis of variance.) 

Multivariate Two-Way Fixed-Effects Model with Interaction 

Proceeding by analogy, we specify the two-way fixed-effects model for a vector 
response consisting ofp components [see (6-54)] 

X ekr = po + 'Te + Ih + 'Ytk + eCk, 

e = 1,2, ... ,g 

k = 1,2, ... ,b 
(6-59) 

r = 1,2, ... ,n 

g Q g b 

where 2: 'T C = 2: Ih = 2: 'Y C k = 2: 'Ye k = O. The vectors are all of order p X 1, 
f~1 k=1 C=I k=1 

and the eCkr are independent Np(O,::£) random vectors. Thus, tbe responses consist 
of p measurements replicated n times at each of the possible combinations of levels 
of factors 1 and 2. 

Following (6-56), we can decompose the observation vectors xtk, as 

XCkr = X + (xe· - x) + (X'k - x) + (XCk - xc· - i' k + i) + (XCkr - XCk) (6-60) 

where i is the overall average of the observation vectors, ic. is the average of the 
observation vectors at the etb level of factor 1, i' k is the average of the observation 
vectors at the kth level of factor 2, and ie k is the average of the observation vectors 
at the eth level of factor 1 and the kth level of factor 2. 

Straightforward generalizations of (6-57) and (6-58) give the breakups of the 
sum of squares and cross products and degrees of freedom: 

g b n g 

2: 2: 2: (XCkr - i)(XCk' - x)' = 2: bn(ic· - i)(xe· - i)' 
(=1 k=1 r=1 C=I 

b 

+ 2: gn(i' k - i)(i' k - i)' 
k=l 

g b 

+ 2: 2: n(itk - Xc· - i' k + i) (iek - Xt· - i' k + i)' 
t=1 k=l 

(6-61) 

gbn - 1 = (g - 1) + (b - 1) + (g - 1)(b - 1) + gb(n - 1) (6-62) 

Again, the generalization from the univariate to the multivariate analysis consists 
simply of replacing a scalar such as (xe. - x)2 with the corresponding matrix 
(ie· - i)(xc. - i)'. 
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The MANOVA table is the following: 

MANOVA Table for Factors and Their Interaction 

Source of 
variation 

Factor 1 

Factor 2 

Interaction 

Residual 
(Error) 

Matrix of sum of squares 
and cross products (SSP) 

g 

SSPtacl = 2: bn(xe· - x) (I.e· - x)' 
e=1 

b . 

SSPtac2 = 2: gri(X'k - x) (X'k - x)' 
k=l 

SSPint = ± ± n(Xtk - it· - X'k + x) (Xlk - I.e· - X'k + x)' 
e=1 k=1 

SSPres = 1: ±:± (XCkr - XCk)(XCkr - xcd 
(=] k=1 r=1 

g-l 

b - 1 

Total 
(corrected) 

g b n 

SSPcor = 2: 2: 2: (Xtkr - X)(Xfkr - x)' gbn -1 
(=1 k=1 r=1 

A test (the likelihood ratio test)5 of 

Ho: 1'11 = 1'12 = ... = 1'gb = 0 (no interaction effects) 

versus 

HI: Atleast one 1't k *" 0 

is conducted by rejecting Ho for small values of the ratio 

ISSPresl 
A * - ---'---'-"'-'----, 

- I SSPint + SSPres I 

For large samples, Wilks' lambda, A *, can be referred. to a .chi-squar~ . n 
Using Bartlett's multiplier (see [6]) to improve th~ chI-square approxlmatto , 
reject Ho: I'll = 1'12 = '" = l' go = 0 at the a level if 

-[gb(n - 1) - P + 1 - (g2-
1

)(b -l)JInA* > xTg-I)(b-l)p(a) 

where A * is given by (6-64) and xfg-I)(b-l)p(a) is the upper (lOOa)th percentile 
chi-square distribution with (g - .1)(? - l!p d.f. 

Ordinarily the test for interactIOn IS earned out before the tests for 
fects. If interadtion effects exist, the factor effects do not hav.e a clear in.t4.erpallret8Itl( 
From a practical standpoint, it is not advisable to proceed WIth the addltich0n 

. . al f ariance (one for ea variatetests. Instead,p umvanate two-way an yses 0 v . e res nses 
are often conducted to see whether the interaction appears m som po 

. h SSP will be positive 5The likelihood test procedures reqwre that p :5 go(n - 1), so t at res 
(with probability 1). 
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others. Those responses without interaction may be interpreted in terms of additive 
factor 1 and 2 effects, provided that the latter effects exist. In any event, interaction 
plots similar to Figure 6.3, but with treatinent sample means replacing expected values, 
best clarify the relative magnitudes of the main and interaction effects. 

In the multivariate model, we test for factor 1 and factor 2 main effects as 
follows. First, consider the hypotheses Ho: 'Tl = 'T2 = ... = 'T g = 0 and HI: at least 
one 'Tt *" O. These hypotheses specify no factor 1 effects and some factor 1 effects, 
respectively. Let 

/SSPresl A * = --'---':':0.=.:-. __ 

I SSPtacl + SSPres I 
(6-66) 

so that small values of A * are consistent with HI' Using Bartlett's correction, the 
likelihood ratio test is as follows: 

Reject Ho: 'Tl = 'T2 = ... = 'Tg = 0 (no factor 1 effects) at level a if 

[ 
P+1-(g-1)] 

-gb(n-1)- 2 InA*>xfg_l)p(a) (6-67) 

where A * is given by (6-66) and Xtg-l)p(a) is the upper (l00a)th percentile of a 
Chi-square distribution with (g - l)p d.f. 

In a similar manner, factor 2 effects are tested by considering Ho: PI = 
P2 = ... = Pb = 0 and HI: at least one Pk *" O. Small values of 

/SSPres / 
A * = -:--"'----""-=---, 

/SSPfac2 + SSPres / (6-68) 

are consistent with HI' Once again, for large samples and using Bartlett's correction: 
Reject Ho: PI = P2 = ... = Pb = 0 (no factor 2 effects) at level a if 

[ 
p + 1 - (b - l)J 

- gb(n - 1) - 2 In A* > Xtb-I)p(a) (6-69) 

where A * is given by (6-68) and XTb-I)p( a) is the upper (100a)th percentile of a 
chi-square distribution witlt (b - 1) P degrees of freedom. 

Simultaneous confidence intervals for contrasts in the model parameters 
can provide insights into the nature of the·factor effects. Results comparable to 
Result 6.5 are available for the two-way model. When interaction effects are 
negligible, we may concentrate on contrasts in the factor 1 and factor 2 main 

. effects. The Bonferroni approach applies to the components of the differences 
'Tt - 'Tm of the factor 1 effects and the components of Pk - Pq of the factor 2 
effects, respectively. 

The 100(1 - a)% simultaneous confidence intervals for 'Tei - 'Tm; are 

Tti - T m; belongs to (Xt.; - ~m'i) ± tv Cg(ga _ l»));i b~ (6-70) 

where v = gb(n - 1), Ei; is the ith diagonal element of E = SSPres , and xe.; - Xm.i 
is the ith component of I.e. - x

m 
•• 

I 

L 
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Similarly, the 100(1 - a) percent simultaneous confidence intervals for f3ki - f3qi 

are 

( a) fE::2 
f3ki - f3qi belongsto (i·ki - i·qi) ± tv pb(b - 1) ~-;-g;;. (6-71) 

where jJ and Eiiare as just defined and i·ki - i·qiis the ith component ofx·k - x.q • 

Comment. We have considered the multivariate two-way model with replica
tions. That is, the model allows for n replications of the responses at each combina
tion of factor levels. This enables us to examine the "interaction" of the factors. If 
only one observation vector i~ available at each combination of factor levels, the 
two-way model does not allow for the possibility oca general interaction term 'Yek· 
The corresponding MANOVA table includes only factor 1, factor 2, and residual 
sources of variation as components of the total variation. (See Exercise 6.13.) 

Example 6.13 (A two-way multivariate analysis of variance of plastic film data) The 
optimum conditions for extruding plastic film have been examined using a tech
nique called Evolutionary Operation. (See [9].) In the course of the study that was 
done, three responses-Xl = tear resistance, Xz = gloss, and X3 = opacity-were 
measured at two levels of the factors, rate of extrusion and amount of an additive. 
The measurements were repeated n = 5 times at each combination of the factor 

levels. The data are displayed in Table 6.4. 

Table 6.4 Plastic Film Data 

Xl = tear resistance, X2 = gloss, and X3 = opacity 

Factor 2: Amount of additive 

Low (1.0%) High (1.5%) 

~ ~ ~ ~ X2 X3 

[6.5 9.5 4.4] [6.9 9.1 5.7] 
[6.2 9.9 6.4] [7.2 10.0 2.0] 

Low (-10)% [5.8 9.6 3.0] [6.9 9.9 3.9] 
[6.5 9.6 4.1] [6.1 9.5 1.9] 

Factor 1: Change [6.5 9.2 0,8] [6.3 9.4 5.7] 

in rate of extrusion ~ Xz X3 ~ X2 X3 

[6.7 9.1 2.8] [7.1 9.2 8.4] 
[6.6 9.3 4.1] [7.0 8.8 5.2] 

High (10%) [7.2 8.3 3.8] [7.2 9.7 6.9] 
[7.1 8.4 1.6] [7.5 10.1 2.7] 
[6.8 8.5 3.4] [7.6 9.2 1.9] 

The matrices of the appropriate sum of squares and cross products were calcu
lated (see the SAS statistical software output in Panel 6.1

6
), leading to the following 

MANOVA table: 

6Additional SAS programs for MANOVA and other procedures discussed in this chapter are 

available in [13]. 
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Source of variation SSP 

[1.7405 -1.5045 .8555] 
1.3005 -.7395 

.4205 

n 1 change in rate 
ractor : 

of extrusion 

[7~ .6825 1.9305] 
.6125 1.7325 

4.9005 

n 2 amountof 
ractor : 

additive 

[- .0165 0445] 
.5445 1.4685 

3.9605 
Interaction 

r7~ .D200 -3.0700] 
2.6280 -.5520 

64.9240 
Residual 

[42655 -.7855 -2395] 
5.0855 1.9095 

74.2055 
Total (corrected) 

PANEL 6.1 SAS ANALYSIS FOR EXAMPLE 6.13 USING PROC GLM 

title 'MANOVA'; 
data film; 
infile 'T6-4.dat'; 
input xl x2 x3 factorl factor2; 
proc glm data = film; PROGRAM COMMANDS 
class factorl factor2; 
model xl x2 x3 = factorl factor2 factorl *factor2/ss3; 
manova h = factorl factor2 factorl *factor2/printe; 
means factorl factor2; 

L rleR~!l~~ri~ ~~rillbt~:~1 I 
Source 
Model 
Error 
Corrected Total 

Source 

General linear Models Procedure 
Class Level Information 

Class Levels Values 
FACTOR 1 2 0 1 
FACTOR2 2 0 1 
N umber of observations in data set = 20 

OF Sum of Squares Mean Square 
3 2.50150000 0.83383333 

16 1.76400000 0.11025000 
19 4.26550000 

R-Square C.V. Root MSE 
0.586449 4.893724 0.332039 

OF Mean Square 

1.74050000 
0.76050000 
0.00050000 

F Value 
7.56 

F Value 

15.79 
6.90 
0.00 

d.f. 

1 

1 

1 

16 

19 

OUTPUT 

Pr> F 
0.0023 

Xl Mean 
6.78500000 

Pr> F 

0.0011 
0.0183 
0.9471 

(continues on next page) 
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PANEL 6.1 (continued) 

source 
Model 
Error 
corrected Total 

source 

[ Dependi!li~Varlal:i'e; X3.1 
Source 
Model 
Error 
Corrected Total 

Source 

OF Sum of Squares Mean Square 

3 2.45750000 0.81916667 

16 2.62800000 0.16425000 

19 5.08550000 

R·Square C.V. Root M5E 

0.483237 4.350807 ·0.405278 

OF Type /11 SS Mean Square 

1.300$0000 1.30050000 

0.612soOOo 0.61250000 

0.54450000 0.54450000 

OF Sum of Squares Mean Square 

3 9.28150000 3.09383333 

16 64.92400000 4.05775000 

19 74.20550000 

R·Square C.V. RootMSE 

0.125078 51.19151 2.014386 

OF Type /11 SS Mean Square 

0A20SOOOO 0.42050000 

4.90050000 4.90050000 

3.960SOOOO 3.96050000 

I. E= Error SS&CP M'!trix 

Xl X2 

0.02 
2.628 

-0.552 

Xl 
X2 
X3 

1.764 
0.02 

-3.07 

Manova Test Criteria and Exact F Statistics for 

the 1 HYpOthi!sis. of no Overall fACTOR1 Effect 1 

H = Type'" SS&CP Matrix for FACTORl 

Pillai's Trace 
Hotelling-Lawley Trace 
ROy's Greatest Root 

S = 1 M =0.5 

0.61814162 
1.61877188 
1.61877188 

7.5543 
7.5543 
7.5543 

3 
3 

F Value 
4.99 

F Value 

7.92 
3.73 
3.32 

F Value 
0.76 

F Value 

0.10 
1.21 
0.98 

X3 

-3.07 
-0.552 
64.924 

Pr> F 
0.5315 

0.7517 
0.2881 
0.3379 

(continued) 

pillai's Trace 
Hotelling-Lawley Trace 
Roy's Greatest Root 
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Manova Test Criteria and Exact F Statistics for 

the I Hypothesis of no ()ve~a"FACTOR2 Effect I 

0.47696510 
0.91191832 
0.91191832 

4.2556 
4.2556 
4.2556 

3 
3 
3 

Manova Test Criteria and Exact F Statistics for 

14 
14 
14 

0.0247 
0.0247 
0.0247 

the Hypothl!sis of no Qverall FAcrOR1~.FAcrOR2 Effect 

H = Type III SS&CP Matrix for FACTOR 1 *FACTOR2 E = Error SS&CP Matrix 
S = ·1 M = 0.5 N = 6 

Value .F . Numb!' DenDF Pr> F 
0.77710.576 1.3385 3 14 0.3018 

Pillai's Trace 
Hotelling-Lawley Trace 
Roy's Greatest Root 

0.22289424 
0.28682614 
0.28682614 

1.3385 3 
1.3385 3 
1.3385 3 

14 0.3018 
14 0.3018 
14 0.3018 

Level of 
FACTOR 1 
o 

Level of 
FACTOR2 
o 

N 
10 
10 

Level of 
FACTOR 1 
o 
1 

N 
10 
10 

Level of 
FACTOR2 
o 

---------Xl---------
Mean 

·6.49000000 
7.08000000 

SO 
0.42018514 
0.32249031 

---------X2--------
Mean SO 

9.57000000 . 0.29832868 
9.06000000 0.57580861 

---------X3---------
N 

10 
10 

Mean 
3.79000000 
4.08000000 

---------Xl---------
Mean 

6.59000000 
6.98000000 

SO 
0.40674863 
0.47328638 

SO 
1.85379491 
2.18214981 

---------X2--------
Mean SO 

9.14000000 0.56015871 
9.49000000 0.42804465 

---------X3---------
N 

10 
10 

Mean 
3.44000000 
4.43000000 

SO 
1.55077042 
2.30123155 

To test for interaction, we compute 

A* = /SSPres / 

/ SSPint + SSPres / 

275.7098 
354.7906 = .7771 
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For (g - 1)(b - 1) = 1, 

(1 -A*) (gb(n -1) - p + 1)/2 
F = A* (I (g - l)(b - 1) - pi + 1)/2 

has an exact F-distribution with VI = I(g - l)(b - 1) - pi + 1 
gb(n -1) - p + 1d.f.(See[1].)Forourexample. 

= (1 - .7771) (2(2)(4) - 3 + 1)/2 = 1 
F .7771 (11(1) -.31 + 1)/2 34 

VI = (11(1) - 31 + 1) = 3 

V2 = (2(2)(4) - 3 + 1) = 14 

and F3,14( .OS) = 3.34. Since F = 1.34 < F3,14('OS) = 3.34, we do not reject 
hypothesis Ho: 'Y11 = 'YIZ = 'Y21 = 'Y22 = 0 (no interaction effects). 

Note that the approximate chi-square statistic for this test is 
(3 + 1 - 1(1»/2] In(.7771) = 3.66, from (6-65). Since x1(.05) = 7.81, we 
reach the same conclusion as provided by the exact F-test. 

To test for factor 1 and factor 2 effects (see page 317), we calculate 

A~ = I SSPres I = 27S.7098 = .3819 
I SSPfac1 + SSPres I 722.0212 

and 

A; = I SSPres I = 275.7098 = .5230 
I SSPfacZ + SSP,es I 527.1347 

For both g - 1 = 1 and b - 1 = 1, 

_ (1 -A~) (gb(n - 1) - P + 1)/2 
Pi - A~ (I (g - 1) - pi + 1)/2 

and 
_ (1 - A;) (gb(n - 1) - p + 1)/2 

Fz - A; (i (b - 1) - pi + 1)/2 

have F-distributions with degrees of freedom VI = I (g - 1) - pi + 1, 
gb (n - 1) - P + 1 and VI = I (b - 1) - pi + 1, V2 = gb(n - 1) - p + 1, 
tively. (See [1].) In our case, 

= (1 - .3819) (16 - 3 + 1)/2 = 7.55 
FI .3819 (11- 31+ 1)/2 

(
1 - .5230) (16 - 3 + 1)/2 

F2 = .5230 (11 - 31 + 1)/2 = 4.26 

and 

VI = 11 - 31 + 1 = 3 V2 = (16 - 3 + 1) = 14 
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From before, F3,14('OS) = 3.34. We have FI = 7.5S > F3,14('OS) = 3.34, and 
therefore, we reject Ho: 'TI = 'T2 = 0 (no factor 1 effects) at the S% level. Similarly, 
Fz = 4.26 > F3,14( .OS) = 3.34, and we reject Ho: PI = pz = 0 (no factor 2 effects) 
at the S% level. We conclude that both the change in rate of extrusion and the amount 
of additive affect the responses, and they do so in an additive manner. 

The nature of the effects of factors 1 and 2 on the responses is explored in Exer
cise 6.1S. In that exercise, simultaneous confidence intervals for contrasts in the 
components of 'T e and P k are considered. _ 

6.8 Profile Analysis 
Profile analysis pertains to situations in which a battery of p treatments (tests, ques
tions, and so forth) are administered to two or more groups of subjects. All responses 
must be expressed in similar units. Further, it is assumed that the responses for the 
different groups are independent of one another. Ordinarily, we might pose the 
question, are the population mean vectors the same? In profile analysis, the question 
of equality of mean vectors is divided into several specific possibilities. 

Consider the population means /L 1 = [JLII, JLI2 , JLI3 , JL14] representing the average 
responses to four treatments for the first group. A plot of these means, connected by 
straight lines, is shown in Figure 6.4.1bis broken-line graph is the profile for population 1. 

Profiles can be constructed for each population (group). We shall concentrate 
on two groups. Let 1'1 = [JLll, JLl2,"" JLlp] and 1'2 = [JLz!> JL22,"" JL2p] be the 
mean responses to p treatments for populations 1 and 2, respectively. The hypothesis 
Ho: 1'1 = 1'2 implies that the treatments have the same (average) effect on the two 
populations. In terms of the population profiles, we can formulate the question of 
equality in a stepwise fashion. 

1. Are the profiles parallel? 
Equivalently: Is H01 :JLli - JLli-l = JLzi - JLzi-l, i = 2,3, ... ,p, acceptable? 

2. Assuming that the profiles are parallel, are the profiles coincident? 7 

Equivalently: Is H02 : JLli = JLZi, i = 1,2, ... , p, acceptable? 

Mean 
response 

L... __ L-_--l __ --l __ --l. _ _+ Variable Figure 6.4 The population profile 
2 3 4 p = 4. 

7The question, "Assuming that the profiles are parallel, are the profiles linear?" is considered in 
Exercise 6.12. The null hypothesis of parallel linear profIles can be written Ho: (/Lli + iL2i) 

- (/Lli-l + /L2H) = (/Lli-l + iL2H) - (/Lli-2 + iL2i-2), i = 3, ... , p. Although this hypothesis may be 
of interest in a particular situation, in practice the question of whether two parallel profIles are the same 
(coincident), whatever their nature, is usually of greater interest. 
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3. Assuming that the profiles are coincident, are the profiles level? That is, are all 
the means equal to the same constant? 
Equivalently: Is H03: iLl I = iL12 = ... = iLlp = JL21 = JL22 = ... = iL2p acceptable? 

The null hypothesis in stage 1 can be written 

where C is the contrast matrix 

[

-1 

C = 0 
((p-I)Xp) ~ 

1 0 0 
-1 1 0 

o 0 0 

(6-72) 

For independent samples of sizes nl and n2 from the two popu]ations, the null 
hypothesis can be tested by constructing the transformed observations 

CXI;, j=1,2, ... ,nl 
and 

CX2j, j = 1,2, ... ,n2 

These have sample mean vectors CXI and CX2, respectively, and pooled covariance 
matrix CSpooledC" 

Since the two sets of transformed observations have Np-1(C#'1, Cl:C:) and 
Np-I(CiL2, CIC') distributions, respectively, an application of Result 6.2 provides a 
test for parallel profiles. 

Test for Parallel Profiles for Two Normal Populations 

Reject HoI : C#'l = C#'2 (parallel profiles) at level a if 

T2 = (Xl - X2)'C{ (~I + ~JCSpooledC' Jl C(Xl - X2) > c
2 

where 

(6-73) 

When the profiles are parallel, the first is either above the second (iLli > JL2j, 
for all i), or vice versa. Under this condition, the profiles will be coincident only if 
the total heights iLl 1 + iL12 + ... + iLlp = l' #'1 and IL21 + iL22 + ... + iL2p = 1'1'"2 
are equal. Therefore, the null hypothesis at stage 2 can be written in the equivalent 
form 

H02 : I' #'1 = I' #'2 

We can then test H02 with the usual two-sample t-statistic based on the univariate 
observations i'xli' j = 1,2, ... , nI, and l'X2;, j = 1,2, ... , n2' 
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Test for Coincident Profiles. Given That Profiles Are Parallel 

For coincident profiles, xu. X12,'·" Xl nl and XZI> xzz, ... , xZ n2 are all observa
tions from the same normal popUlation? The next step is to see whether all variables 
have the same mean, so that the common profile is level. 

When HOI and Hoz are tenable, the common mean vector #' is estimated, using 
all nl + n2 observations, by 

_ "+ " nl _ nz_ 1 ( "I "2) x = --- £.; Xl' £.; X2' = Xl + X2 
nl + nz ;=1 ) . j=l ) (nl + n2) (nl + n2) 

If the common profile is level, then iLl = iL2 = .. , = iLp' and the null hypothesis at 
stage 3 can be written as 

H03: C#' = 0 

where C is given by (6-72). Consequently, we have the following test. 

Test for level Profiles. Given That Profiles Are Coincident 
For two normal populations: Reject H03: C#' = 0 (profiles level) at level a if 

(nl + n2)x'C'[CSCTICx > c2 (6-75) 

where S is the sample covariance matrix based on all nl + n2 observations and 

c2 = (nl + n2 - l)(p - 1) ( ) 
(nl + n2 - P + 1) Fp-c-l,nl+nz-P+l et 

Example 6.14 CA profile analysis of love and marriage data) As part of a larger study 
of love and marriage, E. Hatfield, a sociologist, surveyed adults with respect to their 
marriage "contributions" and "outcomes" and their levels of "passionate" and 
"companionate" love. Receqtly married males and females were asked to respond 
to the following questions, using the 8-point scale in the figure below. 

2 3 4 5 6 7 8 
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1. All things considered, how would you describe your contributions to the 
marriage? 

2. All things considered, how would you describe your outcomes from the
marriage? 

SubjeGts were also asked to respond to the following questions, using the 
5-point scale shown. 

3. What is the level of passionate love that you feel for your partner? 
4. What is the level of companionate love that you feel for your partner? 

None Very A great Tremendous 
at all little 

I I 
2 

Let 

Some deal 

4 

Xl = an 8-point scale response to Question 1 

X2 = an 8-point scale response to Question 2 

X3 = a 5-point scale response to Question 3 

X4 = a 5-point scale response to Question 4 

and the two populations be defined as 

Population 1 = married men 

Population 2 = married women 

amount 

5 

The population means are the average responses to the p = 4 questions for the 
populations of males and females. Assuming a common covariance matrix I, it is of 
interest to see whether the profiles of males and females are the same. 

A sample of nl = 30 males and n2 = 30 females gave the sample mean vectors 

Xl = r;:n 
4.700J 
(males) 

and pooled covariance matrix 

.262 
SpooJed = .066 l

·606 

.161 

_ 7.000 l6.633j 

X2 = 
4.000 

4.533 
(females) 

.262 .066 .161j 

.637 .173 .143 

.173 .810 .029 

.143 .029 .306 

The sample mean vectors are plotted as sample profiles in Figure 6.5 on page 327. 
Since the sample sizes are reasonably large, we shall use the normal theory 

methodology, even though the data, which are integers, are clearly nonnormal. To 
test for parallelism (HOl: CILl =CIL2), we compute 

Sample mean 
response 'i (i 

6 

4 

2 

Key: 

x-x Males 

0- -oFemales 
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-d 
t..o~- -

X 

L----_L-___ L-___ -L ___ -L __ +_ Variable Figure 6.S Sample profiles 
2 3 4 for marriage-love responses. 

[ -1 
1 0 ~}~~r -~ 

0 

-fj 

CSpOoJedC' = ~ -1 1 
-1 

0 -1 
1 

0 

and 

[ .719 -.268 -125] = - .268 1.101 -.751 
-.125 -.751 1.058 

Thus, 

[ 

.719 -.268 
T2 = [-.167, -.066, .200J (k + ktl -.268 1.101 

-.125 -.751 

= 15(.067) = 1.005 

-.125]-1 [-.167] 
-.751 -.066 

1.058 .200 

Moreover, with a= .05, c2 = [(30+30-2)(4-1)/(30+30- 4)JF3,56(.05) = 3.11(2.8) 
= 8.7. Since T2 = 1.005 < 8.7, we conclude that the hypothesis of parallel profiles 
for men and women is tenable. Given the plot in Figure 6.5, this finding is not 
surprising . 

Assuming that the profiles are parallel, we can test for coincident profiles. To 
test H02: l'ILl = l' IL2 (profiles coincident), we need 

Sum of elements in (Xl - X2) = l' (Xl - X2) = .367 

Sum of elements in Spooled = I'Spooled1 = 4.207 
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Using (6-74), we obtain 

T2 = ( .367 )2 = .501 

V(~ + ~)4.027 

With er = .05, F1,;8(.05) = 4.0, and T2 = .501 < F1,58(.05) = 4.0, we cannot reject 
the hypothesis that the profiles are coincident. That is, the responses of men and 
women to the four questions posed appear to be the same. 

We could now test for level profiles; however, it does not make sense to carry 
out this test for our example, since Que'stions 1 and i were measured on a scale of 
1-8, while Questions 3 and 4 were measured on a scale of 1-5. The incompatibility of 
these scales makes the test for level profiles meaningless and illustrates the need for 
similar measurements in order to carry out a complete profIle analysis. _ 

When the sample sizes are small, a profile analysis will depend on the normality 
assumption. This assumption can be checked, using methods discussed in Chapter 4, 
with the original observations Xej or the contrast observations CXej' 

The analysis of profiles for several populations proceeds in much the same 
fashion as that for two populations. In fact, the general measures of comparison are 
analogous to those just discussed. (See [13), [18).) 

6.9 Repeated Measures Designs and Growth Curves 
As we said earlier, the term "repeated measures" refers to situations where the same 
characteristic is observed, at different times or locations, on the same subject. 

(a) The observations on a subject may correspond to different treatments as in 
Example 6.2 where the time between heartbeats was measured under the 2 X 2 
treatment combinations applied to each dog. The treatments need to be com
pared when the responses on the same subject are correlated. 

(b) A single treatment may be applied to each subject and a single characteristic 
observed over a period of time. For instance, we could measure the weight of a 
puppy at birth and then once a month. It is the curve traced by a typical dog that 
must be modeled. In this context, we refer to the curve as a growth curve. 

When some subjects receive one treatment and others another treatment, 
the growth curves for the treatments need to be compared. 

To illustrate the growth curve model introduced by Potthoff and Roy [21), we 
consider calcium measurements of the dominant ulna bone in older women. Besides 
an initial reading, Table 6.5 gives readings after one year, two years, and three years 
for the control group. Readings obtained by photon absorptiometry from the same 
subject are correlated but those from different subjects should be independent. The 
model assumes that the same covariance matrix 1: holds for each subject. Unlike 
univariate approaches, this model does not require the four measurements to have 
equal variances.A profile, constructed from the four sample means (Xl, X2, X3, X4), 
summarizes the growth which here is a loss of calcium over time. Can the growth 
pattern be adequately represented by a polynomial in time? 
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Table 6_S Calcium Measurements on the Dominant Ulna; Control Group 

Subject Initial 1 year 2 year 3 year 

1 87.3 86.9 86.7 75.5 
2 59.0 60.2 60.0 53.6 
3 76.7 76.5 75.7 69.5 
4 70.6 76.1 72.1 65.3 
5 54.9 55.1 57.2 49.0 
6 78.2 75.3 69.1 67.6 
7 73.7 70.8 71.8 74.6 
8 61.8 68.7 68.2 57.4 
9 85.3 84.4 79.2 67.0 

10 82.3 86.9 79.4 77.4 
11 68.6 65.4 72.3 60.8 
12 67.8 69.2 66.3 57.9 
13 66.2 67.0 67.0 56.2 
14 81.0 82.3 86.8 73.9 
15 72.3 74.6 75.3 66.1 

Mean 72.38 73.29 72.47 64.79 

Source: Data courtesy of Everett Smith. 

When the p measurements on all subjects are taken at times tl> t2,"" tp, the 
Potthoff-Roy model for quadratic growth becomes 

where the ith mean ILi is the quadratic expression evaluated at ti • 

Usually groups need to be compared. Table 6.6 gives the calcium measurements 
for a second set of women, the treatment group, that received special help with diet 
and a regular exercise program. 

When a study involves several treatment groups, an extra subscript is needed as 
in the one-way MANOVA model. Let X{1, X{2,"" Xene be ~he ne vectors of 
measurements on the ne subjects in group e, for e = 1, ... , g. 

Assumptions. All of the X ej are independent and have the same covariance 
matrix 1:. Under the quadratic growth model, the mean vectors are 
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Table 6.6 Calcium Measurements on the Dominant Ulna; Treatment 
Group 

Subject Initial 1 year 2 year 3 year 

1 83.8 85.5 86.2 81.2 
2 , 65.3 66.9 67.0 60.6 
3 81.2 79.5 84.5 75.2 
4 75.4 76.7 74.3 66.7 
5 55.3 58.3 59.1 54.2 
6 70.3 72.3 70.6 68.6 
7 76.5 79.9 80.4 71.6 
8 66.0 70.9 70.3 64.1 
9 76.7 79.0 76.9 70.3 

10 77.2 74.0 77.8 67.9 
11 67.3 70.7 68.9 65.9 
12 50.3 51.4 53.6 48.0 
13 57.7 57.0 57.5 51.5 
14 74.3 77.7 72.6 68.0 
15 74.0 74.7 74.5 65.7 
16 57.3 56.0 64.7 53.0 

Mean 69.29 70.66 71.18 64.53 

Source: Data courtesy of Everett Smith. 

where 

1 tz t~ f3eo 

f
l tl t1] [ ] 

B = ~ t~ t~ and Pe = ~;~ (6-76) 

If a qth-order polynomial is fit to the growth data, then 

1 tl t'{ f3eo 
1 t2 t5. f3n 

B= and Pe = (6-77) 

1 tp t
q 
p f3eq 

Under the assumption of multivariate normality, the maximum likelihood 
estimators of the Pe are 

(6-78) 

where 

1 1 
Spooled = (N _ g) «nl - I)SI + ... + (ng - I)Sg) = N _ g W 
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g 

with N = L ne, is the pooled estimator of the common covariance matrix l:. The 
e=l 

estimated covariances of the maximum likelihood estimators are 

---- A k, -1 -1 Cov(Pe) = - (B SpooledB) for f = 1,2, ... , g 
ne 

(6-79) 

where k =IN - ¥) (N - g - l)j(N - g - p + q)(N - g - p + q + 1). 
Also, Pe and Ph are independent, for f # h, so their covariance is O. 
We can formally test that a qth-order polynomial is adequate. The model is fit 

without restrictions, the error sum of squares and cross products matrix is just the 
within groups W that has N - g degrees of freedom. Under a qth-order polynomi
al, the error sum of squares and cross products 

g ~ A A 

Wq = L ~ (X ej - BPe) (Xej - Bpe)' 
e=1 j=l 

(6-80) 

has ng - g + p - q - 1 degrees of freedom. The likelihood ratio test of the null 
hypothesis that the q-order polynomial is adequate can be based on Wilks' lambda 

A* = IWI (6-81) 
IWql 

Under the polynomial growth model, there are q + 1 terms instead of the p means 
for each of the groups. Thus there are (p - q - l)g fewer parameters. For large 
sample sizes, the null hypothesis that the polynomial is adequate is rejected if 

-( N - ~(p - q + g») In A * > xrp-q-l)g(a) (6-82) 

Example 6.IS (Fitting a quadratic growth curve to calcium loss) Refer to the data in 
Tables 6.5 and 6.6. Fit the model for quadratic growth. 

A computer calculation gives 

[ 

73.0701 70.1387] 
[Pr. pzJ = 3.6444 4.0900 

-2.0274 -1.8534 

so the estimated growth curves are 

Control group: 73.07 + 3.64t - 2.03(2 
(2.58) (.83) (.28) . 

where 

Treatment group: 70.14 + 4.09t - 1.85t2 

(2.50) (.80) (.27) 

[ 

93.1744 -5.8368 

(B'Sp601edBr1 = -5.8368 9.5699 
0.2184 -3.0240 

0.2184] 
-3.0240 

1.1051 

and, by (6-79), the standard errors given below the parameter estimates were 
obtained by dividing the diagonal elements by ne and taking the square root. 
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Examination of the estimates and the standard errors reveals that the (2 terms 
are needed. Loss of calcium is predicted after 3 years for both groups. Further, there 
o s not seem to be any substantial difference between the two g~oups. . de. th 1I hypothesis that the quadratic growth model IS Wilks' lambda for testIng e nu ~. 

adequate becomes 

r62~ 2660.749 2369308 2335.91] 
2660.749 2756.009 2343.514 2327~961 

2369.308 2343.514 2301.714 2098.544 

2335.912 23?7.961 2098.544· 2277.452 

l'781.O17 2698.589 2363.228 ~~~31 
2698.589 2832.430 2331.235 2381..160 

2363.228 2331.235 2303.687 2089.996 

2362.253 2381.160 2089.996 2314.485 

= .7627 

Since, with a = .01, 

_( N _ ~ (p - q + g»)tn A * = -(31 - i (4 - 2 + 2») In .7627 _ 

= 7.86 < xt4-2-l)2( .01) - 9.21 

;ea~~~~~~r:c:s~~~:~:~~,as~:! :~~d~~:~r;~~~ f:~:~:a~r~t!~ ~:~: ~~I~~:r~::i~ We could, without restr!cting to ~uadratIc growth, test for par _ . 
dent calcium loss using profile analYSIS. 

owth curve model holds for more general designs than The Potthoff and Roy gr , I . b (6 78) and the expres-MANOVA However the fJ( are no onger gIven y -one-way. .' . b' ore complicated than (6-79). We refer the sion for Its covanance matnx ecomes m 
reader to [14] for moretheexrammop~~~c:~~~~r:!~~!e:~'del treated here. They include the There are many 0 

following: 
(a) Dropping the restriction to. pol~nomial growth. Use nonlinear parametric 

models or even nonparametnc sphnes. 
. . al f such as equally correlated (b) Restricting the covariance matriX to a specl onn 

responses on the same individual. . .. . bl f on the same IndIVIdual. (c) Observing more than one respon~e vana e, over Ime, 
This results in a multivariate verSIOn of the growth curve model. 

6.10 Perspectives and a Strategy for Analyzing 
Multivariate Models 

We emphasize that with several characteristics, it is ~port~nt to co~trol the ~~~:~ 
probability of making any incorrect decision. This IS partIcularl~ ~p~~~nchapter testing for the equality of two or more treatments as the exarnp es In 
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indicate. A single multivariate test, with its associated. single p-value, is preferable to 
performing a large number of univariate tests. The outcome tells us whether or not it is worthwhile to look closer on a variable by variable and group by group analysis. 

A single multivariate test is recommended over, say,p univariate tests because, as the next example demonstrates, univariate tests ignore important information ·and can give misleading results. 

Example 6.16 (Comparing multivariate and univariate tests for the differences in means) Suppose we collect measurements on two variables Xl and X 2 for ten randomly selected experimental units from each of two groups. The hypothetical data are noted here and displayed as scatter plots and marginal dot diagrams in 
Figure 6.6 on page 334. 

X2 Group 
5.0 3.0 1 
4.5 3.2 1 
6.0 3.5 1 
6.0 4.6 1 
6.2 5.6 1 
6.9 5.2 1 
6.8 6.0 1 
5.3 5.5 1 
6.6 7.3 1 

___ ?} ___________________________ f?:_~ _________________ _____________ .! ___ _ 
4.6 4.9 2 
4.9 5.9 2 
4.0 4.1 2 
3.8 5.4 2 
6.2 6.1 2 
5.0 7.0 2 
5.3 4.7 2 
7.1 6.6 2 
5.8 7.8 2 
6.8 8.0 2 

It is clear from the horizontal marginal dot diagram that there is considerable overlap in the Xl values for the two groups. Similarly, the vertical marginal dot diagram shows there is considerable overlap in the X2 values for the two groups. The scatter plots suggest that there is fairly strong positive correlation between the two variables for each group, and that, although there is some overlap, the group 1 measurements are generally to the southeast of the group 2 measurements. 
Let PI = [PlI, J.l.12J be the population mean vector for the first group, and let 

/Lz = [J.l.2l, /L22J be the population mean vector for the second group. Using the Xl observations, a univariate analysis of variance gives F = 2.46 with III = 1 and 
112 = 18 degrees of freedom. Consequently, we cannot reject Ho: J.l.1I = J.l.2l at any reasonable significance level (F1.18(.10) = 3.01). Using the X2 observations, a uni
variate analysis of variance gives F = 2.68 with III = 1 and 112 = 18 degrees of freedom. Again, we cannot reject Ho: J.l.12 = J.l.22 at any reasonable significance level. 



334 Chapter 6 Comparisons of Several Multivariate Means 

fjgure 6.6 Scatter plots and marginal dot diagrams for the data from two groups. 

The univariate tests suggest there is no difference between the component means 
for the two groups, and hence we cannot discredit 11-1 = 11-2' 

On the other hand, if we use Hotelling's T2 to test for the equality of the mean 

vectors, we find 
(18)(2) 

T2 = 17.29 > c2 = ~ F2,17('01) = 2.118 X 6.11 = 12.94 

and we reject Ho: 11-1 = 11-2 at the 1 % level. The multivariate test takes into account 
the positive correlation between the two measurements for each group-informa
tion that is unfortunately ignored by the univariate tests. This T2

-test is equivalent to 

the MANOVA test (6-42). • 

Example 6.11 (Data on lizards that require a bivariate test to establish a difference in 
means) A zoologist collected lizards in the southwestern United States. Among 
other variables, he measured mass (in grams) and the snout-vent length (in millime
ters). Because the tails sometimes break off in the wild, the snout-vent length is a 
more representative measure of length. The data for the lizards from two genera, 
Cnemidophorus (C) and Sceloporus (S), collected in 1997 and 1999 are given in 
Table 6.7. Notice that there are nl = 20 measurements for C lizards and n2 = 40 

measurements for S lizards. 
After taking natural logarithms, the summary statistics are 

C'. nl = 20 K = [2.240J s = [0.35305 0.09417J 
1 4.394 1 0.09417 0.02595 

S: nz = 40 [
2.368J 

K2 = 4.308 [
0.50684 0.14539J 

S2 = 0.14539 0.04255 
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Table 6.7 Lizard Data for Two Genera 

C S S 
Mass SVL Mass SVL Mass SVL 

7.513 74.0 13.911 77.0 14.666 80.0 
5.032 69.5 5.236 62.0 4.790 62.0 
5.867 72.0 37.331 108.0 5.020 61.5 

11.088 80.0 41.781 115.0 5.220 62.0 
2.419 56.0 31.995 106.0 5.690 64.0 

13.610 94.0 3.962 56.0 6.763 63.0 
18.247 95.5 4.367 60.5 9.977 71.0 
16.832 99.5 3.048 52.0 8.831 69.5 
15.910 97.0 4.838 60.0 9.493 67.5 
17.035 90.5 6.525 64.0 7.811 66.0 
16.526 91.0 22.610 96.0 6.685 64.5 
4.530 67.0 13.342 79.5 11.980 79.0 
7.230 75.0 4.109 55.5 16.520 84.0 
5.200 69.5 12.369 75.0 13.630 81.0 

13.450 91.5 7.120 64.5 13.700 82.5 
14.080 91.0 21.077 87.5 10.350 74.0 
14.665 90.0 42.989 109.0 7.900 68.5 
6.092 73.0 27.201 96.0 9.103 70.0 
5.264 69.5 38.901 111.0 13.216 77.5 

16.902 94.0 19.747 84.5 9.787 70.0 

SVL = snout-vent length. 
Source: Data courtesy of Kevin E. Bonine. 
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Figure 6.7 Scatter plot of In(Mass) versus In(SVL) for the lizard data in Table 6.7. 

-!"- plot of ~ass (Mass) versus snout-vent length (SVL), after taking natural logarithms, 
IS. shown ~ Figure 6.7. The large sample individual 95% confidence intervals for the 
difference m In(Mass) means and the difference in In(SVL) means both cover O. 

In (Mass ): ILll - IL21: ( -0.476,0.220) 
In(SVL): IL12 - IL22: (-0.011,0.183) 
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The corresponding univariate Student's t-test statistics for test.ing for no difference 
in the individual means have p-values of .46 and .08, respectlvely. Clearly, from a 
univariate perspective, we cannot detect a diff~ence in mass means or a difference 
in snout-vent length means for the two genera of lizards. 

However, consistent with the scatter diagram in Figure 6.7, a bivariate analysis 
strongly supports a difference in size between the two groups of lizards. Using ReSUlt 
6.4 (also see Example 6.5), the T2-statistic has an approximate X~ distribution. 
For this example, T2 = 225.4 with a p-value less than .0001. A multivariate method is 
essential in this case. • 

Examples 6.16 and 6.17 demonstrate the efficacy of ~ m~ltiv~riate. test relative 
to its univariate counterparts. We encountered exactly this SituatIOn with the efflll
ent data in Example 6.1. 

In the context of random samples from several populations (recall the one-way 
MANOVA in Section 6.4), multivariate tests are based on the matrices 

W = ± ~ (xej - xe)(xcj - xe)' and B = ±ne(xe - x)(xe - x)' 
e=1 j=! e=1 

Throughout this chapter, we have used 

Wilks'lambdastatisticA* = IBI:~I 

which is equivalent to the likelihood ratio test. Three other multivariate test statis
tics are regularly included in the output of statistical packages. 

Lawley-Hotelling trace = tr[BW-I
] 

Pillai trace = tr[B(B + W)-IJ 

Roy's largest root = maximum eigenvalue of W (B + W)-I 

All four of these tests appear to be nearly equivalent for extremely large sam
ples. For moderate sample sizes, all comparisons are based on what is necessarily a 
limited number of cases studied by simulation. From the simulations reported to 
date the first three tests have similar power, while the last, Roy's test, behaves dif
fere~tly.lts power is best only when there is a single nonzero eigenvalue and, at the 
same time, the power is large. This may approximate situations where a large 
difference exists in just one characteristic and it is between one group and all of the 
others. There is also some suggestion that Pillai's trace is slightly more robust 
against nonnormality. However, we suggest trying transformations on the original 
data when the residuals are nonnormal. 

All four statistics apply in the two-way setting and in even more complicated 
MANOVA. More discussion is given in terms of the multivariate regression model 

in Chapter 7. 
When, and only when, the multivariate tests signals a difference, or de~arture 

from the null hypothesis, do we probe deeper. We recommend calculatmg the 
Bonferonni intervals for all pairs of groups and all characteristics. The simultaneous 
confidence statements determined from the shadows of the confidence ellipse are, 
typically, too large. The one-at-a-time intervals may be suggestive of differences that 
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merit further study but, with the current data, cannot be taken as conclusive evi
dence for the existence of differences. We summarize the procedure developed in 
this chapter for comparing treatments. The first step is to check the data for outliers 
using visual displays and other calculations. 

A Strategy for the Multivariate Comparison of Treatments 

1. Try to identify outliers. Check the data group by group for outliers. Also 
check the collection of residual vectors from any fitted model for outliers. 
Be aware of any outliers so calculations can be performed with and without 
them. 

2. Perform a multivariate test of hypothesis. Our choice is the likelihood ratio 
test, which is equivalent to Wilks' lambda test. 

3. Calculate the Bonferroni simultaneous confidence intervals. If the multi
variate test reveals a difference, then proceed to calculate the Bonferroni 
confidence intervals for all pairs of groups or treatments, and all character
istics. If no differences are significant, try looking at Bonferroni intervals for 
the larger set of responses that includes the differences and sums of pairs of 
responses. 

We must issue one caution concerning the proposed strategy. It may be the case 
that differences would appear in only one of the many characteristics and, further, 
the differences hold for only a few treatment combinations. Then, these few active 
differences may become lost among all the inactive ones. That is, the overall test may 
not show significance whereas a univariate test restricted to the specific active vari
able would detect the difference. The best preventative is a good experimental 
design. To design an effective experiment when one specific variable is expected to 
produce differences, do not include too many other variables that are not expected 
to show differences among the treatments. 

6.1. Construct and sketch a joint 95% confidence region for the mean difference vector I) 

using the effluent data and results in Example 6.1. Note that the point I) = 0 falls 
outside the 95% contour. Is this result consistent with the test of Ho: I) = 0 considered 
in Example 6.1? Explain. 

6.2. Using the information in Example 6.1. construct the 95% Bonferroni simultaneous in
tervals for the components of the mean difference vector I). Compare the lengths of 
these intervals with those of the simultaneous intervals constructed in the example. 

6.3. The data corresponding to sample 8 in Thble 6.1 seem unusually large. Remove sample 8. 
Construct a joint 95% confidence region for the mean difference vector I) and the 95% 
Bonferroni simultaneous intervals for the components of the mean difference vector. 
Are the results consistent with a test of Ho: I) = O? Discuss. Does the "outlier" make a 
difference in the analysis of these data? 
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6.4. Refer to Example 6.l. 

(a) Redo the analysis in Example 6.1 after transforming the pairs of observations to 
In(BOD) and In (SS). 

(b) Construct the 95% Bonferroni simultaneous intervals for the components of the 
mean vector B of transformed variables. 

(c) Discuss any possible violation of the assumption of a bivariate normal distribution 
for the difference vectors of transformed observations. 

6.S. A researcher considered three indices measuring the severity of heart attacks. The 
values of these indices for n = 40 heart-attack patients arriving at a hospital emergency 
room produced the summary statistics . 

x = 57.3 and S = 63.0 80.2 55.6 
[

46.1] [101.3 63.0 71.0] 

50.4· 71.0 55.6 97.4 

(a) All three indices are evaluated for each patient. Test for the equality of mean indices 
using (6-16) with a = .05. 

(b) Judge the differences in pairs of mean indices using 95% simultaneous confidence 
intervals. [See (6-18).] 

6.6. Use the data for treatments 2 and 3 in Exercise 6.8. 

(a) Calculate Spooled' 
(b) Test Ho: ILz - IL3 = 0 employing a two-sample approach with a = .Ol. 

(c) Construct 99% simultaneous confidence intervals for the differences J.tZi - J.t3i, 
i = 1,2. 

6.1. Using the summary statistics for the electricity-demand data given in Example 6.4, com
pute T Z and test the hypothesis Ho: J.tl - J.t2 = 0, assuming that 11 = 1 2, Set a = .05. 
Also, determine the linear combination of mean components most responsible for the 
rejection of Ho. 

6.8. Observations on two responses are collected for three treatments. The obser-

vation vectors [:~J are 

Treatmentl: [~J [!J DJ [~l GJ 
Treatment 2: [~J [~l DJ 
Treatment 3: DJ UJ [~l [~J 

(a) Break up the observations into mean, treatment, and residual components, as in 
(6-39). Construct the corresponding arrays for each variable. (See Example 6.9.) 

(b) Using the information in Part a, construct the one-way MAN OVA table. 

(c) Evaluate Wilks' lambda, A *, and use Table 6.3 to test for treatment effects. Set 
a = .01. Repeat the test using the chi-square approximation with Bartlett's correc
tion. [See (6-43).] Compare the conclusions. 
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6.9. Using the contrast matrix C in (6-13), verify the relationships d· = Cx·, d = Cx, and 
Sd = CSC' in (6-14). ) ) 

6.10. Consider the univariate one-way decomposition of the observation xc' given by (6-34). 
Show that the mean vector x 1 is always perpendicular to the treat~ent effect vector 
(XI - X)UI + (xz - X)U2 + ... + (Xg - x)ug where 

1 }n, 0 0 

1 0 0 
0 1 

}n, 0 
UI = ,°2 = , ... ,Dg = 

0 1 0 
0 0 1 }n, 
0 0 1 

6.1 I. A likelihood argument provides additional support for pooling the two independent 
sample covariance matrices to estimate a common covariance matrix in the case of two 
normal populations. Give the likelihood function, L(ILI, IL2' I), for two independent 
samples of sizes nl and n2 from Np(ILI' I) and N p(IL2' I) populations, respectively. Show 
that this likelihood is maximized by the choices ill = XI, il2 = X2 and 

, 1 (nl + n2 - 2) I = --+- [(nl - 1) SI + (n2 - 1) S2] = Spooled 
nl n2 nl + n2 

Hint: Use (4-16) and the maximization Result 4.10. 

6.12. (Test for linear prOfiles, given that the profiles are parallel.) Let ILl 
[J.tI1,J.tIZ,··· ,J.tlp] and 1-'2 = [J.tZI,J.t22,.·· ,J.tzp] be the mean responses to p treat
ments for populations 1 and 2, respectively. Assume that the profiles given by the two 
mean vectors are parallel. 

(a) ShowthatthehypofuesisthattheprofilesarelinearcanbewrittenasHo:(J.tli + J.t2i)
(J.tli-I + J.tzi-d = (J.tli-I + J.tzi-d - (J.tli-Z + J.tZi-Z), i = 3, ... , P or as Ho: 
C(I-'I + 1-'2) =0, where the (p - 2) X P matrix 

-2 0 
1 -2 

000 

o 
o 

1 

o 0J o 0 

-~ ~ 
(b) Following an argument similar to the one leading to (6-73), we reject 

Ho: C (1-'1 + 1-'2) = 0 at level a if 

T
Z 

= (XI + X2)'C-[ (~I + ~JCSpooledC'JIC(XI + X2) > cZ 

where 
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Let nl = 30, n2 = 30, xi = [6.4,6.8,7.3, 7.0],i2 = [4.3,4.9,5.3,5.1], and 

l·61 .26 .07 .161 
.26 .64 .17 .14 

SpooJed = .07 .17 .81 .03 

.16 .14 .03 .31 

Test for linear profiles, assuming that the profiles are parallel. Use a = .05. 

6.13. (Two-way MANOVA without replications.) Consider the observations on two 
responses, XI and X2, displayed in the form of the following two-way table (note that 
there is a single observation vector at each combination of factor levels): 

Factor 2 
Level Level Level 

1 2 3 

Level 1 [~J [:] [l~J 
Factor 1 Level 2 [~J [ -~J [~J 

Level 3 [-~J [ =:] [-~ J 
With no replications, the two-way MANOVA model is 

g b 

2: 'rf = 2: Ih = 0 
f=1 k=1 

where the eek are independent Np(O,!) random vectors. 

(a) Decompose the observations for each of the two variables as 

Xek = X + (xc. - x) + (X'k - x) + (XCk - xe· - X.k + x) 

Level 
4 

similar to the arrays in Example 6.9. For each response, this decomposition will result 
in several 3 X 4 matrices. Here x is the overall average, xc. is the average for the lth 
level of factor 1, and X'k is the average for the kth level of factor 2. 

(b) Regard the rows of the matrices in Part a as strung out in a single "long" vector, and 
compute the sums of squares 

SStot = SSme.n + SSfac I + SSfac2 + SSre, 

and sums of cross products 

SCPtot = SCPmean + SCPt•cl + SCPf•c2 + SCPre, 

Consequently, obtain the matrices SSPcop SSPf•cl , SSPfac2 , and SSPre, with degrees 
of freedom gb - 1, g - 1, b - 1, and (g - 1)(b - 1), respectively. 

(c) Summarize the calculations in Part b in a MANOVA table. 
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Hint: This MANOVA table is consistent with the two-way MANOVA table for com
paring factors and their interactions where n = 1. Note that, with n = 1, SSPre, in the 
general two-way MANOVA table is a zero matrix with zero degrees of freedom. The 
matrix of interaction sum of squares and cross products now becomes the residual sum 
of squares and cross products matrix. 

(d) Given the summary in Part c, test for factor 1 and factor 2 main effects at the a = .05 
level. 

Hint: Use the results in (6-67) and (6-69) with gb(n - 1) replaced by (g - 1)(b - 1). 
Note: The tests require that p :5 (g - 1) (b - 1) so that SSPre, will be positive defi
nite (with probability 1). 

6.14. A replicate of the experiment in Exercise 6.13 yields the following data: 

Factor 2 
Level Level Level Level 

1 2 3 4 

Level 1 [1:J [~J [~J [ ~!J 
Factor 1 Level 2 DJ L~J [1~J [~J 

Level 3 [ -~J [ -~J [ -1~J [ -~J 
(a) Use these data to decompose each of the two measurements in the observation 

vector as 

xek = x + (xe. - x) + (X.k - x) + (Xfk - xe. - x.k + x) 

where x is the overall average, xe. is the average for the lth level of factor 1, and X'k 
is the average for the kth level of factor 2. Form the corresponding arrays for each of 
the two responses. 

(b) Combine the preceding data with the data in Exercise 6.13 and carry out the neces
sary calculations to complete the general two-way MANOVA table. 

(c) Given the results in Part b, test for interactions, and if the interactions do not 
exist, test for factor 1 and factor 2 main effects. Use the likelihood ratio test with 
a = .05. 

(d) If main effects, but no interactions, exist, examine the natur~ of the main effects by 
constructing Bonferroni simultaneous 95% confidence intervals for differences of 
the components of the factor effect parameters. 

6.1 s. Refer to Example 6.13. 

(a) Carry out approximate chi-square (likelihood ratio) tests for the factor 1 and factor 2 
effects. Set a =.05. Compare these results with the results for the exact F-tests given 
in the example. Explain any differences. 

(b) Using (6-70), construct simultaneous 95% confidence intervals for differences in the 
factor 1 effect parameters for pairs of the three responses. Interpret these intervals. 
Repeat these calculations for factor 2 effect parameters. 
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The following exercises may require the use of a computer. 

6.16. Four measures of the response stiffness on .each of 30 boards are listed in Table 4.3 (see ' 
Example 4.14). The measures, on a given board, are repeated in ~he sense ~hat they were 
made one after another. Assuming that the measures of stiffness anse from four 
treatments test for the equality of treatments in a repeated measures design context. Set 
a = .05. Construct a 95% (simultaneous) confidence interval for a co~trast in the 
mean levels representing a comparison of the dynamic measurements WIth the static 
measurements. 

6.1,7. The data in Table 6.8 were collected to test two psychological models of numerical 
, cognition. Does the processfng oLnumbers d~pend on the w~y the numbers ar~ pre

sented (words, Arabic digits)? Thirty-two subjects were requued to make a senes of 

Table 6.8 Number Parity Data (Median Times in Milliseconds) 

WordDiff WordSame ArabicDiff ArabicSame 

(Xl) (X2) (X3) (X4) 

869.0 860.5 691.0 601.0 

995.0 875.0 678.0 659.0 

1056.0 930.5 833.0 826.0 

1126.0 954.0 888.0 728.0 

1044.0 909.0 865.0 839.0 

925.0 856.5 1059.5 797.0 

1172.5 896.5 926.0 766.0 

1408.5 1311.0 854.0 986.0 

1028.0 887.0 915.0 735.0 

1011.0 863.0 761.0 657.0 

726.0 674.0 663.0 583.0 

982.0 894.0 831.0 640.0 

1225.0 1179.0 1037.0 905.5 

731.0 662.0 662.5 624.0 

975.5 872.5 814.0 735.0 

1130.5 811.0 843.0 657.0 

945.0 909.0 867.5 754.0 

747.0 752.5 777.0 687.5 

656.5 ' 659.5 572.0 539.0 

919.0 833.0 752.0 611.0 

751.0 744.0 683.0 553.0 

774.0 735.0 671.0 612.0 

941.0 931.0 901.5 700.0 

751.0 785.0 789.0 735.0 

767.0 737.5 724.0 639.0 

813.5 750.5 711.0 625.0 

1289.5 1140.0 904.5 7~4.5 

1096.5 1009.0 1076.0 983.0 

1083.0 958.0 918.0 746.5 

1114.0 1046.0 1081.0 796.0 

708.0 669.0 657.0 572.5 

1201.0 925.0 1004.5 673.5 

Source: Data courtesy of J. Carr. 
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quick numerical judgments about two numbers presented as either two number 
words ("two," "four") or two single Arabic digits ("2," "4"). The subjects were asked 
to respond "same" if the two numbers had the same numerical parity (both even or 
both odd) and "different" if the two numbers had a different parity (one even, one 
odd). Half of the subjects were assigned a block of Arabic digit trials, followed by a 
block of number word trials, and half of the subjects received the blocks of trials 
in the reverse order. Within each block, the order of "same" and "different" parity 
trials was randomized for each subject. For each of the four combinations of parity and 
format, the median reaction times for correct responses were recorded for each 
subject. Here ' 

Xl = median reaction time for word format-different parity combination 

X z = median reaction time for word format-same parity combination 

X3 == median reaction time for Arabic format-different parity combination 

X 4 = median reaction time for Arabic format-same parity combination 

(a) Test for treatment effects using a repeated measures design. Set a = .05. 

(b) Construct 95% (simultaneous) confidence intervals for the contrasts representing 
the number format effect, the parity type effect and the interaction effect. Interpret 
the resulting intervals. 

(c) The absence of interaction supports the M model of numerical cognition, while the 
presence of interaction supports the C and C model of numerical cognition. Which 
model is supported in this experiment? 

(d) For each subject, construct three difference scores corresponding to the number for
mat contrast, the parity type contrast, and the interaction contrast. Is a multivariate 
normal distribution a reasonable population model for these data? Explain. 

6.18. 10licoeur and Mosimann [12] studied the relationship of size and shape for painted tur
tles. Table 6.9 contains their measurements on the carapaces of 24 female and 24 male 
turtles. 
(a) Test for equality of the two population mean vectors using a = .05. 

(b) If the hypothesis in Part a is rejected, find the linear combination of mean compo
nents most responsible for rejecting Ho. 

(c) Find simultaneous confidence intervals for the component mean differences. 
Compare with the Bonferroni intervals. 

Hint: You may wish to consider logarithmic transformations of the observations. 

6.19. In the first phase of a study of the cost of transporting milk from fanns to dairy plants, a 
survey was taken of finns engaged in milk transportation. Cost data on X I == fuel, 
X 2 = repair, and X3 = capital, all measured on a per-mile basis, are presented in 
Table 6.10 on page 345 for nl = 36 gasoline and n2 = 23 diesel trucks. 

(a) Test for differences in the mean cost vectors. Set a = .01. 

(b) If the hypothesis of equal cost vectors is rejected in Part a, find the linear combina
tion of mean components most responsible for the rejection. 

(c) Construct 99% simultaneous confidence intervals for the pairs of mean components. 
Which costs, if any, appear to be quite different? 

(d) Comment on the validity of the assumptions used in your analysis. Note in particular 
that observations 9 and 21 for gasoline trucks have been identified as multivariate 
outIiers. (See Exercise 5.22 and [2].) Repeat Part a with these observations deleted. 
Comment on the results. 
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Table 6.9 Carapace Measurements (in Millimeters) for 
Painted Thrtles 

Female Male 

Length Width Height Length Width Height 
(Xl) - (X2) (X3) (Xl) (X2) (X3) 

98 81 38 93 74 37 
103 84 38 94 78 35 
103 86 42 96 80 35 
105 86 42 101 84 39 
109 88 44 102 85 38 
123 92 50 103 81 37 
123 95 46 104 83 39 
133 99 51 106 83 39 
133 102 51 107 82 38 
133 102 51 112 89 40 
134 100 48 113 88 40 
136 102 49 114 86 40 
138 98 51 116 90 43 
138 99 51 117 90 41 
141 105 53 117 91 41 
147 108 57 119 93 41 
149 107 55 120 89 40 
153 107 56 120 93 44 
155 115 63 121 95 42 
155 117 60 125 93 45 
158 115 62 127 96 45 
159 118 63 128 95 45 
162 124 61 131 95 46 
177 132 67 135 106 47 

6.20. The tail lengths in millimeters (xll and wing lengths in rniIlimeters (X2) for 45 male 
hook-billed kites are given in Table 6.11 on page 346. Similar measurements for female 
hook-billed kites were given in Table 5.12. 
(a) Plot the male hook-billed kite data as a scatter diagram, and (visually) check for out

liers. (Note, in particular, observation 31 with Xl = 284.) 

(b) Test for equality of mean vectors for the populations of male and female hook
billed kites. Set a = .05. If Ho: ILl - ILz = 0 is rejected, find the linear combina
tion most responsible for the rejection of Ho. (You may want to eliminate any 
out/iers found in Part a for the male hook-billed kite data before conducting this 
test. Alternatively, you may want to interpret XJ = 284 for observation 31 as it mis
print and conduct the test with XI = 184 for this observation. Does it make any 
difference in this case how observation 31 for the male hook-billed kite data is 
treated?) 

(c) Determine the 95% confidence region for ILl - IL2 and 95% simultaneous confi
dence intervals for the components of ILl - IL2' 

(d) Are male or female birds generally larger? 
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Table 6.10 Milk Transportation-Cost Data 

Gasoline trucks Diesel trucks 

Xl X2 X3 Xl X2 X3 

16.44 12.43 11.23 8.50 12.26 9.11 
7.19 2.70 3.92 7.42 5.13 17.15 
9.92 1.35 9.75 10.28 3.32 11.23 
4.24 5.78 7.78 10.16 14.72 5.99 

11.20 5.05 10.67 12.79 4.17 29.28 
14.25 5.78 9.88 9.60 12.72 11.00 
13.50 10.98 10.60 6.47 8.89 19.00 
13.32 14.27 9.45 11.35 9.95 14.53 
29.11 15.09 3.28 9.15 2.94 13.68 
12.68 7.61 10.23 9.70 5.06 20.84 
7.51 5.80 8.13 9.77 17.86 35.18 
9.90 3.63 9.13 11.61 11.75 17.00 

10.25 5.07 10.17 9.09 13.25 20.66 
11.11 6.15 7.61 8.53 10.14 17.45 
12.17 14.26 14.39 8.29 6.22 16.38 
10.24 2.59 6.09 15.90 12.90 19.09 
10.18 6.05 12.14 11.94 5.69 14.77 
8.88 2.70 12.23 9.54 16.77 22.66 

12.34 7.73 11.68 10.43 17.65 10.66 
8.51 14.02 12.01 10.87 21.52 28.47 

26.16 17.44 16.89 7.13 13.22 19.44 
12.95 8.24 7.18 11.88 12.18 21.20 
16.93 13.37 17.59 12.03 9.22 23.09 
14.70 10.78 14.58 
10.32 5.16 17.00 
8.98 4.49 4.26 
9.70 11.59 6.83 

12.72 8.63 5.59 
9.49 2.16 6.23 
8.22 7.95 6.72 

13.70 11.22 4.91 
8.21 9.85 8.17 

15.86 11.42 13.06 
9.18 9.18 9.49 

12.49 4.67 11.94 
17.32 6.86 4.44 

Source: Data courtesy of M. KeatoD. 

6.21. Using Moody's bond ratings, samples of 20 Aa (middle-high quality) corporate bonds 
and 20 Baa (top-medium quality) corporate bonds were selected. For each of the corre
sponding companies, the ratios 

Xl = current ratio (a measure of short-term liquidity) 

X 2 = long-term interest rate (a measure of interest coverage) 

X3 = debt-to-equity ratio (a measure of financial risk or leverage) 

X 4 = rate of return on equity (a measure of profitability) 
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Table 6.1 1 Male Hook-Billed Kite Data 

Xl Xl Xl X2 Xl x2 

(Tail (Wing (Tail (Wing (Tail (Wing 

length) length) length) length) length) length) 

ISO 278 185 282 284 277 

186 277 195 285 176 281 

206 308 183 276 185 287 

184 290 202 308 191 295 

177 273 177 254 177 267 

177 284 177 268 197 310 

176 267 170 260 199 299 

200 281 186 274 190 273 

191 287 177 272 180 278 

193 271 178 266 189 280 

212 302 192 281 194 290 

181 254 204 276 186 287 

195 297 191 290 191 286 

187 281 178 265 187 288 

190 284 177 275 186 275 

Source: Data courtesy of S. Temple. 

were recorded. The summary statistics are as follows: 

Aa bond companies: nl = 20, x; = [2.287,12.600, .347, 14.830J, and 

[

.459 .254 -.026 -.2441 

.254 27.465 -.589 -.267 
SI = -.026 -.589 .030 .102 

-.244 -.267 .102 6.854 

Baa bond companies: n2 = 20, xi = [2.404,7.155, .524, 12.840J, 

[

944 -.089 .002 -.7191 
_ -.089 16.432 -.400 19.044 

S2 - .002 - .400 .024 - .094 

-.719 19.044 -.094 61.854 

and 

[.701 .083 -.012 

-

481

1 .083 21.949 -.494 9.388 
Spooled = _ .012 -.494 . 027 .004 . 

-.481 9.388 .004 34.354 

(a) Does pooling appear reasonable here? Comment on the pooling procedure in this 

case. f th e with 
(b) Are the financial characteristics of fir~s with A~ bonds different rof. 0; mean 

Baa bonds? Using the pooled covanance matnx, test for the equa Ity 0 

vectors. Set a = .05. 
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(c) Calculate the linear combinations of mean components most responsible for rejecting 
Ho: 1'-1 - 1'-2 = 0 in Part b. 

(d) Bond rating companies are interested in a company's ability to satisfy its outstanding 
debt obligations as they mature. Does it appear as if one or more of the foregoing 
financial ratios might be useful in helping to classify a bond as "high" or "medium" 
quality? Explain. 

(e) Repeat part (b) assuming normal populations with unequal covariance matices (see 
(6-27), (6-28) and (6-29». Does your conclusion change? 

6.22. Researchers interested in assessing pulmonary function in nonpathological populations 
asked subjects to run on a treadmill until exhaustion. Samples of air were collected at 
definite intervals and the gas contents analyzed. The results on 4 measures of oxygen 
consumption for 25 males and 25 females are given in Table 6.12 on page 348. The 
variables were 

XI = resting volume 0 1 (L/min) 

X 2 = resting volume O 2 (mL/kg/min) 

X3 = maximum volume O2 (L/min) 

X 4 = maximum volume O2 (mL/kg/min) 

(a) Look for gender differences by testing for equality of group means. Use a = .05. If 
you reject Ho: 1'-1 - 1'-2 = 0, find the linear combination most responsible. 

(b) Construct the 95% simultaneous confidence intervals for each JLli - JL2i, i = 1,2,3,4. 
Compare with the corresponding Bonferroni intervals. 

(c) The data in Thble 6.12 were collected from graduate-student volunteers, and thus 
they do not represent a random sample. Comment on the possible implications of 
this infonnation. 

6.23. Construct a one-way MANOVA using the width measurements from the iris data in 
Thble 11.5. Construct 95% simultaneous confidence intervals for differences in mean 
components for the two responses for each pair of populations. Comment on the validity 
of the assumption that I,l = I,2 = I,3' 

6.24. Researchers have suggested that a change in skull size over time is evidence of the inter
breeding of a resident population with immigrant populations. Four measurements were 
made of male Egyptian skulls for three different time periods: period 1 is 4000 B.C., period 2 
is 3300 B.c., and period 3 is 1850 B.c. The data are shown in Thble 6.13 on page 349 (see the 
skull data on the website www.prenhall.com/statistics). The measured variables are 

XI = maximum breadth of skull (mm) 

Xl = basibregmatic height of skull (mm) 

X3 = basialveolar length of skull (mm) 

X 4 = nasalheightofskujl(mm) 

Construct a one-way MANOVA of the Egyptian s~uJl data. Use a = .05. Construct 95 %' 
simultaneous confidence intervals to determine which mean components differ among 
the populations represented by the three time periods. Are the usual MANOVA as
sumptions realistic for these data? Explain. 

6.25. Construct a one-way MANOVA of the crude-oil data listed in Table 11.7 on page 662. 
Construct 95% simultaneous confidence intervals to detennine which mean compo
nents differ among the populations. (You may want to consider transformations of the 
data to make them more closely conform to the usual MANOVA assumptions.) 
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Table 6.13 Egyptian Skull Data 

MaxBreath BasHeight BasLength NasHeight Tlffie 
(xd (X2) (X3) (X4) Period 

131 138 89 49 1 
125 131 92 48 1 
131 132 99 50 1 
119 132 96 44 1 
136 143 100 54 1 
138 137 89 56 1 
139 130 108 48 1 
125 136 93 48 1 
131 134 102 51 1 
134 134 99 51 1 

124 138 101 48 2 
133 134 97 48 2 
138 134 98 45 2 
148 129 104 51 2 
126 124 95 45 2 
135 136 98 52 2 
132 145 100 54 2 
133 130 102 48 2 
131 134 96 50 2 
133 125 94 46 2 : : 
132 130 91 52 3 
133 131 100 50 3 
138 137 94 51 3 
130 127 99 45 3 
136 133 91 49 3 
134 123 95 52 3 
136 137 101 54 3 
133 131 96 49 3 
138 133 100 55 3 
138 133 91 46 3 

Source: Data courtesy of 1. Jackson. 

6.26. A project was des.igne~ to investigate how consumers in Green Bay, Wisconsin, would 
rea~t to an electncal tIme-of-use pricing scheme. The cost of electricity during peak 
penods for some customers w~s s~t a~ eight times the cost of electricity during 
off-~eak hours. Hourly consumptIon (m kIlowatt-hours) was measured on a hot summer 
day m Jul~ and compared, for both the test group and the control group with baseline 
consumptIOn measured on a similar day before the experimental rat~s began. The 
responses, 

log( current consumption) - 10g(baseJine consumption) 
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for the hours ending 9 A.M.ll A.M. (a peak hour), 1 p.M.,and 3 P.M. (a peak: hour) produced 
the following summary statistics: 

Test group: 
Control group: 
and 

nl = 28,i\ = [.153,-.231,-322,-339] 
nz = 58, ii = [.151, .180, .256, 257] 

[

.804 355 .228 .232] 
355 .722 .233 .199 

Spooled = 228 .233 .592 .239 
.232 .199 .239 .479 

Source: Data courtesy of Statistical Laboratory, University of Wisconsin. 

Perform a profile analysis. Does time-of-use pricing seem to make a difference in electrical consumption? What is the nature of this difference, if any? Comment. (Use a 
significance level of a = .OS for any statistical tests.) 

6.27. As part of the study of love and marriage in Example 6.14, a sample of husbands and 
wives were asked to respond to these questions: 

1. What is the level of passionate love you feel for your partner? 
2. What is the level of passionate love that your partner feels for you? 
3. What is the level of companionate love that you feel for your partner? 
4. What is the level of companionate love that your partner feels for you? 

The responses were recorded on the following S-point scale. 

None Very A great Tremendous 
at all little Some deal amount 

I I I I 
3 4 5 

Thirty husbands and 30 wives gave the responses in Table 6.14, where XI = a S-pointscale response to Question 1, X 2 = a S-point-scale response to Question 2, X3 = a S-point-scale response to Question 3, and X 4 == a S-point-scale response to Question 4. 
(a) Plot the mean vectors for husbands and wives as sample profiles. 
(b) Is the husband rating wife profile parallel to the wife rating husband profile? Test for parallel profiles with a = .OS. If the profiles appear to be parallel, test for coincident profiles at the same level of significance. Finally, if the profiles are coinci

dent,test for level profiles with a = .OS. What conclusion(s) can be drawn from this 
analysis? 

6.28. 1\vo species of biting flies (genus Leptoconops) are so similar morphologically, that for many years they were thought to be the same. Biological differences such as sex ratios of emerging flies and biting habits were found to exist. Do the taxonomic data listed in part in Table 6.1S on page 3S2 and on the website www.prenhall.comlstatistics indicate any 
difference in the two species L. carteri and L. torrens? '!est for the equality of the two population mean vectors using a = .OS. If the hypotheses of equal mean vectors is rejected, determine the mean components (or linear combinations of mean components) most 
responsible for rejecting Ho. Justify your use of normal-theory methods for these data. 

6.29. Using the data on bone mineral content in Table 1.8, investigate equality between the 
dominant and nondominant bones. 
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Table 6.14 Spouse Data 

Husband rating wife Wife rating husband 

Xl Xz . x3 X4 XI x2 X3 X4 

2 3 5 5 4 4 5 5 
5 5 4 4 4 5 5 5 
4 5 5 5 4 4 5 5 
4 3 4 4 4 5 5 5 
3 3 5 5 4 4 5 5 
3 3 4 5 3 3 4 4 
3 4 4 4 4 3 5 4 
4 4 5 5 3 4 5 5 
4 5 5 5 4 4 5 4 
4 4 3 3 3 4 4 4 
4 4 5 5 4 5 5 5 
5 5 4 ·4 5 5 5 5 
4 4 4 4 4 4 5 5 
4 3 5 5 4 4 4 4 
4 4 5 5 4 4 5 5 
3 3 4 5 3 4 4 4 
4 5 4 4 5 5 5 5 
5 5 5 5 4 5 4 4 
5 5 4 4 3 4 4 4 
4 4 4 4 5 3 4 4 
4 4 4 4 5 3 4 4 
4 4 4 4 4 5 4 4 
3 4 5 5 2 5 5 5 
5 3 5 5 3 4 5 5 
5 5 3 3 4 3 5 5 
3 3 4 4 4 4 4 4 
4 4 4 4 4 4 5 5 
3 3 5 5 3 4 4 4 
4 4 3 3 4 4 5 4 
4 4 5 5 4 4 5 5 

S()urce: Data courtesy of E. Hatfield. 

(a) Test using a = .OS. 
(b) Construct 9S% simultaneous confidence intervals for the mean differences. 
(c) ~onstruc~ the Bonferroni 9S% simultaneous intervals, and compare these with the mtervals m Part b. 

6.30. Table 6.16 on page 3S3 C?ntain~ .the bone mineral contents, for the first 24 subjects in Table 1.8, 1 year after thel~ particIpation in an experimental program. Compare the data from both tables to determme whether there has been bone loss. 
(a) Test using a = .OS. 
(b) Construct 9S% simultaneous confidence intervals for the mean differences. 
(c) ~nstruc~ the Bonferroni 9S% simultaneous intervals, and compare these with the mtervals In Part b. 
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Table 6.16 Mineral Content in Bones (After 1 Year) 

Xl X2 X3 X4 Xs X6 X7 Subject Dominant Dominant Dominant 
number radius Radius humerus Humerus ulna Ulna c~rrd) (Thl'd) (FO_) ( Longtb of ) ( Length of 

(Wing) (Wing) palp palp palp antennal antennal 1 1.027 1.051 2.268 2.246 .869 .964 length width 2 .857 .817 1.718 1.710 .602 .689 length width length segment 12 segment 13 
3 .875 .880 1.953 1.756 .765 .738 

85 41 31 13 25 9 8 4 .873 .698 1.668 1.443 .761 .698 
87 38 32 14 22 13 13 5 .811 .813 1.643 1.661 .551 .619 
94 44 36 15 27· 8 9 6 .640 .734 1.396 1.378 .753 .515 
92 43 32 17 28 9 9 7 .947 .865 1.851 1.686 .708 .787 

35 14 26 10 10 8 .886 .806 1.742 1.815 .687 .715 96 43 
9 .991 .923 1.931 1.776 .844 .656 91 44 36 12 24 9 9 

90 42 36 16 26 9 9 10 .977 .925 1.933 2.106 .869 .789 
92 43 36 17 26 9 9 11 .825 .826 1.609 1.651 .654 .726 
91 41 36 14 23 9 9 12 .851 .765 2.352 1.980 .692 .526 
87 38 35 11 24 9 10 13 .770 .730 1.470 1.420 .670 .580 

L. torrens : : : : 14 .912 .875 1.846 1.809 .823 .773 
106 47 38 15 26 10 10 15 .905 .826 1.842 1.579 .746 .729 

16 .756 .727 1.747 1.860 .656 .506 105 46 34 14 31 10 11 
17 .765 .764 1.923 1.941 .693 .740 103 44 34 15 23 10 10 
18 .932 .914 2.190 1.997 .883 .785 100 41 35 14 24 10 10 
19 .843 .782 1.242 1.228 .577 .627 109 44 36 13 27 11 10 
20 .879 .906 2.164 1.999 .802 .769 104 45 36 15 30 10 10 
21 .673 .537 1.573 1.330 .540 .498 95 40 35 14 23 9 10 
22 .949 .900 2.130 2.159 .804 .779 104 44 34 15 29 9 10 
23 .463 .637 1.041 1.265 .570 .634 90 40 37 12 22 9 10 
24 .776 .743 1.442 1.411 .585 .640 104 46 37 14 30 10 10 

86 19 37 11 25 9 9 Source: Data courtesy of Everett Smith. 
94 40 38 14 31 6 7 

103 48 39 14 33 10 10 
82 41 35 12 25 9 8 

6.31. Peanuts are an important crop in parts of the southern United States. In an effort to de-103 43 42 15 32 9 9 
velop improved plants, crop scientists routinely compare varieties with respect to sever-101 43 40 15 25 9 9 
al variables. The data for one two-factor experiment are given in Table 6.17 on page 354. 103 45 44 14 29 11 11 
Three varieties (5,6, and 8) were grown at two geographical locations (1,2) and, in this 100 43 40 18 31 11 10 
case, the three variables representing yield and the two important grade-grain charac-99 41 42 15 31 10 10 teristics were measured. The three variables are 

100 44 43 16 34 10 10 
: 

Xl = Yield (plot weight) L. carteri : 
99 42 38 14 33 9 9 

X z = Sound mature kernels (weight in grams-maximum of 250 grams) 
110 45 41 17 36 9 10 

X 3 = Seed size (weight, in grams, of 100 seeds) 99 44 35 16 31 10 10 
103 43. 38 14 32 10 10 There were two replications of the experiment. 

95 46 36 15 31 8 8 
(a) Perform a two-factor MANQVA using the data in Table 6.17. Test for a location 101 47 38 14 37 11 11 

effect, a variety effect, and a location-variety interaction. Use a = .05. 103 47 40 15 32 11 11 
(b) Analyze the residuals from Part a. Do the usual MANQVA assumptions appear to 99 43 37 14 23 11 10 

be satisfied? Discuss. 105 50 40 16 33 12 11 
(c) Using the results in Part a, can we conclude that the location and/or variety effects 99 47 39 14 34 7 7 

are additive? If not, does the interaction effect show up for some variables, but not 
Source: Data courtesy of William Atchley. for others? Check by running three separate univariate two-factor ANQVAs. 
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Table 6.17 Peanut Data 

Factor 1 Factor 2 Xl X2 X3 
Location Variety Yield SdMatKer SeedSize 

1 5 195.3 153.1 51.4 
1 5 194.3 167.7 53.7 
2 5 189.7 l39.5 55.5 
2 5 180.4 121.1 44.4 
1 6 203.0 156.8 49.8 
1 6 195.9 166.0 45.8 
2 6 202.7 166.l 60.4 
2 6 197.6 161.8 54.l 
1 8 193.5 164.5 57.8 
1 8 187.0 165.1 58.6 
2 8 201.5 166.8 65.0 
2 8 200.0 173.8 67.2 

Source: Data courtesy of Yolanda Lopez. 

(d) Larger numbers correspond to better yield and grade-grain characteristics. Using 
cation 2, can we conclude that one variety is better than the other two for each 
acteristic? Discuss your answer, using 95% Bonferroni simultaneous intervals 
pairs of varieties. 

6.32. In one experiment involving remote sensing, the spectral reflectance of three 
l-year-old seedlings was measured at various wavelengths during the growing 
The seedlings were grown with two different levels of nutrient: the optimal 
coded +, and a suboptimal level, coded -. The species of seedlings used were 
spruce (SS), Japanese larch (JL), and 10dgepoJe pine (LP).1\vO of the variables 
sured were 

Xl = percent spectral reflectance at wavelength 560 nrn (green) 

X 2 = percent spectral reflectance at wavelength 720 nrn (near infrared) 

The cell means (CM) for Julian day 235 for each combination of species and 
level are as follows. These averages are based on four replications. 

560CM nOCM Species Nutrient 

10.35 25.93 SS + 
13.41 38.63 JL + 
7.78 25.15 LP + 

10.40 24.25 SS 
17.78 41.45 JL 
10.40 29.20 LP 

(a) 'freating the cell means as individual observations, perform a two-way 
test for a species effect and a nutrient effect. Use a = .05. 

(b) Construct a two-way ANOVA for the 560CM observations and another 
ANOVA for the nOCM observations. Are these results consistent 
MANOVA results in Part a? If not, can you explain any differences? 
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6.33. Refer to Exercise 6.32. The data in Table 6.18 are measurements on the variables 

Xl = percent spectral reflectance at wavelength 560 nm (green) 
X 2 = percent spectral reflectance at wavelength no nm (near infrared) 

for three species (sitka spruce [SS], Japanese larch [JL), and lodgepole pine [LP]) of 
l-year-old seedlings taken at three different times (Julian day 150 [1], Julian day 235 [2], 
and Julian day 320 [3]) during the growing season. The seedlings were all grown with the 
optimal level of nutrient. 
(a) Perform a two-factor MANOVA using the data in Table 6.18. Test for a species 

effect, a time effect and species-time interaction. Use a = .05. 

Table 6.18 Spectral Reflectance Data 

560 run 720nm Species TIme Replication 

9.33 19.14 SS 1 1 
8.74 19.55 SS 1 2 
9.31 19.24 SS 1 3 
8.27 16.37 SS 1 4 

10.22 25.00 SS 2 1 
10.l3 25.32 SS 2 2 
10.42 27.12 SS 2 3 
10.62 26.28 SS 2 4 
15.25 38.89 SS 3 1 
16.22 36.67 SS 3 2 
17.24 40.74 SS 3 3 
12.77 67.50 SS 3 4 
12.07 33.03 JL 1 1 
11.03 32.37 JL 1 2 
12.48 31.31 JL 1 3 
12.12 33.33 JL 1 4 
15.38 40.00 JL 2 1 
14.21 40.48 JL 2 2 
9.69 33.90 JL 2 3 

14.35 40.l5 JL 2 4 
38.71 77.14 JL 3 1 
44.74 78.57 JL 3 2 
36.67 71.43 JL 3 3 
37.21 45.00 JL 3 4 

8.73 23.27 LP 1 1 
7.94 20.87 LP 1 2 
8.37 22.16 LP 1 3 
7.86 21.78 LP 1 4 
8.45 26.32 LP 2 1 
6.79 22.73 LP 2 2 
8.34 26.67 LP 2 3 
7.54 24.87 LP 2 4 

14.04 44.44 LP 3 1 
13.51 37.93 LP 3 2 
13.33 37.93 LP 3 3 
12.77 60.87 LP 3 4 

Source: Data courtesy of Mairtin Mac Siurtain. 
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(b) Do you think the usual MAN OVA assumptions are satisfied for the these data? 
cuss with reference to a residual analysis, and the possibility of correlated 
tions over time. 

(c) Foresters are particularly interested in the interaction of species and time. teraction show up for one variable but not for the other? Check by running· 
variate two-factor ANOVA for each of the two responses. . 

(d) Can you think of another method of analyzing these data (or a different tal design) that would allow for a potential time trend in the spectral 
numbers? 

6.34. Refer to Example 6.15. 
(a) Plot the profiles, the components of Xl versus time and those of X2 versuS 

the same graph. Comment on the comparison. 
(b) Test that linear growth is adequate. Take a = .01. 

6.35. Refer to Example 6.15 but treat all 31 subjects as a single group. The maximum 
hood estimate of the (q + 1) X 1 P is 

P = (B'S-lBrIB'S-lx 

where S is the sample covariance matrix. The estimated covariances of the maximum likelihood estimators are 

CoV(P) =' (n - l)(n - 2) (B'S-IBr
J 

(n - 1 - P + q) (n - p + q)n 

Fit a quadratic growth curve to this single group and comment on the fit. 
6.36. Refer to Example 6.4. Given the summary information on electrical usage in this 

pie, use Box's M-test to test the hypothesis Ho: IJ = ~2 =' I. Here Il is the ance matrix for the two measures of usage for the population of Wisconsin 
with air conditioning, and ~2 is the electrical usage covariance matrix for the 
of Wisconsin homeowners without air conditioning. Set a = .05. 

6.31. Table 6.9 page 344 contains the carapace measurements for 24 female and 24 male ties. Use Box's M-test to test Ho: ~l = ~2 = I. where ~1 is the population matrix for carapace measurements for female turtles, and I2 is the population 
ance matrix for carapace measurements for male turtles. Set a '" .05. 

6.38. Table 11.7 page 662 contains the values of three trace elements and two measures of drocarbons for crude oil samples taken from three groupS (zones) of sandstone. Box's M-test to test equality of population covariance matrices for the three. s: andlstone;:~ groups. Set a = .05. Here there are p = 5 variables and you may wish to conSIder 
formations of the measurements on these variables to make them more nearly 

6.39. Anacondas are some of the largest snakes in the world. Jesus Ravis and his searchers capture a snake and measure its (i) snout vent length (cm) or the length 
the snout of the snake to its vent where it evacuates waste and (ii) weight 
sample of these measurements in shown in Table 6.19. 
(a) Test for equality of means between males and females using a = .05. 

large sample statistic. 
(b) Is it reasonable to pool variances in this case? Explain. 
(c) Find the 95 % Boneferroni confidence intervals for the mean differences 

males and females on both length and weight. 
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Table 6.19 Anaconda Data 

Snout vent Snout vent 
Length Weight Gender length Weight Gender 
271.0 18.50 F 176.7 3.00 M 
477.0 82.50 F 259.5 9.75 M 
306.3 23.40 F 258.0 10.07 M 
365.3 33.50 F 229.8 7.50 M 
466.0 69.00 F 233.0 6.25 M 
440.7 54.00 F 237.5 9.85 M 
315.0 24.97 F 268.3 10.00 M 
417.5 56.75 F 222.5 9.00 M 
307.3 23.15 F 186.5 3.75 M 
319.0 29.51 F 238.8 9.75 M 
303.9 19.98 F 257.6 9.75 M 
331.7 24.00 F 172.0 3.00 M 
435.0 70.37 F 244.7 10.00 M 
261.3 15.50 F 224.7 7.25 M 
384.8 63.00 F 231.7 9.25 M 
360.3 39.00 F 235.9 7.50 M 
441.4 53.00 F 236.5 5.75 M 
246.7 15.75 F 247.4 7.75 M 
365.3 44.00 F 223.0 5.75 M 
336.8 30.00 F 223.7 5.75 M 
326.7 34.00 F 212.5 7.65 M 
312.0 25.00 F 223.2 7.75 M 
226.7 9.25 F 225.0 5.84 M 
347.4 30.00 F 228.0 7.53 M 280.2 15.25 F 215.6 5.75 M 
290.7 21.50 F 221.0 6.45 M 
438.6 57.00 F 236.7 6.49 M 377.1 61.50 F 235.3 6.00 M 
Source: Data Courtesy of Jesus Ravis. 

6.40. Compare the male national track records in 1: b . records in Table 1.9 using the results for the 1~rr:e2~6 WIth the female national track neat the data as a random sample of siz 64 f h' m, 4OOm, SOOm and 1500m races. e 0 t e twelve record values. 
(a) Test for equality of means between males and fema e . - . ' may be appropriate to analyze differences. I s usmg a - .05. Explam why It 
(b) Find the 95% Bonferroni confidence in male and females on all of the races. tervals for the mean differences between 

6.41. When cell phone relay towers are not worki . . amounts of money so it is important to be a~re~~OKerly, wrreless prov~~ers can lose great toward understanding the problems' Id' IX problems expedItiously. A [lISt step ment .involving three factors. A prOb~:;::;e ~s.~ ~olI~ct ~ata from a designed experisimple or complex and the en ineer . as ml a y c assified as low or high severity, expert (guru).' g a~sJgned was rated as relatively new (novice) or 
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Tho times were observed. The time to assess the pr?blem and plan an atta~k 
the time to implement the solution were each measured In hours. The data are given 

Table 6.20. . If· rta t 
Perform a MANOVA including appropriate confidence mterva s or Impo n 

Problem Problem Engineer Problem Problem Total 
Severity Complexity Experience Assessment Implementation Resolution 
Level Level Level Tune Time Time 

Low Simple Novice 3.0 6.3 9.3 
Low Simple Novice 2.3 5.3 7.6 
Low Simple Guru 1.7 2.1 3.8 
Low Simple Guru 1.2 1.6 2.8 
Low Complex Novice 6.7 12.6 19.3 
Low Complex Novice 7.1 12.8 19.9 
Low Complex Guru 5.6 8.8 14.4 
Low Complex Guru 4.5 9.2 13.7 
High Simple Novice 4.5 9.5 14.0 
High Simple Novice 4.7 10.7 15.4 
High Simple Guru 3.1 6.3 9.4 
High Simple Guru 3.0 5.6 8.6 
High Complex Novice 7.9 15.6 23.5 
High Complex Novice 6.9 14.9 21.8 
High Complex Guru 5.0 10.4 15.4 
High Complex Guru 5.3 10.4 15.7 

Source: Data courtesy of Dan Porter. 
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Chapter 

MULTIVARIATE LINEAR 

REGRESSION MODELS 

7.1 Introduction 
Regression analysis is the statistical methodology for predicting values of one or 
more response (dependent) variables from a collection of predictor (independent) 
variable values. It can also be used for assessing the effects of the predictor variables· 
on the responses. Unfortunately, the name regression, culled from the title of the 
first paper on the sUbject by F. Galton [15], in no way reflects either the importance ..... 
or breadth of application of this methodology. . 

In this chapter, we first discuss the multiple regression model for the predic-· 
tion of a single response. This model is then generalized to handle the prediction 
of several dependent variables. Our treatment must be somewhat terse, as a vast 
literature exists on the subject. (If you are interested in pursuing regression 
analysis, see the following books, in ascending order of difficulty: Abraham and 
Ledolter [1], Bowerman and O'Connell [6], Neter, Wasserman, Kutner, and 
Nachtsheim [20], Draper and Smith [13], Cook and Weisberg [11], Seber [~3], 
and Goldberger [16].) Our abbreviated treatment highlights the regressIOn 
assumptions and their consequences, alternative formulations of the regression 
model, and the general applicability of regression techniques to seemingly dif
ferent situations. 

1.2 The Classical linear Regression Model 
Let Zl, Zz, ... , z, be r predictor variables thought to be related to a response variable 
Y. For example, with r = 4, we might have 

Y = current market value of home 
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and 

Zl == square feet ofliving area 

Z2 = location (indicator for zone of city) 

Z3 = appraised value last year 

Z4 = quality of construction (price per square foot) 

The cl~ssicalli~ear regression model states that Y is composed of a mean, which de
pends m a contmuous manner on the z;'s, and a random error 8, which accounts for 
measurement error and the effects of other variables not explicitly considered in the 
mo~eI. Th~ values of the predictor variables recorded from the experiment or set by 
the mvestigator ~e treated as fixed .. Th~ error (and hence the response) is viewed 
as a r~dom vanable whose behavlOr IS characterized by a set of distributional 
assumptIons. 

Specifically, the linear regression model with a single response takes the form 

Y = 13o + 13lZl + ... + 13,z, + 8 

[Response] = [mean (depending on Zl,Z2, ... ,Z,)] + [error] 

The term "linear" refers to the fact that the mean is a linear function of the un
known pa~ameters 13o, 131>···,13,· The predictor variables mayor may not enter the 
model as fIrst-order terms. 

With n independent observations on Yand the associated values of z· the com-
plete model becomes I' 

Yl = 130 + 13lZ11 + 132Z12 + ... + 13rzl r + 81 

~ = 130 + 13lZ21 + 132Z22 + ... + 13rZ2r + 82 

Yn = 130 + 13lZnl + 132Zn2 + ... + 13rZnr + 8n 

where the error terms are assumed to have the following properties: 

1. E(8j) = 0; 

2. Var(8j) = a2 (constant); and 

3. COV(8j,8k) = O,j * k. 

In matrix notation, (7-1) becomes 

or 

Zll 

ZZl 

Znl 

Z12 

Z22 : : : Zlr] [130] [8
1

] Z2r 131 82 
. : : + : 

Znr 13r 8n 

Y = Z fJ + e 
(nXl) (nX(r+l» ((r+l)xl) (nxl) 

and the specifications in (7-2) become 

1. E(e) = 0; and 

2. Cov(e) = E(ee') = a2I. 

(7-1) 

(7-2) 
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Note that a one in the first column of the design matrix Z is the multiplier of the. 
constant term 130' It is customary to introduce the artificial variable ZjO = 1, so 

130 + 131Zjl + .,. + 13rzjr = {3oZjO + {3I Zjl + ... + {3rZj, 

Each column-of Z consists of the n values of the corresponding predictor variable· 
while the jth row of Z contains the values for all predictor variables on the jth trial: 

Classic~1 linear Regression Model 

y= Z P+E, 
(nXl) (nX(r+I» ((r+I)XI) (nXl) 

E(E) = 0 and Cov(e) = (1"2 I, 
(nXl) (nXn) 

where 13 and (1"2 are unknown parameters and the design matrix Z has jth row 

[ZjO, Zjb .•• , Zjr]' 

Although the error-term assumptions in (7-2) are very modest, we shall later need 
to add the assumption of joint normality for making confidence statements and 
testing hypotheses. 

We now provide some examples of the linear regression model. 

Example 7.1 (Fitting a straight-line regression model) Determine the linear regression 
model for fitting a straight liiie 

Mean response = E(Y) = f30 + f3l zl 

to the data 

o 1 2 3 4 

y 1 4 3 8 9 

Before the responses Y' = [Yi, Yi, ... , Ys] are observed, the errors E' = 

[ el, e2, ... , es] are random, and we can write 

Y = ZP + e 

where 

[
Yl] .[1 ZIl] [SI] 

Y = ~2 , Z = ~ T ' P = [:~J E = ~2 
1'5 1 ZSl Ss 
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The data for this model are contained in the observed response vector y and the 
design matrix Z, where 

Note that we can handle a quadratic expression for the mean response by intro
ducing the term 132z2, with Z2 = zy. The linear regression model for the jth trial in 
this latter case is 

or 
lj = 130 + 131Zjl + 132zj2 + Sj 

lj = 130 + 13lzjl + 132zJI + Sj • 
Example 7.2 (The design matrix for one-way ANOVA as a regression model) 
Determine the design matrix if the linear regression model is applied to the one-way 
ANOVA situation in Example 6.6. 

We create so-called dummy variables to handle the three population means: 
JLI = JL + 7"1, JL2 = JL + 7"2, and JL3 = JL + 7"3' We set 

if the observation is 
from population 1 
otherwise 

{

I if the observation is 
Z2 = from population 2 

if the observation is 
from population 3 
otherwise 

and 130 = JL,131 = 7"1,132 = 7"2,133 = 7"3' Then 

o otherwise 

lj = 130 + 131 Zjl + 132Zj2 + 133Zj3 + Sj, j=1,2, ... ,8 

where we arrange the observations from the three populations in sequence. Thus, we 
obtain the observed response vector and design matrix 

9 1 1 0 0 
6 1 1 0 0 
9 1 1 0 0 

Y 
0 1 0 1 0 

= Z = 
(8XI) 2 (8X4) 1 0 1 0 

3 1 0 0 1 
1 1 0 0 1 
2 1 0 0 1 • 

The construction of dummy variables, as in Example 7.2, allows the whole of 
analysis of variance to be treated within the multiple linear regression framework. 
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7.3 least Squares Estimation 
One of the objectives of regression analysis is to develop an equation that will 
the investigator to predict the response for given values of the predictor 
Thus it is necessary to "fit" the model in (7-3) to the observed Yj cOlTes;pollldill2:Jf8: 
the known values 1, Zjl> ... , Zjr' That is, we must determine the values for 
regression coefficients fJ and the error variance (}"2 consistent with the available 

Let b be trial values for fJ. Consider the difference Yj - bo - b1zj1 - '" -

between the observed response Yj and the value bo + b1zj1 + .,. + brzjr that 
be expected if b were the ·"true" parameter vector. 1)rpicaJly, the 
Yj - bo - b1zj1 - ... - brzjr will not be zero, because the response fluctuates 
manner characterized by the error term assumptions) about its expected value. 
method of least squares selects b so as to miI).imize the sum of the squares of 
differences: 

n 2 
S(b) = 2: (Yj - bo - b1zj1 - '" - brzjr ) 

j=l 

= (y - Zb)'(y - Zb) 

The coefficients b chosen by the least squares criterion are called least squqres 
mates of the regression parameters fJ. They will henceforth be denoted by fJ to em~ . 
phasize their role as e~timates of fJ. . 

The coefficients fJ are consistent. with the data In the sense that they 
estimated (fitted) mean responses, ~o + ~IZjl + ... + ~rZj" ~he sum 
squares of the differences from the observed Yj is as small as possIble. The de\IlatlloriJ:i 

Sj = Yj - ~o - ~IZjl - .. , - ~rZj" j = 1,2, ... ,n 

are called residuals. The vector of residuals i == y - Zp contains the information 
about the remaining unknown parameter~. (See Result 7.2.) 

Result 7.1. Let Z have full rank r + 1 :5 n. l The least squares estimate of fJ in'~ 
(7-3) is given by 

P = (Z'ZfIZ'y 

~ Z (Z'Z)-IZ ' is called Let y = ZfJ = Hy denote the fitted values of y, where H = 
"hat" matrix. Then the residuals 

i = y - y = [I - Z(Z'ZrIZ']Y = (I - H)y 

satisfy Z' e = 0 and Y' e = O. Also, the 

n ~ ~)2 ",'" 
residual sum of squares = 2: (Yj - ~o - {3IZjl - '" - {3rZjr = E E 

j=l 

= y'[1 _ Z(Z'ZrIZ']Y = y'y - y'ZfJ 

IIf Z is not full rank, (Z'Z)-l is replaced by (Z'Zr, a generalized inverse of Z'Z. 
Exercise 7.6.) , 
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Proof. Let P = (Z'ZfIZ'y as asserted. Then £ = y - y = y _ Zp = 

[I - Z(Z'ZfIZ']y. The matrix [I - Z(Z'ZfIZ'] satisfies 

1. [I - Z(Z'Zf1z,], = [I - Z(Z'Z)-IZ'] (symmetric); 

2. [I - Z(Z'ZfIZ'][I - Z(Z'Z)-IZ'] 

= I - 2Z(Z'Zf
l
z, + Z(Z'Z)-IZ'Z(Z'Z)-IZ' 

= [I - Z (Z'Zflz,] (idempotent); 

3. Z'[I - Z(Z'Zflz,] = Z' - Z' = O. 

(7-6) 

Consequently,Z'i = Z'(y - y) = Z'[I - Z(Z'Z)-lZ'Jy == O,soY'e = P'Z'£ = O. 
Additionally, !'e = y'[1 - Z(Z'Z)-IZ'J[I -~Z(Z'ZfIZ']y = y'[1 _ Z (Z'Z)-lZ']Y 
= y'y - y'ZfJ. To verify the expression for fJ, we write 

so 

y - Zb = Y - ZP + ZP - Zb = y - ZP + Z(P - b) 

S(b) = (y - Zb)'(y - Zb) 

= (y - ZP)'(y - ZP) + (P - b),Z'Z(P - b) 

+ 2(y - ZP)'Z(P - b) 

= (y - ZP)'(y - ZP) + (P - b)'Z'Z(P - b) 

since (y - ZP)'Z = £'Z = 0'. The first term in S(b) does not depend on b and the' 
sec~ndisthesquaredlengthofZ(P - b). BecauseZhasfullrank,Z(p - b) '# 0 
if fJ '# b, so the minimum sum of squares is unique and Occurs for b = P = 
(Z'Zf1Z'y. Note that (Z'Z)-l exists since Z'Z has rank r + 1 :5 n. (If Z'Z is not 
of full rank, Z'Za = 0 for some a '# 0, but then a'Z'Za = 0 or Za = 0 which con
tradicts Z having full rank r + 1.) , • 

Result 7.1 shows how the least squares estimates P and the residuals £ can be 
obtained from the design matrix Z and responses y by simple matrix operations. 

Example 7.3 (Calculating the least squares estimates, the residuals, and the residual 
su~ of squares) Calculate the least square estimates P, the residuals i, and the 
resIdual sum of squares for a straight-line model 

fit to the data 

ZI o 1 2 3 4 
Y 1 4 3 8 9 
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We have 

Z' -y- z'z (Z'Zr
l 

[~ 1 1 1 ~J m [1~ 10J [ .6 -.2] 1 2 3 30 -.2 .1 

Consequently, 

p = [~:J = (Z'ZrlZ'y = [-:~ -:~J D~J = [~J 
and the fitted equation is 

Y = 1 + 2z 

The vector of fitted (predicted) values is 

so 

The residual sum of squares is 

Sum-of-Squares Decomposition 

---'£L 

[~~J 

According to Result 7.1, y'i = 0, so the total response sum of squares y'y = ~yJ 
satisfies 

y'y = (y + Y _ y)'(y + Y _ y) = (y + e)'(y + e) = y'y + e'e 
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Since the first column of Z is 1, the condition Z'e = 0 includes the requirement 
n n n 

o = l'e = 2: ej = 2: Yj - L Yj' or y = y. Subtracting n),2 = n(W from both 
j=l j=l j=l 

sides of the decomposition in (7-7), we obtain the basic decomposition of the sum of 
squares about the mean: 

or 
n n n 

2: (Yj - y)2 = 2: (Yj - Y/ + 2: e; (7-8) . 
j=l j=l j=l 

( 
~~!~us;~ ) = (re:~:~~n) + (residu~l (error)) 

about mean squares sum 0 squares 

The preceding sum of squares decomposition suggests that the quality of the models 
fit can be measured by the coefficient of determination 

n 11 

L e1 2: (Yj - y)2 
R2 = 1 _ j=! j=l (7-9) 

± (Yj - y)2 ± (Yj _ y/ 
j=! j=l 

The quantity R2 gives the proportion of the total variation in the y/s "explained" 
by, or attributable to, the predictor variables Zl, Z2,' .. ,Zr' Here R2 (or the multiple 
correlation coefficient R = + VJi2) equals 1 if the fitted equation passes through all 
tpe da!a points; s~ that Sj = 0 for all j. At the other extreme, R2 is 0 if (3o = Y and 
f31 = f32 = ... = f3r = O. In this case, the predictor variables Zl, Z2, ... , Zr have no 
influence on the response. 

Geometry of least Squares 

A geometrical interpretation of the least squares technique highlights the nature of 
the concept. According to the classical linear regression model, 

[
ll [Zlll [Zlrl Mean response vector = E(Y) = ZP = f30 ~ + f31 Z~l + ... + Przr 

1 Znl ZIIr 

Thus, E(Y) is a linear combination of the columns of Z. As P varies, ZP spans the 
model plane of all linear combinations. Usually, the observation vector y will not lie 
in the model plane, because of the random error E; that is, y is not (exactly) a linear 
combination of the columns of Z. Recall that 

Y + E 

(
response) 

vector (
error) 
vector 
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3 

Figure 7.1 Least squares as a 
projection for n = 3, r = 1. 

t· become available the least squares solution is derived Once the observa IOns ' 
from the deviation vector 

y _ Zb = (observation vector) - (vector in model plane) 
( _ Zb)'( - Zb) is the sum of squares S(b). As illustrated in The squared len~th y all as :ssible when b is selected such that Zb is the point in Figure 7.1, S(b) IS as srn ~. oint occurs at the tip of the perpendicular prothe model plane closest tTho y. • I: p th choiceb = Q yA = ZP is the projection of . . f on the plane at IS, lor e ,.., 'd al JectlOn 0 Y . ti 'of all linear combinations of the columns of Z. The rest u. y on th: plane c,:n.sls ng d' ular to that plane. This geometry holds even when Z IS vector 13 = Y - Y IS perpen IC 

not of full rank. full k the projection operation is expressed analytically as When Z has ran, J • I d -. Z(Z'Z)-IZ ' To see this, we use the spectra ecompo multiplication by the matrIX . 
sition (2-16) to write 

Z'Z = Alelel + Azezez + .,. + A'+le'+le~+1 
.,. > A > 0 are the eigenvalues of Z'Z and el, ez,···, er+1 are where Al 2: Az 2: - ,+1 . 

the corresponding eigenvectors.1f Z IS of full rank, 
. 1 1, 

(Z'Z)-1 = ~elel + -ezez + .,. + Aer+ler+1 Al Az ,+1 
. . = A -:-1/2Zej, which is a linear combination of the columns of~. Then qiqk ConsIder q" -1/2 -1/2 ' _ 0 if . #0 k or 1 if i = k. That IS, the r + 1 -1/2A-1/2 'Z'Ze = A· Ak ejAkek - I b' = Ai k ej k 'e endicular and have unit length. Their linear corn IDa-~ectors qi ahre mutuallfYaPlll~ear combinations of the columns of Z. Moreover, tlOns span t e space 0 

r+l ,+1 
Z(Z'Z)-lz, = ~ Ai1ZejejZ' = ~ qiqj 

i=1 ,=1 
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According to Result 2A.2 and Definition 2A.12, the projection of y on a linear com-
r+l (r+l) 

A bination of {ql, qz,··· ,qr+l} is ~ (q;y) q; = i~ qjqi y = Z(Z'Zfl Z 'y = ZfJ· 
Thus, mUltiplication by Z (Z'ZflZ ' projects a vector onto the space spanned by the 
columns of Z.Z 

Similarly, [I - Z(Z'Zf1Z'] is the matrix for the projection of y on the plane 
perpendicular to the plane spanned by the columns of Z. 

Sampling Properties of Classical Least Squares Estimators 
The least squares estimator jJ and the residuals i have the sampling properties 
detailed in the next result. 

Result 7.2. Under the general linear regression model in (7-3), the least squares 
estimator jJ = (Z'ZflZ 'Y has 

E(jJ) = fJ and Cov(jJ) = c?(Z'Zfl 

The residuals i have the properties 

E(i) = 0 and Cov(i) = aZ[1 - Z(Z'ZflZ '] = aZ[1 - H] 
Also,E(i'i) = (n - r - 1)c?, so defining 

2 i'i 
s = 

n - (r + 1) 

Y'[I - Z(Z'ZflZ ']Y Y'[I - H]Y 
n-r-l n-r-l 

we have 
E(sz) = c? 

Moreover, jJ and i are uncorrelated. 

Proof. (See webpage: www.prenhall.com/statistics) • 
The least squares estimator jJ possesses a minimum variance property that was first established by Gauss. The following result concerns "best" estimators of linear 

parametric functions of the form c' fJ = cof3o + clf31 + ... + crf3r for any c. 

Result 7.3 (Gauss·3 Ieast squares theorem). Let Y = ZfJ + 13, where E(e) = 0, 
COY (e) = c? I, and Z has full rank r + 1. For any c, the estimator 

" ........ " c' fJ = cof3o + clf31 + " . + c,f3, 

rJ+I 
2If Z is not of full rank. we can use the generalized inverse (Z'Zr = 2: Ai1eiei. where 

;-J Al 2: A2 2: ... 2: A,,+l > 0 = A,,+2 = ... = A,+l. as described in Exercise 7.6. Then Z (Z'ZrZ' 
rl+l 

= 2: qiq! has rank rl + 1 and generates the unique projection of y on the space spanned by the linearly i=1 
independent columns of Z. This is true for any choice of the generalized inverse. (See [23J.) 

3Much later, Markov proved a less general result, which misled many writers into attaching his name to this theorem. 
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of c' p has the smallest possible variance among all linear estimators of the form 

a'Y = all! + a2~ + .. , + anYn 

that are unbiased for c' p. 

Proof. For any fixed c, let a'Y be any unbiased estimator of c' p. 
E(a'Y) = c' p, whatever the value of p. Also, by assumption,. E( 
E(a'Zp + a'E) = a'Zp. Equating the two exp~cted valu: expressl~ns , 
a'Zp = c' p or·(c' - a'Z)p = ° for all p, indudmg the chOIce P = (c - a 
This implies that c' = a'Z for any unbiased estimator. -I 

Now, C' P = c'(Z'Zf'Z'Y = a*'Y with a* = Z(Z'Z) c. Moreover, 
Result 7.2 E(P) = P, so c' P = a*'Y is an unbiased estimator of c' p. Thus, for 

a satisfying the unbiased requirement c' = a'Z, 

Var(a'Y) = Var(a'Zp + a'e) = Var(a'e) = a'IO'
2
a 

= O'2(a - a* + a*),(a - a* + a*) 

= ~[(a - a*)'(a - a*) + a*'a*] 

since (a '- a*)'a* = (a - a*)'Z(Z'Zrlc = 0 from the con~ition (: ~ a*)'~ = 
a'Z - a*'Z = c' - c' = 0'. Because a* is fIxed and (a - a*) (a - ~I) IS posltIye 
unless a = a*, Var(a'Y) is minimized by the choice a*'Y = c'(Z'Z) Z'Y = c' p. 

• 
This powerful result states that substitution of P for p leads to the be,:;t . 

tor of c' P for any c of interest. In statistical tenninology, the estimator c' P is called 
the best (minimum-variance) linear unbiased estimator (BLUE) of c' p. 

7.4 Inferences About the Regression Model 
We describe inferential procedures based on the classical linear regression model !n 
(7-3) with the additional (tentative) assumption that the errors e have a norrr~al dis
tribution. Methods for checking the general adequacy of the model are conSidered 

in Section 7.6. 

Inferences Concerning the Regression Parameters 

Before we can assess the importance of particular variables in the regression function 

E(Y) = Po + {3,ZI + ... + (3rzr (7-10) 

we must determine the sampling distributions of P and the residual sum of squares, 
i'i. To do so, we shall assume that the errors e have a normal distribution. 

Result 7.4. Let Y = Zp + E, where Z has full rank r + ~ and E is distributed ~ 
Nn(O, 0.21). Then the maximum likelihood estimator of P IS the same as the leas 

squares estimator p. Moreover, 

p = (Z'ZrIZ'Y is distributed as Nr +l(p,O'2(Z'Zr
1

) 
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and is distributed independently of the residuals i = Y - Zp. Further, 

na-2 =e'i is distributed as O'2rn_r_1 

where 0.2 is the maximum likeiihood estimator of (T2. 

Proof. (See webpage: www.prenhall.comlstatistics) • 
A confidence ellipsoid for P is easily constructed. It is expressed in terms of the 

estimated covariance matrix s2(Z'Zrl
, where; = i'i/(n - r - 1). 

Result 7.S. Let Y = ZP + E, where Z has full rank r + 1 and Eis Nn(O, 0.21). Then 
a 100(1 - a) percent confidence region for P is given by 

..... ,,'" 2 
(P-P) Z Z(P-P) :s; (r + l)s Fr+l,n-r-l(a) 

where Fr+ I,n-r-l (a) is the upper (lClOa )th percentile of an F-distribution with r + 1 
and n - r - 1 d.f. 

Also, simultaneous 100(1 - a) percent confidence intervals for the f3i are 
given by 

f3i ± V%(P;) V(r + I)Fr+1,n-r-l(a) , i = O,I, ... ,r 

---- "'. . -1 ,.. 
where Var(f3i) IS the diagonal element of s2(Z'Z) corresponding to f3i' 

Proof. Consider the symmetric square-root matrix (Z'Z)I/2. (See (2-22).J Set 
1/2 A 

V = (Z'Z) (P - P) and note that E(V) = 0, 

Cov(V) = (Z,z//2Cov(p)(Z'Z)I/2 = O'2(Z'Z)I/\Z'Zr1(Z,z)I/2 = 0'21 

and V is normally distributed, since it consists of linear combinations of the f3;'s. 

Therefore, V'V = (P - P)'(Z'Z)I/2(Z'Z//2(P - P) = (P - P)' (Z'Z)(P '- P) 
is distributed as U 2X;+1' By Result 7.4 (n - r - l)s2 = i'i is distributed as 
U2rn_r_l> independently of P and, hence, independently of V. Consequently, 

[X;+I/(r + 1)l![rn-r-l/(n - r - I)J = [V'V/(r + l)J;SZ has an Fr+l,ll-r-l distri
bution, and the confidence ellipsoid for P follows. Projecting this ellipsoid for 
(P - P) using Result SA.1 with A-I = Z'Z/ s2, c2 = (r + I)Fr+1,n-r-l( a), and u' = 

[0, ... ,0,1,0, ... , DJ yields I f3i - Pd :s; V (r + I)Fr+l,n-r-l( a) Vv;;r(Pi), where 
--- '" 1 A Var(f3;) is the diagonal element of s2(Z'Zr corresponding to f3i' • 

The confidence ellipsoid is centered at the maximum likelihood estimate P, 
and its orientation and size are determined by the eigenvalues and eigenvectors of 
Z'Z. If an eigenvalue is nearly zero, the confidence ellipsoid will be very long in the 
direction of the corresponding eigenvector. 
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Practitioners often ignore the "simultaneous" confidence property of the inter
val estimates in Result 7.5. Instead, they replace (r + l)Fr+l.n-r-l( a) with the one
at-a-time t value tn - r-1(a/2) and use the intervals 

when searching for important predictor variables. 

Example 7.4 (Fitting a regression model to real-estate data) The assessment data 
Table 7.1 were gathered from 20 homes in a Milwaukee, Wisconsin, neighborhood. 

Fit the regression model 

Yj = 130 + 131 Zj 1 + f32Zj2 + Sj 

where Zl = total dwelling size (in hundreds of square feet), Z2 = assessed value (in 
thousands of dollars), and Y = selling price (in thousands of dollars), to these 
using the method of least squares. A computer calculation yields 

[ 

5.1523 ] 
(Z'Zr1 

= .2544 .0512 
-.1463 -.0172 .0067 

-~ 

Table 7.1 Real-Estate Data 

Zj Z2 Y 

Total dwelling size Assessed value Selling price 

(100 ft2) ($1000) ($1000) 

15.31 57.3 74.8 

15.20 63.8 74.0 

16.25 65.4 72.9 

14.33 57.0 70.0 

14.57 63.8 74.9 

17.33 63.2 76.0 

14.48 60.2 72.0 

14.91 57.7 73.5 

15.25 56.4 74.5 

13.89 55.6 73.5 

15.18 62.6 71.5 

14.44 63.4 71.0 

14.87 60.2 78.9 

18.63 67.2 86.5 

15.20 57.1 68.0 

25.76 89.6 102.0 

19.05 68.6 84.0 

15.37 60.1 69.0 

18.06 66.3 88.0 

16.35 65.8 76.0 
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and 

[

30.967] 
jJ = (Z'ZrIZ'y = 2.634 

.045 

Thus, the fitted equation is 

y = 30.967 + 2.634z1 + .045z2 
(7.88) (.785) (.285) 

with s = 3.473. The numbers in parentheses are the estimated standard deviations 
of the least squares coefficients. Also, R2 = .834, indicating that the data exhibit a 
strong regression relationship. (See Panel 7.1, which contains the regression analysis 
of these data using the SAS statistical software package.) If the residuals E pass 
the diagnostic checks described in Section 7.6, the fitted equation could be used 
to predict the selling price of another house in the neighborhood from its size 

PANEL 7.1 SAS ANALYSIS FOR EXAMPLE 7.4 USING PROC REG. 

title 'Regression Analysis'; 
data estate; 
infile 'T7-1.dat'; 
input zl z2 y; 
proc reg data = estate; 
model y = zl z2; 

Model: MODEL 1 
Dependent Variable: 

Source 
Model 
Error 
C Total 

DF 
2 

17 
19 

J Root MSE 

Variable 
INTERCEP 
zl 
z2 

Deep Mean 
CV 

DF 
1 

Analysis of Variance 

Sum of Mean 
Squares Square 

1032_87506 516.43753 
204.99494 12.05853 

1237.87000 

3.47254 I R-square 

76.55000 Adj R-sq 
4.53630 

Parameter Estimates 

Parameter 
Estimate' 

30.966566 
~.~34400 
9.045184 

Standard 
Error 

7.88220844' 
0.78559872 
0.28518271 

I ",OGRAM COMMANOS 

f value 
42.828 

0.8344,1 

0.8149 

Tfor HO: 
Parameter = 0 

3.929 
3.353 
0.158 

OUTPUT 

Prob > F 
0.0001 

Prob> ITI 
0.0011 
0.0038 
0.8760 
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and assessed value. We note that a 95% confidence interval for 132 [see (7-14)] is 

given by 

~2 ± tl7( .025) VVai (~2) = .045 ± 2.110(.285) 

or 
(-.556, .647) 

Since the confidence interval includes /3z = 0, the variable Z2 might be dropped 
from the regression model and the analysis repeated with the single predictor vari
able Zl' Given dwelling size, assessed value seems to add little to the prediction 

selling price. • 

likelihood Ratio Tests for the Regression Parameters 

Part of regression analysis is concerned with assessing the e~fect~ of particular pre
dictor variables on the response variable. One null hypotheslS of mterest states that 
certain of the z.'s do not influence the response Y. These predictors will be labeled 

Z Z Z' The statement that Zq+l' Zq+2,"" Zr do not influence Y translates 
q+l' q+2,···, ro 

into the statistical hypothesis 

Ho: f3 q+1 = /3q+z = ... = /3r = 0 or Ho: p(Z) = 0 (7-12) 

where p(Z) = [f3 q+1> /3q+2'"'' f3r]· 

Setting 

Z = [Zl 1 Z2 ], 
nX(q+1) 1 nX(r-q) 

we can express the general linear model as 

y = Zp + e = [Zl 1 Zz] [/!mJ + E = ZIP(l) + Z2P(2) + e 
• p(Z) 

Under the null hypothesis Ho: P(2) = 0, Y = ZIP(1) + e. The. likelihood ratio test 

of Ho is based on the 

Extra sum of squares = SSres(ZI) - SSres(Z) (7-13) 
= (y _ zJJ(1»'(Y - ZJJ(1» - (y - Z{J)'(y - Z{J) 

where p(!) = (ZiZt>-lZjy. 

Result 7.6. Let Z have full rank r + 1 and E be distributed as Nn(O, 0.21). The 
likelihood ratio test of HO:P(2) = 0 is equivalent ~o,a test of Ho based on the 
extra sum of squares in (7-13) and SZ = (y - Zf3) (y - Zp)/(n - r - 1). In 
particular, the likelihood ratio test rejects Ho if 

(SSres(ZI) - S;es(Z»/(r - q) > Fr-q,n-r-l(a) 

where Fr-q,n-r-l(a) is the upper (l00a)thpercentile of anP-distribution with r - q 

and n - r - 1 d.f. 
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Proof. Given the data and the normal assumption, the likelihood associated with 
the parameters P and u Z is 

L(P,~) = 1 e-(y-zp)'(y-ZP)/2u2 <: 1 e-n/2 
(271' t/2u n - (271')"/20-" 

with the maxim~~ occurring at p = (Z'ZrIZ'y and o-Z = (y - ZP)'(y - Zp)/n. 
Under the restnctlOn of the null hypothesis, Y = ZIP (I) + e and 

1 
max L(p{!),u2 ) = e-n/ 2 

P(l),U2 (271' )R/2o-f 

where the maximum occurs at p(t) = (ZjZlr1Ziy. Moreover, 

Rejecting Ho: P(2) = 0 for small values of the likelihood ratio 

is equivalent to rejecting Ho for large values of (cT} - UZ)/UZ or its scaled version, 

n(cT} - UZ)/(r - q) _ (SSres(Zl) - SSres(Z»/(r - q) 
- -F 

nUZ/(n - r - 1) S2 -

The preceding F-ratio has an F-distribution with r - q and n - r - 1 d.f. (See [22] 
or Result 7.11 with m = 1.) • 

Comment. The likelihood ratio test is implemented as follows. To test whether 
all coefficients in a subset are zero, fit the model with and without the terms corre
sponding to these coefficients. The improvement in the residual sum of squares (the • 
e~tra sum of.squares) is compared to the residual sum of squares for the full model 
via the F-ratlO. The same procedure applies even in analysis of variance situations 
where Z is not of full rank.4 . 

Mor~ ge~erally, it is possible to formulate null hypotheses concerning r - q lin
ear combmatIons of P of the form Ho: Cp = A Q• Let the (r - q) X (r + 1) matrix. 
C have full rank, let Ao = 0, and consider 

Ho:CP = 0 

(This null hypothesis reduces to the previous choice when C = [0 i I ].) 
i (r-q)x(r-q) 

4Jn situations where Z is not of full rank, rank(Z) replaces r + 1 and rank(ZJ) replaces q + 1 in 
Result 7.6. 
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Under the full model, Cp is distributed as Nr_q(CP, a2C (Z'ZrlC'). We 
Ho: C P = 0 at level a if 0 does not lie in the 1 DO( 1 - a) % confidence ellipsoid 
Cp. Equivalently, we reject Ho: Cp = 0 if 

(CP)' (C(Z'ZrIC') -1(CP) 
, s2 > (r - q)Fr-q,ll-r-l(a) 

where S2 = (y - Zp)'(y - Zp)/(n - r - 1) and Fr-q,n-r-I(a) is the 
(l00a)th percentile of an F-distribution with r - q and n - r - 1 dJ. The 
(7-14) is the likelihood ratio test, and the numerator in the F-ratio is the extra 
sum of squares incurred by fitting the model, subject to the restriction that Cp == 

(See [23]). 
The next example illustrates how unbalanced experimental designs are 

handled by the general theory just described. 

Example 7.S (Testing the importance of additional predictors using the extra 
squares approach) Male and female patrons rated the service in three establish: 
ments (locations) of a large restaurant chain. The service ratings were converted 
into an index. Table 7.2 contains the data for n = 18 customers. Each data point in 
the table is categorized according to location (1,2, or 3) and gender (male = 0 and 
female = 1). This categorization has the format of a two-way table with unequal 
numbers of observations per cell. For instance, the combination of location 1 and 
male has 5 responses, while the combination of location 2 and female has 2 respons
es. Introducing three dummy variables to account for location and two dummy vari
ables to account for gender, we can develop a regression model linking the service 
index Y to location, gender, and their "interaction" using the design matrix 

Table 7.2 Restaurant-Service Data 

Location Gender Service (Y) 

1 0 15.2 

1 0 21.2 

1 0 27.3 

1 0 21.2 

1 0 21.2 

1 1 36.4 

1 1 92.4 

2 0 27.3 

2 0 15.2 

2 0 9.1 

2 0 18.2 

2 0 50.0 

2 1 44.0 

2 1 63.6 
3 0 15.2 

3 0 30.3 

3 1 36.4 
3 1 40.9 

constant 
~ 

1 
1 
1 

1 
1 

1 
1 

1 
1 

Z= 1 
1 

1 

1 
1 

1 
1 

1 
1 

location 
~ 

100 

100 
100 
100 

100 

100 
100 

010 
o 1 0 
o 1 0 
010 
010 

010 
010 

001 
001 

001 
001 

gender 
~ 

1 0 
1 0 
1 0 
1 0 
1 0 

o 1 

o 1 

1 0 
1 0 
1 0 
1 0 
1 0 

o 1 

o 1 

1 0 
1 0 

o 1 

o 1 
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inter!lction 

1 0 000 0 
1 0 0 0 0 0 

1 0 0 0 0 0 
1 0 0 0 0 0 
1 0 000 0 

010000 

010000 

001000 
00100 0 
001000 
001 000 
o 0 1 000 

000 1 0 0 
000 1 0 0 

000 0 1 0 
000010 

00000 1 
00000 1 

I' "'pon'" 

} 2 responses 

} 2 responses 

} 2 responses 

} 2 responses 

The coefficient vector can be set out as 

{J' = [/30, /3 j, /32, /33, Tj, T2, 1'11, 1'12, 1'21> 1'22, 1'31, 1'32J 

whe:e the /3;'S, (i > 0) represent the effects of the locations on the determination of 
service, tthehTils re~resent the effects of gender on the service index, and the 'Yik'S 

represen t e ocatlOn-gender interaction effects. 
The design matrix Z is not of full rank. (For instance, column 1 equals the sum 

of columns 2-4 or columns 5-6.) In fact, rank(Z) = 6. 
For the complete model, results from a computer program give 

SSres(Z) = 2977.4 

and n - rank(Z) = 18 - 6 = 12. 
'!he ~odel without the interaction terms has the design matrix Zl consisting of 

the flTSt sIX columns of Z. We find that 

SSres(ZI) == 3419.1 

with n - rank(ZI) == 18 - 4 == 14 110 test 1I • - -_ . .'. no· 1'11 - 1'12 - 1'21 = 1'22 = 1'31 = 
1'32 - 0 (no locatIOn-gender mteractlOn), we compute 

F == (SSres(Zl) - SSres(Z»/(6 - 4) _ (SSres(Zl) - SSres(Z»/2 
2 -

S SSres(Z)/12 

_ (3419.1 - 2977.4)/2 
- 2977.4/12 == .89 
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The F-ratio may be compared with an appropriate percentage point of an 

F-distribution with 2 and 12 d.f. This F-ratio is not significant for any reasonable sig

nificance level a. Consequently, we conclude that the service index does not depend 

upon any location-gender interaction, and these terms can be dropped from the . 

model. 
Using the extra sum-of-squares approach, we may verify that there is no differ_ 

ence between locations (no location effect), but that gender is significant; that is 

males and females do not give the same ratings to service. ' 

In analysis-of-variance situations where the cell counts are unequal, the varia

tion in the response attributable to different predictor variables and their interac_ 

tions cannot usually be separated into independent amounts. To evaluate the 

relative influences of the predictors on the response in this case, it is necessary to fit 

the model with and without the terms in question and compute the appropriate 

F-test statistics. • 

7.S Inferences from the Estimated Regression Function 

Once an investigator is satisfied with the fitted regression model, it can be used to 

solve two prediction problems. 4t Zo = [1, ZOl,"" ZOr] be selected values for the 

predictor variables. Then Zo and fJ can be used (1) to estimate the regression func

tion f30 + f3lz01 + .. , + f3rzor at Zo and (2) to estimate the value of the response Y 

at zoo 

Estimating the Regression Function at Zo 

Let Yo denote the value of the response when the predictor variables have values 

za = [1, zOJ,· . . , ZOr]. According to the model in (7-3), the expected value 000 is 

E(Yo I zo) = f30 + f3lZ0l + ... + f3rzor = zofJ 

Its least squares estimate is zop. 
(7-15) 

Result 7.7. For the linear regression model in (7-3), zoP is the unbiased linear 

estimator of E(Yolzo) with minimum variance, Var(zoP) = zb(Z'Zr1zo0'2. If the 

errors E are normally distributed, then a 100(1 - a) % confidence interval for 

E(Yo I zo) = zofJ is provided by 

where t"-r-l(a/2) is the upper l00(a/2)th percentile of a t-distribution with 

n - r - 1 d.f. 

Proof. For a fixed Zo, zofJ)s just a lin~ar combination of the f3;'s, so R~sult . 

7.3 applies. Also, Var (zofJ) = Zo Cov (fJ)zo = zo(Z'Zrlzo 0'2 since Cov (fJ) = . 
~(Z'Zrl by Result 7.2. UIlder the further assu~l'tion that E is normally distrib

uted, Result 7.4 asserts that fJ is Nr+1(fJ, 0'2(Z'Z) ) independently of s2/0'2, which 
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is distributed as X~- _ /(n - r - 1) C . , 

N(zop, 0'2zO(z'zrl;0) and . onsequentIy, the hnear combination zofJ is 

(zoP - z(JP)/Y0"2z0(Z'Z)-I ZO (' 
zoP - zoP) 

YS10'2 -Vr=2(~'=(Z='~)-~l= 
. d' t 'b S Zo Z zo) 
IS IS n uted as (n-r-l' The confidence interval follows. • 
Forecasting a New Observation at Zo 

Prediction of a new observation, such as Y, at z' = [1 . . 

thanestimatingtheexpected I fY, 0, o. ,ZOl"",zor]lsmoreuncertam 
va ue 0 o· Accordmg to the regression model of (7-3), 

or 
Yo = zoP + BO 

(new response Yo) = (expected value of Yo at zo) + (new error) 

where BO is distributed as N(O 2) d" , 

Tb . fl ,0' ap IS Illdependent of E and hence of a and S2 

e errors E III uence the est' t a d 2 "p. 

Illla ors p an s through the responses Y, but BO does not. 

Result 7.S. Given the linear regression model of (7 ) . 
the unbiased predictor -3 , a new observatIOn YcJ has 

ZoP = Po + PIZOI + ... + PrZor 
The variance of the forecast error Yo - zoP is 

Var(Yo - ZoP) = 0'2(1 + zb(Z'Z)-IZO) 

~7:;i~~: ~;ors E have a normal distribution, a lOD( 1 - a) % prediction interval for 

zoP ± t"_r_1 (~) Ys2(1 + ZO(Z'ZrIZO) 

w~re f,,-r_l(a/2) is the upper lOO(a/2)th percentile of a 
n r - 1 degrees of freedom. t-distribution with 

Proof. We forecast y, by 'a h' h . 
, " 0 zOP,' W IC estImates E(Yo I zo). By ReSUlt 7.7, zoP has 

E(zofJ) = zofJ and Var(zofJ) = z'(Z'Z)-lz 2 The f . 
y, , ' ,0 00" . orecast error IS then 

EO : ZO~ =, zafJ_ + BO - zoP =.BO + zo(P-P). Thus, E(Yo - zoP) = E(BO) + 

( o( P fJ» - 0 so the predIctor is unbiased Since B and a . d d 
V (Y, , ' ,. 0 P are m epen ent, 

ar. o. - zofJ) = Var (BO) + Var (zom = 0'2 + zo(Z'Z)-IZ00'2 = 0'2(1 + zo(Z'Zrlz ). 

If It IS f~rt~er assumed that E has a normal distribution, then P °is 

normally, dlstnbuted, and so is the linear combination y, _ z' a C I 

(Y, - z' P)/V, 2 ,,-J 0 op· onsequent y, 

VO 
2 ~o 0" (1 + zo(Z Z) ZO) is distributed as N(O, 1). Dividing this ratio by 

s / , which is distributed as YX2 /(n - r 1) b' 
"-r-l -, we 0 taln 

(1'0 - ZoP) 

. . . Ys2(l + zo(Z'ZrJzo) 

which IS dIstributed as t Th d'" 
n"'r-I' e pre IctIon mterval follows immediately. • 
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The prediction interval for Yo is wider than the confidence interval for estimating 
the value of the regression function E(Yo I zo) = zop· The additional uncertainty in 
forecasting Yo, which is represented by the extra term S2 in the expression 
s2(1 + zo(Z'Zrlzo), comes from the presence ofthe unknown error term eo· 

Example 7.6 (Interval estimates for a mean response and a future response) Companies 
considering the purchase of a computer must first assess their future needs in 
to determine the proper equipment. A computer scientist collected data from seven 
similar company sites so that a forecast equation of computer-hardware requirements 
for inventory management could be developed. The data are given in Table 7.3 for 

ZI = customer orders (in thousands) 

Z2 = add-delete item count (in thousands) 

Y = CPU (central processing unit) time (in hours) 

Construct a 95% confidence interval for the mean CPU time, E(Yolzo) '= 

130 + fJrzol + f32Z02 at Zo '= [1,130,7.5]. Also, find a 95% prediction interval for a 
new facility's CPU requirement corresponding to the same zo° 

A computer program provides the estimated regression function 

y = 8.42 + 1.08z1 + .42Z2 

[

8.17969 
(Z'ztl = -.06411 .00052 

.08831 -.00107 

and s = 1.204. Consequently, 

zoP = 8.42 + 1.08(130) + .42(7.5) = 151.97 
,-----:--

and s Yzo(Z'Zrlzo = 1.204( .58928) = .71. We have t4( .025) = 2.776, so the 95% 
confidence interval for the mean CPU time at Zo is 

zoP ± t4(.025)sYzo(Z'Zrlzo = 151.97 ± 2.776(.71) 

or (150.00,153.94). 

Table 7.3 Computer Data 

Zl Z2 Y 
(Orders) (Add-delete items) (CPU time) 

123.5 2.108 141.5 
146.1 9.213 168.9 
133.9 1.905 154.8 
128.5 .815 146.5 
151.5 1.061 172.8 
136.2 8.603 160.1 
92.0 1.125 108.5 

Source: Data taken from H. P. Artis, Forecasting Computer Requirements: A 
Forecaster's Dilemma (Piscataway, NJ: Bell Laboratories, 1979). 
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Since sY1 + zO(Z'ZflZO = (1.204)(1.16071) = 1.40, a 95% prediction inter
val for the CPU time at a new facility with conditions Zo is 

z'oP ± t4(.025)sY1 + zo(Z'Zr1zo = 151.97 ± 2.776(1.40) 

or (148.08,155.86). 

1.6 Model Checking and Other Aspects of Regression 

Does the Model Fit? 

• 

Assuming that the model is "correct," we have used the estimated regression 
function to make inferences. Of course, it is imperative to examine the adequacy of 
the model before the estimated function becomes a permanent part of the decision
making apparatus. 

All the sample information on lack of fit is contained in the residuals 

81 = Yl - ~o - ~IZI1 - ... - ~rZlr 
A, , 

e2 = Y2 - 130 - f31Z21 - ... - f3rZ2r 

en = Yn - ~o - ~IZnl - ... - ~rZnr 
or 

e = [I - Z(Z'ZfIZ']Y = [I - H]y (7-16) 

If the model is valid, each residual ej is an estimate of the error ej' which is assumed to 
be a normal random variable with mean zero and variance (1'2. Although the residuals 
ehaveexpectedvalueO,theircovariancematrix~[1 - Z(Z'Zr1Z'] = (1'2[1 - H] 
is not diagonal. Residuals have unequal variances and nonzero correlations. Fortu
nately, the correlations are often small and the variances are nearly equal. 

Because the residuals e have covariance matrix (1'2 [I - H], the variances of the 
ej can vary greatly if the diagonal elements of H, the leverages h jj , are substantially 
different. Consequently, many statisticians prefer graphical diagnostics based on stu
dentized residuals. Using the residual mean square S2 as an estimate of (1'2, we have 

Va;(ei) = s2(1 - kJj), 

and the studentized residuals are 

j = 1,2, ... ,n 

j == 1,2, ... ,n 

(7-17) 

(7-18) 

We expect the studentized residuals to look, approximately, like independent drawings 
from an N(0,1) distribution. Some software packages go one step further and 
studentize ej using the delete-one estimated variance ;(j), which is the residual 
mean square when the jth observation is dropped from the analysis. 
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Residuals should be plotted in various ways to detect possible anomalies. For 
general diagnostic purposes, the following are useful graphs: 

1. Plot the residuals Bj against the predicted values Yj = Po + 13) Zjl + ... + P,Zj'" 

Departures from the assumptions of the model are typically indicated by two' 
types of pheno1J.1ena: 

(a) A dependence of the residuals on the predicted value. This is illustrated in 
Figure 7.2(a). The numerical calculations are incorrect, or a f30 term 
been omitted from the model. 

(b) The variance is not constant. The pattern of residuals may be funnel 
shaped, as in Figure 7.2(bY, so that there is large variability for large Y and
small variability for small y. If this is the case, the variance of the error .is . 
not constant, and transformations or a weighted least squares approach (or 
both) are required. (See Exercise 7.3.) In Figure 7.2( d), the residuals form a 
horizontal band. This is ideal and indicates equal variances and no depen-
dence on y. 

2. Plot the residuals Bj against a predictor variable, such as ZI, or products ofpredic
tor variables, such as ZI or ZI Zz. A systematic pattern in these plots suggests the 
need for more terms in the model. This situation is illustrated in Figure 7.2(c). 

3. Q-Q plots and histograms. Do the errors appear to be normally distributed? To 
answer this question, the residuals Sj or si can be examined using the techniques 
discussed in Section 4.6. The Q-Q plots, histograms, and dot diagrams help to 
detect the presence ~f unusual observations or severe departures from normal
ity that may require special attention in the analysis. If n is large, minor depar
tures from normality will not greatly affect inferences about p. 

(a) (b) 

r---------------~y 

(c) (d) Figure 7.2 Residual plots. 
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4. Plot the residuals versus time. The assumption of independence is crucial, but 
hard to check. If the data are naturally chronological, a plot of the residuals ver
sus time may reveal a systematic pattern. (A plot of the positions of the residu
als in space may also reveal associations among the errors.) For instance, 
residuals that increase over time indicate a strong positive dependence. A statis
tical test of independence can be constructed from the first autocorrelation, 

(7-19) 

of residuals from adjacent periods. A popular test based on the statistic 
n / n j~ (Bj - Bj_I)2 J~ BT == 2(1 - rd is called the Durbin-Watson test. (See (14] 

for a description of this test and tables of critical values.) 

Example 7.7 (Residual plots) Three residual plots for the computer data discussed 
in Example 7.6 are shown in Figure 7.3. The sample size n == 7 is really too small to 
allow definitive judgments; however, it appears as if the regression assumptions are 
tenable. _ 

e 

1.0 • 1.0 • • 
• • z, 0 

-1.0 ••• -1.0 • • • 

(a) (b) 

1.0 •• 

-1.0 •• • 

(c) 

Figure 7.3 Residual plots for the computer data of Example 7.6. 
I 
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If several observations of the response are available for the same values of the 
predictor variables, then a formal test for lack of fit can be carried out. (See [13] for 
a discussion of the pure-error lack-of-fit test.) . 

Leverage and I!lfluence 
Although a residual analysis is useful in assessing the fit of a model, departures from 
the regression model are often hidden by the fitting process. For example, there may 
be "outliers" in either the response or explanatory variables that can have a consid
erable effect on the analysis yet are not easily detected from an examination of 
residual plots. In fact, these outIiers may determine the fit. 

The leverage hjj the (j, j) diagonal element of H = Z(Z' Zrl Z, can be interpret" 
ed in two related ways. First, the leverage is associated with the jth data point mea
sures, in the space of the explanatory variables, how far the jth observation is from the 
other n - 1 observations. For simple linear regression with one explanatory variable z, 

1 (Zj-Z)2 
h·=-+-"--:'~~-

JI n n 2: (z; - z)2 
;=1 

The average leverage is (r + l)/n. (See Exercise 7.8.) 
Second, the leverage hjj' is a measure of pull that a single case exerts on the fit. 

The vector of predicted values is 

y = ZjJ = Z(Z'Z)-IZy = Hy 

where the jth row expresses the fitted value Yj in terms of the observations as 

Yj = hjjYj + 2:hjkYk 
k*j 

Provided that all other Y values are held fixed 

( change in Y;) = hjj ( change in Yj) 

If the leverage is large relative to the other hjk> then Yj will be a major contributor to 
the predicted value Yj· 

Observations that significantly affect inferences drawn from the data are said to 
be influential. Methods for assessing)nfluence are typically based on the change in 
the vector of parameter estimates, fJ, when observations are deleted. Plots based 
upon leverage and influence statistics and their use in diagnostic checking of regres
sion models are described in [3], [5], and [10]. These references are recommended 
for anyone involved in an analysis of regression models. 

If, after the diagnostic checks, no serious violations of the assumptions are de
tected, we can make inferences about fJ and the future Y values with some assur
ance that we will not be misled. 

Additional Problems in Linear Regression 

We shall briefly discuss several important aspects of regression that deserve and receive 
extensive treatments in texts devoted to regression analysis. (See [10], [11], [13], and [23].) 
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Selecting predictor variables from a large set. In practice, it is often difficult to for
mulate an appropriate regression function immediately. Which predictor variables 
should be included? What form should the regression function take? 

When the list of possible predictor variables is very large, not all of the variables 
can be included in the regression function. Techniques and computer programs de
signed to select the "best" subset of predictors are now readily available. The good 
ones try all subsets: ZI alone, Z2 alone, ... , ZI and Z2, •.•. The best choice is decided by 
examining some criterion quantity like Rl. [See (7-9).] However, R2 always increases 
with the inclusion of additional predict~r variables. Although this problem can be 
circumvented by using the adjusted Rl, R2 = 1 - (1 - Rl) (n - l)/(n - r - 1), a 
better statistic for selecting variables seems to be Mallow's Cp statistic (see [12]), 

(

residual sum of squares for subset model) 
with p parameters, including an intercept 

Cl' = (residual variance forfull model) - (n - 2p) 

A plot of the pairs (p, Cp ), one for each subset of predictors, will indicate models 
that forecast the observed responses well. Good models typically have (p, C p) coor
dinates near the 45° line. In Figure 7.4, we have circled the point corresponding to 
the "best" subset of predictor variables. 

If the list of predictor variables is very Jong, cost considerations limit the number 
of models that can be examined. Another approach, called step wise regression (see 
[13]), attempts to select important predictors without considering all the possibilities. 

1800 

1600 

1200 

11 

10 

9 

7 

6 

5 

4 (1.2.3) 

1<-..-7---=---=---~~--7--=--- P = r + 1 

Figure 7.4 C p plot for computer 
data from Example 7.6 with 
three predictor variables 
(z) = orders, Z2 = add-delete 
count, Z3 = number of items; see 
the example and original source). 
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The procedure can be described by listing the basic steps (algorithm) involved in the 
computations: 

Step 1. All possible simple linear regressions are considered. The predictor variable 
that explains the largest significant proportion of the variation in Y (the 
that has the largest correlation with the response) is the first variable to enter the re
gression function. 
Step 2. The next variable to enter is the one (out of those not yet included) 
makes the largest significant contribution to the regression sum of squares. The 
nificance of the contribution is determined by an F-test. (See Result 7.6.) The 
of the F-statistic that must be exceeded before the contribution of a variable is 
deemed significant is often called the F to enter. 

Step 3. Once an additional variable has been included in the equation, the indivi<f
ual contributions to the regression sum of squares of the other variables already in 
the equation are checked for significance using F-tests. If the F-statistic is less than 
the one (called the F to remove) corresponding to a prescribed significance level, the 
variable is deleted from the regression function. 

Step 4. Steps 2 and 3 are repeated until all possible additions are nonsignificant and 
all possible deletions are significant. At this point the selection stops. 

Because of the step-by-step procedure, there is no guarantee that this approach 
will select, for example, the best three variables for prediction. A second drawback is 
that the (automatic) selection methods are not capable of indicating when transfor
mations of variables are useful. 

Another popular criterion for selecting an appropriate model, called an infor
mation criterion, also balances the size of the residual sum of squares with the num
ber of parameters in the model. 

Akaike's information criterion (AIC) is 

(

residual sum of squares for subset mOdel) 
with p parameters, including an intercept 

Ale = nln + 2p 
n 

It is desirable that residual sum of squares be small, but the second term penal
izes for too many parameters. Overall, we want to select models from those having 
the smaller values of Ale. 

Colinearity. If Z is not of full rank, some linear combination, such as Za, must equal 
O. In this situation, the columns are said to be colinear. This implies that Z'Z does 
not have an inverse. For most regression analyses, it is unlikely that Za = 0 exactly. 
Yet, iflinear combinations of the columns of Z exist that are nearly 0, the calculation 
of (Z'Zrl is numerically unstable. Typically, the diagoqal entries of (Z'Zr

l 
will 

be large. This yields large estimated variances fqr the f3/s and it is then difficult 
to detect the "significant" regression coefficients /3i. The problems caused by coIin
earity can be overcome somewhat by (1) deleting one of a pair of predictor variables 
that are strongly correlated or (2) relating the response Y to the principal compo
nents of the predictor variables-that is, the rows zj of Z are treated as a sample, and 
the first few principal components are calculated as is subsequently described in . 
Section 8.3. The response Y is then regressed on these new predictor variables. 
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Bias ca~sed by a misspecified model. Suppose some important predictor variables 
are omItted f~om the. proposed regression model. That is, suppose the true model 
has Z = [ZI i Z2] WIth rank r + 1 and 

(7-20) 

where E(E).= 0 and Var(E) = (1"21. However, the investigator unknowingly fits 
a model usmg only the fIrst q predictors by minimizing the error sum of 
squares_ (Y - ZI/3(I»'(Y - ZI/3(1). The least squares estimator of /3(1) is P(I) = 

(Z;Zd lZ;Y. Then, unlike the situation when the model is correct , 

E(P(1» = (Z;Zlr
1
Z;E(Y) = (Z;Zlr1Z;(ZI/3(I) + Z2P(2) + E(E» 

= p(]) + (Z;Zd-1Z;Z2/3(2) (7-21) 

That is, P(1) is a biased. estimator of /3(1) unless the columns of ZI are perpendicular 
to those of Z2 (that IS, ZiZ2 = 0>.- If important variables are missing from the 
model, the least squares estimates P(1) may be misleading. 

1.1 Multivariate Multiple Regression 
In this section, we consider the problem of modeling the relationship between 
m respon~es Y1, Y2,· .. , Y,n and a single set of predictor variables ZI, Zz, ... , Zr. Each 
response IS assumed to follow its own regression model, so that 

Yi = f301 + f311Z1 + ... + f3rlZr + el 

Yz = f302 + f312Z1 + ... + /3r2zr + e2 (7-22) 

Ym = f30m + /31mZl + ... + f3rmzr + em 

The error term E' = [el' e2, ... , em] has E(E) = 0 and Var(E) = .I. Thus the error 
terms associated with different responses may be correlated. ' 

To establish notation conforming to the classical linear regression model, let 
[ZjO,~jI, ... ,Zjr] denote the values of the predictor variables for the jth trial, 
let Yj = [ljJ, ~2' ... , .ljm] be the responses, and let El = [ejl, ej2, ... , Ejm] be the 
errors. In matnx notatIOn, the design matrix 

r
Z10 Zll 

Z = Z20 Z21 
(nX(r+1) : : 

ZnO Znl 

ZlrJ Z2r 

Znr 



lie; 

L 
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is the same as that for the single-response regression model. [See (7-3).] The 
matrix quantities have multivariate counterparts. Set 

[Y" 
Yl2 

¥Om] _ Y = Y~l 122 1-2", ." 
(nXm) : 

: = [Y(!) i Y(2) i '" i Y(",)] 

Yn1 Y n2 Ynm 

[Po. f302 pom] 
fJ = f3!I' f312 f3~m ~ [P(J) i P(2) i ... i P(m)] 

«r+l)Xm) : 

f3r1 f3r2 f3rm 

['" 
EI2 

"m] e = E~l E22 82m ", 

(nXrn) : 
: = [E(1) i E(2) i .. , i E(",») 

Enl En 2 enm 

~ [~;J 
The multivariate linear regression model is 

Y= Z p+e 
(nxm) (nX(r+I» «r+1)Xm) (/lXm) 

with 

The m observations on the jth trial have covariance matrix I = {O"ik}, but ob-.c ' 

servations from different trials are uncorrelated. Here p and O"ik are unknown 
parameters; the design matrix Z has jth row [ZjO,Zjl,'''' Zjr)' 

Simply stated, the ith response Y(il follows the linear regression model 

Y(iJ= ZPU)+E(i)' i=1,2, ... ,m 

with Cov (£(i) = uijl. However, the errors for different responses on the same trial 
can be correlated. 

Given the outcomes Y and the values of the predic!or variables Z with 
column rank, we determine the least squares estimates P(n exclusively from 
observations Y(i) on the ith response. In conformity with the 
solution, we take 
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Collecting these univariate least squares estimates, we obtain 

jJ = [fl(1) i fl(2) i ... i fl(m)] = (Z'ZrIZ '[Y(1) i Y(2) ! .00 

or 

(7-26) 

For any choice of parameters B = [b(l) i b(2) i ... i b(m»), the matrix of errors 
is Y - ZB. The error sum of squares and cross products matrix is 

(Y - ZB)'(Y ;- ZB) 

[ 

(Y(1) - Zb(l»)'(Y(1) - Zb(1» 

= (Y(m) - Zb(m);'(Y(1) - Zb(l) 

(Y(1) - Zb(I»'(Y(m) - Zb(m» ] 

(Y(nt) - Zb(m»~(Y("') - Zb(m» 

(7-27) 

The selection b(i) = p(iJ minimizes the ith diagonal sum of squares 

(Y(i) - Zb(i)'(Y(i) - Zb(i).Consequently,tr[(Y - ZB)'(Y - ZB») is minimized 
by the choice B = p. Also, the generalized variance I (Y - ZB)' (Y - ZB) I is min

imized by the least squares estimates /3. (See Exercise 7.11 for an additional general-
ized sum of squares property.) , 

Using the least squares estimates fJ, we can form the matrices of 

Predicted values: Y = ZjJ = Z(Z'Zrlz,y 

Residuals: i = Y - Y = [I - Z(Z'ZrIZ')Y (7-28) 

The orthogonality conditions among the residuals, predicted values, and columns of Z, 
which hold in classical linear regression, hold in multivariate multiple regression. 
They follow from Z'[I - Z(Z'ZrIZ') = Z' - Z' = O. Specifically, 

z'i = Z'[I - Z(Z'Zr'Z']Y = 0 (7-29) 

so the residuals E(i) are perpendicular to the columns of Z. Also, 

Y'e = jJ'Z'[1 -Z(Z'ZrIZ'jY = 0 (7-30) 

confirming that the predicted values Y(iJ are perpendicular to all residual vectors' 

E(k). Because Y = Y + e, 
Y'Y = (Y + e)'(Y + e) = Y'Y + e'e + 0 + 0' 

or 

Y'Y Y'Y + 

(
total sum of squares) = (predicted sum of squares) + 
and cross products and cross products 

e'e 

(

residual ( error) sum) 
of squares and 
cross products 

(7-31) 
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The residual sum of squares and cross products can also be written as 

E'E = Y'Y - y'y = Y'Y - jJ'Z'ZjJ 

Example 1.8 -{Fitting a multivariate straight-line regression model) To illustrate the 

calculations of jJ, t, and E, we fit a straight-line reg;ession model (see Panel? 

Y;l = f101 + f1ll Zjl + Sjl 

Y;z = f10z + f112Zjl + Sj2, . . j = 1,2, ... ,5 

to two responses Y1 and Yz using the data in Example? 3. These data, augmented by 
observations on an additional response, are as follows: 

Y:t 
Y2 

o 
1 

-1 

1 
4 

-1 

2 
3 
2 

3 
8 
3 

4 

9 
2 

The design matrix Z remains unchanged from the single-response problem. We find that 

, _ [1 1 1 1 IJ 
Z-01234 

(Z'Zr1 = [ .6 -.2J 
-.2 .1 

PANEL 7.2 SAS ANALYSIS FOR EXAMPLE 7.8 USING PROe. GlM. 

title 'Multivariate Regression Analysis'; 
data mra; 
infile 'Example 7-8 data; 
input y1 y2 zl; 
proc glm data = mra; 
model y1 y2 = zllss3; 
manova h = zl/printe; 

loepelll:lenwariable: Y~ I 
Source OF 
Model 1 
Error 3 
Corrected Total 4 

R-Square 
0.869565 

PROGRAM COMMANDS 

General Linear Models Procedure 

Sum of Squares. 
40.00000000 

6.00000000 
46.00000000 

e.V. 
28.28427 

Mean Square 
40.00000000 

2.00000000 

Root MSE 
1.414214 

F Value 
20.00 

OUTPUT 

Pr> F 
0.0208 

Y1 Mean 
5.00000000 

Source 
Model 
Error 
Corrected Total 

Source 
Zl 

OF 
1 

OF 
1 
3 
4 

R-Square 
0.714286 

OF 
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Type 11/ SS 
40.00000000 

Mean Square 
40.00000000' 

Tfor HO: 
Parameter = 0 

0.91 
4.47 

Sum of Squares Mean Square 
10.00000000 10.00000000 
4.00000000 1.33333333 

14.00000000 

C.V. Root MSE 
115.4701 1.154701 

Type III SS Mean Square 
10.00000000 10.00000000 

Tfor HO: 
Parameter = 0 

-1.12 
2.74 

'IE= Error SS & CP Matrix I 

Y1 
Y2 

Y1 

I-~ 
Y2 

Pr> ITI 
0.4286 
0.02011 

Pr> ITI 
0.3450 
0.0714 

Manova Test Criteria and Exact F Statistics for 
the Hypothesis of no Overall Zl Effect 

F Value 
20.00 

F Value 
7.50 

FValue 
7.50 

Pr> F 
0.0208 

Std Error of 
Estimate 

1.09544512 
0.44721360 

Pr> F 
0.0714 

Y2 Mean 
1.00000000 

Pr> F 
0.0714 

Std Error of 
Estimate 

0.89442719 
0.36514837 

H = Type 1/1 SS&CP Matrix for Zl E = Error SS&CP Matrix 
S=l M=O N=O 

Statistic Value F Num OF OenOF Pr> F 
Wilks' lambda 0.06250000 15.0000 2 2 0.0625 
Pillai's Trace 0.93750000 15.0000 2 2 0.0625 
Hotelling-Lawley Trace 15.00000000 15.0000 2 2 0.0625 
Roy's Greatest Root 15.00000000 15.0000 2 2 0.0625 
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Dividing each entry E(i)E(k) of E' E by n - r - 1, we obtain the unbiased estimator 
of I. Finally, 

CoV(P(i),E(k» = E[(Z'ZrIZ'EUJE{k)(I - Z(Z'ZrIZ ')] 

= (Z'ZrIZ'E(E(i)E(k»)(I - Z(Z'Zr1z'y 

= (Z'ZrIZ'O"ikI(I - Z(Z'ZrIZ') 

= O"ik«Z'ZrIZ' - (Z'ZrIZ') = 0 

so each element of P is uncorrelated with each ele~ent of e . 
The mean vectors and covariance matrices determined in Result 7.9 enable us 

to obtain the sampling properties of the least squares predictors. 
We first consider the problem of estimating the mean vector when the predictor 

variables have the values Zo = [l,zOI, ... ,ZOr]. The mean of the ith response 
variable is zofJ(i)' and this is estimated by ZOP(I)' the ith component of the fitted 
regression relationship. Collectively, 

zoP = [ZOP(l) 1 ZOP(2) 1 ... 1 ZoP(m)] 

is an unbiased estiffiator zoP since E(zoP(i» = zoE(/J(i» = zofJ(i) for each compo

nent. From the covariance matrix for P (i) and P (k) , the estimation errors zofJ (i) - zOP(i) 

have covariances 

E[zo(fJ(i) - P(i»)(fJ(k) - p(k»'zol = zo(E(fJ(i) - P(i))(fJ(k) - P(k»')ZO 

= O"ikZO(Z'Zr1zo (7-35) 

The related problem is that of forecasting a new observation vector Vo = 
[Y(ll, Yoz,.··, Yoml at Zoo According to the regression model, YOi = zofJ(i) + eOi ,,:here 
the "new" error EO = [eOI, eoz, ... , eom ] is independent of the errors E and satIsfies 
E( eo;) = 0 and E( eOieok) = O"ik. The forecast error for the ith component of Vo is 

1'Oi - zo/J(i) = YOi - zofJ(i) + z'ofJU) - ZOP(i) 
= eOi - zo(/J(i) - fJ(i) 

so E(1'Oi - ZOP(i» = E(eo;) - zoE(PU) - fJ(i) = 0, indicating that ZOPU) is an 
unbiased predictor of YOi . The forecast errors have covariances 

E(YOi - ZOPU» (1'Ok - ZOP(k» 

= E(eo; - zO(P(i) - fJ(i))) (eok - ZO(P(k) - fJ(k») 

= E(eoieod + zoE(PU) - fJm)(P(k) - fJ(k»'ZO 

- zoE«p(i) - fJ(i)eok) - E(eo;(p(k) - fJ(k»')ZO 

= O"ik(1 + zo(Z'Zr1zo) 

Note that E«PU) - fJ(i)eOk) = 0 since Pm = (Z'ZrIZ' E(i) + fJ(iJ is independelllt 

of EO. A similarresult holds for E(eoi(P(k) - fJ(k»)'). 
Maximum likelihood estimators and their distributions can be obtained when 

the errors e have a normal distribution. 
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Result 7.10. Let the multivariate multiple regression model in (7-23) hold with full 
rank (Z) = r + 1, n ~ (r + 1) + m, and let the errors E have a normal distribu
tion. Then 

is the maximum likelihood estimator of fJ and fJ ,has a normal distribution with 

E(/J) = fJ and Cov (p(i), P(k» = U'ik(Z'Zrl
. Also, /J is independent of the max

imum likelihood estimator of the positive definite I given by 
A lAA 1 A A 

I = -E'E = -(V - Z{J)'(Y - zfJ) 
n n 

and 
ni is distributed as Wp •n- r - J (I) 

The maximized likelihood L (IL, i) = (27Trmn/2/i/-n/2e-mn/2. 

Proof. (See website: www.prenhall.com/statistics) • 
Result 7.10 provides additional supp~rt for using least squares estimates. 

When the errors are normally distributed, fJ and n-JE'E are the maximum likeli
hood estimators of fJ and ::t, respectively. Therefore, for large samples, they have 
nearly the smallest possible variances. 

Comment. The multivariate mUltiple regression model poses no new computa
tional problem~ ~~t squares (maximum likelihood) estimates,p(i) = (Z'Zr1Z'Y(i)' 
are computed mdlVldually for each response variable. Note, however, that the model 
requires that the same predictor variables be used for all responses. 

Once a multivariate multiple regression model has been fit to the data, it should 
be subjected to the diagnostic checks described in Section 7.6 for the single-response 
model. The residual vectors [EjJ, 8jZ, ... , 8jm] can be examined for normality or 
outliers using the techniques in Section 4.6. 

The remainder of this section is devoted to brief discussions of inference for the 
normal theory multivariate mUltiple regression model. Extended accounts of these 
procedures appear in [2] and [18]. 

likelihood Ratio Tests for Regression Parameters 

The multiresponse analog of (7-12), the hypothesis that the responses do not depend 
on Zq+l> Zq+z,·.·, Z,., becomes 

Ho: fJ(Z) = 0 where fJ = [~~~)I~nj-J 
fJ(Z) 

«r-q)Xm) 

Setting Z = [ Zl ! Zz ], we can write the general model as 
(nX(q+ I» i (nX(r-q» 

E(Y) = zfJ = [Zl i, Zz] [!!~!-~J = ZlfJ(l) + zzfJ(Z) 
fJ(2) 

(7-37) 
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Under Ho: /3(2) = 0, Y = Zt/J(1) + e and the likelihood ratio test of Ho is 
on the quantities involved in the 

extra sum of squares and cross products 

f =: (Y - ZJJ(1»)'(Y - ZJJ(I» - (Y - Zp), (Y - Zp) 

= n(II - I) 

where P(1) = (ZlZlrIZ1Y and II = n-I(Y - ZIP(I»)' (Y - ZIP(I»' 
From Result 7 .10, the likelihood ratio, A, can be expressed in terms of generallizec 

variances: 

Equivalently, Wilks'lambda statistic 

can be used. 

A2/n = I~I 
lId 

Result 7.11. Let the multivariate multiple regression model of (7-23) hold with. 
of full rank r + 1 and (r + 1) + m:5 n. Let the errors e be normally 
Under Ho: /3(2) = 0, nI is distributed as Wp,norol(I) independently of n(II -

which, in turn, is distributed as Wp,r-q(I). The likelihood ratio test of Ho is . 
to rejecting Ho for large values of 

(
III) lnil 

-2lnA = -nln lId = -nIn ln:£ + n(:£1 -:£)1 

For n large,5 the modified statistic 

- [n - r - 1 - .!. (m - r + q + 1) ] In ( I ~ I ) 
2 lId 

has, to a close approximation, a chi-square distribution with mer - q) dJ. 

Proof. (See Supplement 7A.) 

If Z is not of full rank, but has rank rl + 1, then P = (Z'Zrz'Y, 
(Z'Zr is the generalized inverse discussed in [22J. (See also Exerc!se 7.6.) 
distributional conclusions stated in Result 7.11 remain the same, proVIded that r 
replaced by rl and q + 1 by rank (ZI)' However, not all hypotheses concerning 
can be tested due to the lack of uniqueness in the identification of P ca.used. by 
linear dependencies among the columns of Z. Nevertheless, the gene:abzed 
allows all of the important MANOVA models to be analyzed as specIal cases of 
multivariate multiple regression model. 

STechnicaUy, both n - rand n - m should also be large to obtain a good chi-square applroxilnatlf 
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Example 7.9 (Testing the importance of additional predictors with a multivariate 
response) The service in three locations of a large restaurant chain was rated 
according to two measures of quality by male and female patrons. The first service
quality index was introduced in Example 7.5. Suppose we consider a regression model 
that allows for the effects of location, gender, and the location-gender interaction on 
both service-quality indices. The design matrix (see Example 7.5) remains the same 
for the two-response situation. We shall illustrate the test of no location-gender inter
action In either response using Result 7.11. A compl,1ter program provides 

(
residual sum of squares) = nI = [2977.39 1021.72J 

and cross products 1021.72 2050.95 

(
extra sum of squares) = n(I _ i) = [441.76 246.16J 
and cross products I 246.16 366.12 

Let /3(2) be the matrix of interaction parameters for the two responses. Although 
the sample size n = 18 is not large, we shall illustrate the calculations involved in 
the test of Ho: /3(2) = 0 given in Result 7.11. Setting a = .05, we test Ho by referring 

-[n-rl-l-.!.(m-rl+ql'+l)]ln( ~ In~1 ~) 
2 InI + n(II - I)I 

= -[18 - 5 - 1 - ~(2 - 5 + 3 + 1)}n(.7605) = 3.28 

toa chi-square percentage point with m(rl - ql) = 2(2) = 4d.fSince3.28 < ~(.05) = 
9.49, we do not reject Ho at the 5% level. The interaction terms are not needed. _ 

Information criterion are also available to aid in the selection of a simple but 
adequate multivariate mUltiple regresson model. For a model that includes d 
predictor variables counting the intercept, let 

id = .!. (residual sum of squares and cross products matrix) 
n 

Then, the multivariate mUltiple regression version of the Akaike's information 
criterion is 

AIC = n In(1 id I) - 2p X d 

This criterion attempts to balance the generalized variance with the number of 
paramete~s. Models with smaller AIC's are preferable. 

In the context of Example 7.9, under the null hypothesis of no interaction terms, 
we have n = 18, P = 2 response variables, and d = 4 terms, so 

AIC = In (I I I) - 2 X d = 181 (1~[3419.15 1267.88]1) - 2 X 2 X 4 
n p n 18 1267.88 2417.07 

= 18 X In(20545.7) - 16 = 162.75 

More generally, we could consider a null hypothesis of the form Ho: c/3 = r o, 
where C is (r - q) X (r + 1) and is of full rank (r - q). For the choices 
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C = [0 ill and fo = 0, this null hypothesis becomes H[): c/3 = /3(2) == 0, 
(r-q)x(r-q) 

the case considered earlier. It can be shown that the extra sum of squares and cross 
products generated by the hypothesis Ho is 

,n(II - I) = (CP - fo),(C(Z'ZrICT1(CjJ - fo) . . 

Under the null hypothesis, the statistic n(II - I) is distributed as Wr-q(I) inde
pendently of I. This distribution theory can be employed to develop a test of 
Ho: c/3 = fo similar to the test discussed in Result 7.11. (See, for example, [18].) 

Other Multivariate Test Statistics 

Tests other than the likelihood ratio test have been proposed for testing Ho: /3(2) == 0 
in the multivariate multiple regression model. 

Popular computer-package programs routinely calculate four multivariate test 
statistics. To connect with their output, we introduce some alternative notation. Let. 
E be the p X P error, or residual, sum of squares and cross products matrix 

E = nI 

that results from fitting the full model. The p X P hypothesis, or extra, sum of 
squares and cross-products matrix . 

H = n(II - I) 

The statistics can be defined in terms of E and H directly, or in terms of 

the nonzero eigenvalues 7JI ~ 1]2 ~ .. , ~ 1]s of HE-I , where s = min (p, r - q). 

Equivalently, they are the roots of I (II - I) - 7JI I = O. The definitions are 

• s 1 IEI 
WIIks'lambda = n -1 -. = lE HI 

1=1 + 1], + 

PilIai's trace = ± ~ = tr[H(H + Efl] 
i=1 1 + 1]i 

s 

Hotelling-Lawley trace = 2: 7Ji = tr[HE-I] 
;=1 

1]1 
Roy's greatest root = -1-

+ 1]1 

Roy's test selects the coefficient vector a so that the univariate F-statistic based on a 
a ' Y. has its maximum possible value. When several of the eigenvalues 1]i are moder
atel~ large, Roy's test will perform poorly relative to the other three. Simulation 
studies suggest that its power will be best when there is only one large eigenvalue. 

Charts and tables of critical values are available for Roy's test. (See [21] and 
[17].) Wilks' lambda, Roy's greatest root, and the Hotelling-Lawley trace test are 
nearly equivalent for large sample sizes. 

If there is a large discrepancy in the reported P-values for the four tests, the 
eigenvalues and vectors may lead to an interpretation. In this text, we report Wilks' 
lambda, which is the likelihood ratio test. 
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Predictions from Multivariate Multiple Regressions 

Suppose the model Y = z/3 + e, with normal errors e, has been fit and checked for 
any inadequacies. If the model is adequate, it can be employed for predictive purposes. 

One problem is to predict the mean responses corresponding to fixed values Zo 
of the predictor variables. Inferences about the mean responses can be made using 
the distribution theory in Result 7.10. From this result, we determine that 

jJ'zo isdistributedas Nm(/3lzo,zo(Z'Z)-lzoI) 
and 

nI is independently distributed as Wn - r - 1 (~) 

The unknown value of the regression function at Zo is /3 ' ZOo So, from the discussion 
of the T2-statistic in Section 5.2, we can write 

T2 = ( ~~:~;~~~:J' C -; -1 Ir1 

( ~~:~z~~~~:J (7-39) 

and the 100( 1 - a) % confidence ellipsoid for /3 ' Zo is provided by the inequality 

(7-40) 

where Fm,n-r-m( a) is the upper (100a)th percentile of an F-distribution with m and . 
n - r - md.f. 

The 100(1 - a)% simultaneous confidence intervals for E(Y;) = ZOP(!) are 

~ l(m(n-r-1») I 1 (n ) 
ZOP(i) ± \j n _ r - m Fm,n-r-m(a) \j zo(Z'Zf Zo n _ r _ 1 Uii , 

i = 1,2, ... ,m (7-41) 

where p(;) is the ith column of jJ and Uji is the ith diagonal element of i. 
The second prediction problem is concerned with forecasting new responses 

Vo = /3 ' Zo + EO at Z00 Here EO is independent of e. Now, 

Vo - jJ'zo = (/3 - jJ)'zo + EO is distributed as Nm(O, (1 + zb(Z'Z)-lzo)I) 

independently of ni, so the 100(1 - a)% prediction ellipsoid for Yo becomes 

(Vo - jJ' zo)' ( n 1 i)-l (Yo - jJ' zo) 
n-r-

:s; (1 + zo(Z'Z)-lzO) Fm n-r-m( a) [(
m(n-r-1») ] 
n-r-m ' 

(7-42) 

The 100( 1 - a) % simultaneous prediction intervals for the individual responses YOi are 

~ l(m(n-r-1») I (n) 
z'oP(i) ± \j n - r _ m Fm,n-r-m(a) \j (1 + zo(Z'Z)-lZO) n _ r _ 1 Uii , 

i=1,2 •... ,m (7-43) 
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where Pc;), aii, and Fm,n-r-m(a) are the same quantities appearing in (7-41). 
paring (7-41) and (7-43), we see that the prediction intervals for the actual values 
the response variables are wider than the corresponding intervals for the PYI"'~'~..l 
values. The extra width reflects the presence of the random error eo;· 

Example 7.10 (Constructing a confidence ellipse and a prediction ellipse for 
responses) A second response variable was measured for the cOlmp,utt!r-I'eQluirlemerit 
problem discussed in Example 7.6. Measurements on the response Yz, 
input/output capacity, corresponding to the ZI and Z2 values in that example were 

yz = [301.8,396.1,328.2,307.4,362.4,369.5,229.1] 

Obtain the 95% confidence ellipse for 13' Zo and the 95% prediction ellipse 'for 
Yb = [YOl , Yoz] for a site with the configuration Zo = [1,130,7.5]. 

Computer calculations provide the fitted equation 

h = 14.14 + 2.25z1 + 5.67zz 

with s = 1.812. Thus, P(2) = [14.14,2.25, 5.67J. From Example 7.6, 

p(1) = [8.42,1.08, 42J, zbP(l) = 151.97, and zb(Z'Zrlzo = .34725 

We find that 

zbP(2) = 14.14 + 2.25(130) + 5.67(7.5) = 349.17 

and 

Since 

P' Zo = [~l~~] Zo = [_zo~~~2] = [151.97J 
a' z' a 349.l7 
1"(2) 01"(2) 

. . a' [zbfJ(1)J' f n = 7, r = 2, and m = 2, a 95% confIdence ellIpse for p Zo = ---,-- IS, rom 
zofJ(2) 

(7-40), the set 

[zofJ(1) - 151.97,zbfJ(2) - 349.17](4) G::~ 5.30J-l [zofJ(1) - 151.97J 
13.13 zbfJ(2) - 349.17 

$ (.34725) [C~4»)F2'3(.05)] 
with F2,3(.05) = 9.55. This ellipse is centered at (151.97,349.17). Its orientation and 
the lengths of the m~jor and minor axes can be determined from the eigenvalues 
and eigenvectors of n~. 

Comparing (7-40) and (7-42), we see that the only change required for the 
calculation of the 95% prediction ellipse is to replace zb(Z'Zrlzo = .34725 with 
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o 

dPrediction ellipse 
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I'-l.--'-----'--'-----'--~_-'-_+- Response I 

Figure 7.5 95% confidence 
and prediction ellipses for 
the computer data with two 
responses. 

1 + zb(Z'Z)-I Z0 = 1.34725. Thus, the 95% prediction ellipse for Yb = [YOb YozJ is 
also centered at (151.97,349.17), but is larger than the confidence ellipse. Both 
ellipses are sketched in Figure 7.5. 

It is the prediction ellipse that is relevant to the determination of computer 
requirements for a particular site with the given Zo. • 

7.8 The Concept of Linear Regression 
The classical linear regression model is concerned with the association between a 
single dependent variable Yand a collection of predictor variables ZI, Z2,"" Zr' The 
regression model that we have considered treats Y as a random variable whose 
mean depends uponjixed values of the z;'s. This mean is assumed to be a linear func
tion of the regression coefficients f30, f3J, .. -, f3r. 

The linear regression model also arises in a different setting. Suppose all the 
variables Y, ZI, Z2, ... , Zr are random and have a joint distribution, not necessarily 
normal, with mean vector J.L and covariance matrix I . Partitioning J.L 

(r+l)Xl (r+l)X(r+l) 
and ~ in an obvious fashion, we write 

J.L = [~r:-~J and 
(rXl) [ :'] 

Uyy : UZy 
(IXl) : (1Xr) 

I = t~~l~~~' 
with 

UZy = [uYZ"uYZz,···,uyzJ (7-44) 

Izz can be taken to have full rank.6 Consider the problem of predicting Yusing the 

linear predictor = bo + btZ l + ... + brZr = bo + b'Z (7-45) 

6If l:zz is not of full rank, one variable-for example, Zk-ean be written lis a linear combination of 
the other Z,s and thus is redundant in forming the linear regression function Z' p_ That is, Z may be 
replaced by any subset of components whose n~>nsingular covariance matrix has the same rank as l:zz· 
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For a given predictor of the form of (7-45), the error in the prediction of Y is 

prediction error = Y - bo - blZI - ... - brZr = Y - ho - b'Z 

Because this error is random, it is customary to select bo and b to minimize the 

mean square error = E(Y - bo - b'Z)2 

Now the mean square error depends on the joint distribution of Y and Z only 
through the parameters p. and I. It is possible to express the "optimal" linear pre
dictor in terms of these latter quantities. 

Result 1.12. The linear predictor /30 + /3' Z with ~efficients 

/3 = Iz~uzy, /30 = /Ly - P'p.z 

has minimum mean square among all linear predictors of the response Y. Its mean 
square error is 

E(Y - /30 - p'Z)2 = E(Y - /Ly - uZrIz~(Z - p.Z»2 = Uyy - uzyIz~uzy 

Also, f30 + P'Z = /Ly + uzyIz~(Z - p.z) is the linear predictor having maxi

mum correlation with Y; that is, 

Corr(Y,/3o + /3'Z) = ~~Corr(y,bo + b'Z) 

/3'Izz/3 = uzyl;z~uzy 
/Tyy Uyy 

Proof. Writing bo + b'Z = bo + b'Z + (/LY - b' p.z) - (p.y - b' p.z), we get 

E(Y - bo - b'Z)2 = E[Y - /Ly - (b'Z - b'p.z) + (p.y - bo - b'p.z)f 

= E(Y - /Ld + E(b' (Z - p.z) i + (p.y - bo - b' p.d 

- 2E[b'(Z - p.z)(Y - p.y») 

= /Tyy + b'Izzb + (/Ly - bo - b' p.zf - 2b' UZy 

Adding and subtracting uzyIz~uzy, we obtain 

E(Y - bo .:.. b'zf = /Tyy - uzyIz~uzy + (/LY - bo - b' p.z? 

+ (b - l;z~uzy )'l;zz(b - l;z~uzy) 

The mean square error is minimized by taking b = l;z1zuzy = p, making the last 
term zero, and then choosing bo = /Ly - (IZ1Zuzy)' p'z = f30 to make the third 

term zero. The minimum mean square error is thus Uyy - Uz yl;z~uz y. 
Next, we note that Cov(bo + b'Z, Y) = Cov(b'Z, Y) = b'uzy so 

, 2 _ [b'uZy)2 
[Corr(bo+bZ,Y)] - /Tyy(b'Izzb)' forallbo,b 

Employing the extended Cauchy-Schwartz inequality of (2-49) with B = l;zz, we 
obtain 
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or 

[Corr(bo + b'Z,Y)f:s; uhl;z~uzy 
Uyy 

with equality for b = l;z~uzy = p. The alternative expression for the maximum 
correlation follows from the equation UZyl;ZIZUZy = UZyp = uzyl:z~l;zzP = 
p'l;zzp· • 

The correlation between Yand its best linear predictor is called the population 
mUltiple correlation coefficient 

py(Z) = + (7-48) 

The square of the population mUltiple correlation coefficient, phz), is called the 
population coefficient of determination. Note that, unlike other correlation coeffi
cients, the multiple correlation coefficient is a positive square root, so 0 :s; PY(Z) :s; 1. 
. The population coefficient of determination has an important interpretation. 
From Result 7.12, the mean square error in using f30 + p'Z to forecast Yis 

, -I (uzyl;z~uzy) Uyy - uzyl;zzuzy = !Tyy - !Tyy = !Tyy(1 - phz» !Tyy 
(7-49) 

If phz) = 0, there is no predictive power in Z. At the other extreme, phz) = 1 im
plies that Y can be predicted with no error. 

Example 7.11 (Determining the best linear predictor, its mean square error, and the 
multiple correlation coefficient) Given the mean vector and covariance matrix of Y, 
ZI,Z2, 

determine (a) the best linear predictor f30 + f3 1Z1 + f32Z2, (b) its mean square 
error, and (c) the multiple correlation coefficient. Also, verify that the mean square 
error equals !Tyy(1 - phz». 

First, 

p = l;z~uzy = G ~Jl-~J = [-:: ~:~J [-~J = [-~J 
f30 = p.y - p' P.z = 5 - [1, -2{ ~ ] = 3 

so the best linear predictor is f30 + p'Z = 3 + Zl - 2Z2. The mean square error is 

!Tyy - uzyl;z~uzy = 10 - [1,-1] [_:: ~:~J [-~J = 10 - 3 = 7 
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and the multiple correlation coefficient is 

(T' l;-1 (T ~ 
PY(Z) = Zy zz Zy = - = .548 

CTyy 10 

Note that CTyy(1 - ..?hz) = 10(1 - fo) = 7 is the mean square error. 

It is possible to show (see Exercise 7.5) that 

2 1 
1 -PY(Z) =Pyy 

• 

(7-50) 

where Pyy is the upper-left-hand corner of the inverse of the correlation matrix 
determined from l;. -

The restriction to linear predictors is closely connected to the assumption of 
normality. Specifically, if we take 

[ 1:1 to be d;",ibulod" N,., (p, X) 

then the conditional distribution of Y with Z I, Zz, ... , Zr fixed (see Result 4.6) is 

N(J-Ly + (TZyl;ZIZ(Z - J-Lz), CTyy - (TZyl;Zlz(TZY) 

The mean of this conditional distrioution is the linear predictor in Result 7.12. 
That is, 

E(Y/z1, Z2,'''' Zr) = J-Ly + CTzyIz~(z - J-Lz) (7-51) 

= f30 + fJ'z 

and we conclude that E(Y / Z], Z2, ... , Zr) is the best linear predictor of Y when the 
population is Nr+1(/L,l;). The conditional expectation of Y in (7-51) is called the 
regression function. For normal populations, it is linear. 

When the population is not normal, the regression function E(Y / Zt, Zz,···, Zr) 

need not be of the form f30 + /J'z. Nevertheless, it can be shown (see [22]) that 
E(Y / Z], Z2,"" Zr), whatever its form, predicts Y with the smallest mean square 
error. Fortunately, this wider optimality among all estimators is possessed by the 
linear predictor when the population is normal. 

Result T.13. Suppose the joint distribution of Yand Z is Nr+1(/L, l;). Let 

~ = [¥J and S = [~;H-i~-~J 
be the sample mean vector and sample covariance matrix, respectively, for a random 
sample of size n from this population. Then the maximum likelihood estimators of 
the coefficients in the linear predictor are 

P = SZ~SZy, Po = y - sZrSz~Z = y - P'Z 
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Consequently, the maximum likelihood estimator of the linear regression function is 

Po + P'z = y + SZySz~(z - Z) 

and the maximum likelihood estimator of the mean square error E[ Y - f30 - /J' Z f is 

~ n - 1 ,-1 
CTyy·Z = --(Syy - SZySZZSZY) 

n 

Proof. We use Result 4.11 and the invariance property of maximum likelihood esti
mators. [See (4-20).] Since, from Result 7.12, 

f30 = J-Ly - (l;Z~(TzY)'/LZ, 

f30 + /J'z = J-Ly + (Thl;z~(z - /Lz) 

and 

mean square error = CTyy·Z = CTyy - (Tzyl;z~(Tzy 

the conclusions follow upon substitution of the maximum likelihood estimators 

for 

• 
It is customary to change the divisor from n to n - (r + 1) in the estimator of the 

mean square error, CTyy.Z = E(Y - f30 - /J,zf, in order to obtain the unbiased 
estimator 

n A.... 2 2: (If - f30 - /J'Zj) 

( _n_-_1_
1

) (Syy - SZySZ~SZY) = j=t 1 
n-r- - n-r-

(7-52) 

Example T.12 (Maximum likelihood estimate of the regression function-single 
response) For the computer data of Example 7.6, the n = 7 observations on Y 
(CPU time), ZI (orders), and Z2 (add-delete items) give the sampJe mean vector 
and sample covariance matrix: 

# ~ [i] ~ [:~~;J 
s ~ [~~I~: ] ~ [~!:j~:~!~~!] 
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Assuming that Y, Zl> and Z2 are jointly normal, obtain the estimated regression 
function and the estimated mean square error. 

Result 7.13 gives the maximum likelihood estimates 

P = S-l = [ .003128 -.006422J [41B.763J = [1.079J 
zz~ZY _ .006422 .086404 35.983 .420 

Po = y - plZ = 150.44 - [1.079, .420J [13~:~:7 ] = 150.44 - 142.019 

= 8.421 

and the estimated regression function . . 
fio + fi'Z = 8.42 - 1.0Bz1 + .42Z2 

The maximum likelihood estimate of the mean square error arising from the 
prediction of Y with this regression function is 

(
n - 1) ( I S-l ) -n- Syy - Szy ZZSZy 

= (%) (467.913 - [418.763, 35.983J [ _::!~~ -.006422J [418.763J) 
.086404 35.983 

= .894 • 
Prediction of Several Variables 

The extension of the previous results to the prediction of several responses Yh 
Y2, ... , Ym is almost immediate. We present this extension for normal populations. 

Suppose 

l Y l (mXI) 

---.~-.-- is distributed as Nm+r(p-,'l:,) 

(rXI) 

with 

By Result 4.6, the conditional expectation of [Yl> Y2, •• . , YmJ', given the fixed values 
Zl> Z2, ... , Zr of the predictor variables, is 

E(Y I Zl> Zz,···, zrJ = p-y + 'l:,yzIz~(z - P-z) (7-53) 

'This conditional expected value, considered as a function of Zl, Zz, ... , z" is called 
the multivariate regression of the vector Y on Z. It is composed of m univariate 
regressions. For instance, the first component of the conditional mean vector is 
/-LYl + 'l:,Y1Z'l:,Z~(Z - P-z) = E(Y11 Zl, Zz,···, Zr), which minimizes the mean square 
error for the prediction of Yi. The m X r matrix p = 'l:,yz'l:,zlz is called the matrix 
of regression coefficients. 
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The error of prediction vector 

Y - p-y - 'l:,yz'l:,z~(Z - P-z) 

has the expected squares and cross-products matrix 

'l:,yy·z = E[Y - P-y -'l:,yz'l:,z~(Z - p-z)J [Y - /-Ly -'l:,yz'l:,z~(Z - P-Z)J' 

= 'l:,yy -'l:,yz'l:,zIz('l:,yz)' -'l:,yz'l:,z~'l:,zy + 'l:,yz'l:,z~'l:,zz'l:,z~('l:,yZ)' (7-54) 

= 'l:,yy - 'l:,yz'l:,z~'l:,zy 

Because P- and 'l:, are typically unknown, they must be estimated from a random 
sample in order to construct the multivariate linear predictor and determine expect
ed prediction errors. 

Result 7.14. Suppose Yand Z are jointly distributed as Nm+r(p-,I). Then the re
gression of the vector Y on Z is 

Po + fJz = p-y - 'l:,yzIz~P-z + 'l:,yzIz~z = p-y + IyzIz~(z - P-z) 

The expected squares and cross-products matrix for the errors is 

E(Y - Po - fJZ) (Y - Po - fJZ)' = Iyy.z = I yy - IyzIzIZIzy 

Based on a random sample of size n, the maximum likelihood estimator of the 
regression function is 

Po + pz = Y + SyzSz~(z - Z) 
and the maximum likelihood estimator of I yy·z is 

I yy.z = (n : 1) (Syy - SyzSZ~Szy) 

Proof. The regression function and the covariance matrix for the prediction errors 
follow from Result 4.6. Using the relationships 

Po = p-y - Iyz'l:,z~P-z, fJ = 'l:,yzIz~ 

Po + fJ z = p-y + Iyz'l:,zlz(z - P-z) 

I yy·z = I yy - IyzIz~Izy = 'l:,yy - fJIzzfJ' 

we deduce the maximum likelihood statements from the invariance property (see 
(4-20)J of maximum likelihood estimators upon substitution of 

It can be shown that an unbiased estimator of I yy.z is 

( 
n - 1 ) 

n - r - 1 (Syy _·SYZSZlZSZY) 

1 n .' .' 
= 2: (Y - Po - fJz -) (Y - Po - fJz -) I (7-55) 

n - r - 1 j=l J J J J 
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Example 1.13 (M aximum likelihood estimates of the regression functions-two 
responses) We return to the computer data given in Examples 7.6 and 7.10. For 
Y1 = CPU time, Y2 = disk 110 capacity, ZI = orders, and Z2 = add-delete items, 
we have 

and 

r 
467.913 1148.556/ 418.763 35.9831 

S = '-~~Y-L~x~J = ~8.556 3072.4911 ~008.97~_~~0.~?~ 
lSzy 1 Szz 418.763 1008.9761 377.200 28.034 

35.983 140.5581 28.034 13.657 

Assuming normality, we find that the estimated regression function is 

Po + /Jz = y + SyzSz~(z - z) 

[
150.44J [418.763 35.983J 

= 327.79 + 1008.976 140.558 

X [ .003128 - .006422J [ZI - 130.24J 
-.006422 .086404 Z2 - 3.547 

[
150.44J [1.079(ZI - 13014) + .420(Z2 - 3.547)J 

= 327.79 + 2.254 (ZI - 13014) + 5.665 (Z2 - 3.547) 

Thus, the minimum mean square error predictor of l'! is. 

150.44 + 1.079( Zl - 130.24) + .420( Z2 - 3.547) = 8.42 + 1.08z1 + .42Z2 

Similarly, the best predictor of Y2 is 

14.14 + 2.25z1 + 5.67z2 

The maximum likelihood estimate of the expected squared errors and cross
products matrix :Iyy·z is 'given by 

(n : 1) (Syy - SyzSZ~SZy) 

(
6) ([ 467.913 1148.536} 

= '7. 1148.536 3072.491 

_ [418.763 35.983J [ .003128 
1008.976 140.558 -.006422 

-.006422J [418.763 l008.976J) 
.086404 35.983 140.558 

(
6) [1.043 1.042J [.894 .893J 

= 7- 1.042 2.572 = .893 2.205 
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The first estimated regression function, 8.42 + 1.08z1 + .42z2, and the associated 
mean square error, .894, are the same as those in Example 7.12 for the single-respons.e 
case. Similarly, the second estimated regression function, 14.14 + 2.25z1 + 5.67z2, IS 
the same as that given in Example 7.10. 

We see that the data enable us to predict the first response, ll, with smaller 
error than the second response, 1'2. The positive covariance .893 indicates that over
prediction (underprediction) of CPU time tends to be accompanied by overpredic
tion (underprediction) of disk capacity. -

Comment. Result 7.14 states that the assumption of a joint normal distribu
tion for the whole collection ll, Y2, ... , Y"" ZI, Z2,"" Zr leads to the prediction 
equations 

YI = ~Ol + f3llZ1 + ... + f3rl zr 

~ = ~02 + f312Z1 + ... + f3r2 zr 

Ym = ~Om + ~lmZl + ... + ~rmZr 
We note the following: 

1. The same values, ZI, Z2,'''' Zr are used to predict each Yj. 
2. The ~ik are estimates of the (i, k )th entry of the regression coefficient matrix 

p = :Iyz:Iz~ for i, k ;:, 1. 

We conclude this discussion of the regression problem by introducing one further 
correlation coefficient. 

Partial Correlation Coefficient 

Consider the pair of errors 

Y1 - /LYl - :IYlZ:IZ~(Z - /Lz) 

1'2 - /LY2 - :IY2Z:IZ~(Z - /Lz) 

obtained from using the best linear predictors to predict Y1 and 1'2. Their correla
tion, determined from the error covariance matrix :Iyy·z = :Iyy - :Iyz:Iz~:IZy, 
measures the association between Y1 and Y2 after eliminating the effects of ZI, 
Z2"",Zr' 

We define the partial correlation coefficient between II and Y2, eliminating ZI> 

Z2""'Z" by 

PY l Y 2'Z = • r--. r-
vayly!'z vaY2Yf Z 

(7-56) 

where aYiYk'Z is the (i, k)th entry in the matrix :Iyy·z = :Iyy - :Iyz:Izlz:IZY' The 
corresponding sample partial cor.relation coefficient is 

(7-57) 
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with Sy;y.·z the (i,k)th element ofSyy - SYZSZ'zSzy.Assuming that Y and Z have 
a joint multivariate normal distribution, we find that the sample partial correlation 
coefficient in (7-57) is the maximum likelihood estimator of the partial correlation 
coefficient in (7-56). 

Example 7.14 (Calculating a partial correlation) From the computer data 
Example 7.13, 

-1 _ [1.043 1.042J 
Syy - SyzSzzSZy - 1.042 2.572 

Therefore, 

Calculating the ordinary correlation coefficient, we obtain rYl Y
2 

= .96. Compar
ing the two correlation coefficients, we see that the association between Y1 and Y2 
has been sharply reduced after eliminating the effects of the variables Z on both 
responses. • 

7.9 Comparing the Two Formulations of the Regression Model 
In Sections 7.2 and 7.7, we presented the multiple regression models for one 
and several response variables, respectively. In these treatments, the predictor 
variables had fixed values Zj at the jth trial. Alternatively, we can start-as 
in Section 7.8-with a set of variables that have a joint normal distribution. 
The process of conditioning on one subset of variables in order to predict values 
of the other set leads to a conditional expectation that is a multiple regression 
model. The two approaches to multiple regression are related. To show this 
relationship explicitly, we introduce two minor variants of the regression model 
formulation. 

Mean Corrected Form of the Regression Model 

For any response variable Y, the multiple regression model asserts that 

The predictor variables can be "centered" by subtracting their means. For instance, 
f31Z1j = f31(Z'j - 1.,) + f3,1.1 and we can write 

lj = (f3o + f3,1., + .. , + f3r1.r) + f3'(Z'j .,- 1.,) + ... + f3r(Zrj - 1.r) + Sj 

= f3. + f3,(z'j - 1.,) + ... + f3r(Zrj - 1.r) + Sj 
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with f3. = f30 + f311.1 + ... + f3rzr. The mean corrected design matrix corresponding 
to the reparameterization in (7-59) is 

z<{ Zll - Zl '" 

"'-"J Z21 - ZI ... ZZr - Zr 

Znl - Zl Znr - zr 

where the last r columns are each perpendicular to the first column, since 

n 

2: 1(Zji - z;) = 0, 
j=l 

i = 1,2, ... ,r 

Further, setting Zc = [1/ Zd with Z~21 = 0, we obtain 

z'z = [ 1'1 l'ZczJ = [n 0' ] 
c c Z~zl Z~ZZc2 0 Z~zZcz 

so 

(7-60) 

That is, t.!Ie regression coefficients [f3h f3z, ... , f3r J' are unbiasedly estimated by 
(Z~zZcz) ;.1Z~zY and f3. is estimated by y. Because the definitions f31> f3z, ..• , f3r re
main unchanged by the reparameterization in (7-59), their best estimates computed 
from the design matrix Zc are exactly the same as the best estimates com
puted from the design matrix Z. Thus, setting p~ = [Ph PZ, ... , Pr J, the linear 
predictor of Y can be written as 

with(z - z) = [Zl - 1.bZZ - zz"",Zr - zr]'.Finally, 

[ 

Var(P.) 

Cov(Pc, P.) 

(7-61) 

(7-62) 
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C t The multivariate multiple regression model yields the same mean ommen. . f h 
corrected design matrix for each response. The least squares estImates 0 t e coeffi· 
cient vectors for the ith response are given by 

A [ Y{i) ] P ------ i = 1,2, ... ,m 
(i) = (Z~2ZC2rlZ~2 Y{iJ ' 

Sometimes, for even further numerical stability, "standardized" input variables 

( _ -)/ I ~ ( .' _ -Z.)2 = (z.· - z·)/'V(n - J)sz.z· are used. In this case, the 
Zji Zi -V £.i ZI' , . I" I I 

slope coefficie~~~ f3i in the regression model are ~placed by ~i = ~i Y(n - 1) SZiZ;, 

The least squares estimates ofthe beta coefficients' f3; beco~e 11; = /3.; Y ~ n - 1) ~Z;Zi' 
i = 1,2, ... , r. These relationships hold for each response In the multIvanate mUltIple 

regression situation as well. 

Relating the Formulations 

Wh th . bl s Y Z Z Z areJ'ointlynormal, the estimated predictor of Y en evana e ,), 2,"" r 

(see Result 7.13) is A 

~o + jrz = y + SZySz~(z - z) = [Ly + uh:Iz~(z - p;z) (7-64) 

where the estimation procedure leads naturally to the i~troduction of centered z/s. 
Recall from the mean corrected form of the regreSSIOn model that the best lm· 

ear predictor of Y [see (7-61)] is 

y = ~. + ~~(z - z) 

·th {3A - d a' - 'z (Z' Z )-1 Comparing (7-61) and (7-64), we see that 
WI • = y an Pc - Y c2 c2 c2 . 

A _ A , '. 7 
{3. = y = {3o and Pc = P smce 

sZrSz~ = Y'ZdZ~2Zd-l (7-65) 

Therefore, both the normal theory conditional me~n and the classical regression 
model approaches yield exactly the same linear predIctors. . 

A similar argument indicates that the best linear predictors of the responses m 
the two multivariate multiple regression setups are also exactly the same. 

Example 7./5 (Two approaches yield the same Iin~r predictor) The ~mputer d~ta ~th 
th . I e V - CPU tinIe were analyzed m ExanIple 7.6 USIng the classlcallin-e smg e respons 'I - . . 12' 
ear regression model. The same data were analyzed agam In Example 7.. ' assuIIUD? 

th t th . bl Y Z and Z were J' oindy normal so that the best predIctor of Y1 IS a e vana es 1> I, 2 . edict 
the conditional mean of Yi given ZI and Z2' Both approaches YIelded the same pr or, 

y = 8.42 + l.08z1 + .42Z2 • 

7The identify in (7·65) is established by writing y = (y - jil) + jil so that 

y'Zc2 = (y - jil)'Zc2 + jil'Zc2 = (y - jil)'Zc2 + 0' = (y - jil)'Zc2 

Consequently, 
yZc2(Z~2Zd-' = (y - jil)'ZdZ;2Zd-' = (n - l)s'zy[(n - l)Szzr' = SZySZ'Z 
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Although the two formulations of the linear prediction problem yield the same 
predictor equations, conceptually they are quite different. For the model in (7-3) or 
(7-23), the values of the input variables are assumed to be set by the experimenter. 
In the conditional mean model of (7-51) or (7-53), the values of the predictor vari
ables are random variables that are observed along with the values of the response 
variable(s). The assumptions underlying the second approach are more stringent, 
but they yield an optimal predictor among all choices, rather than merely among 
linear predictors. 

We close by noting that the multivariate regression calculations in either case 
can be couched in terms of the sample mean vectors y and z and the sample sums of 
squares and cross-products: 

This is the only information necessary to compute the estimated regression coeffi
cients and their estimated covariances. Of course, an important part of regression 
analysis is model checking. This requires the residuals (errors), which must be calcu
lated using all the original data. 

7.10 Multiple Regression Models with Time Dependent Errors 
For data collected over time, observations in different time periods are often relat
ed, or autocorrelated. Consequently, in a regression context, the observations on the 
dependent variable or, equivalently, the errors, cannot be independent. As indicated 
in our discussion of dependence in Section 5.8, time dependence in the observations 
can invalidate inferences made using the usual independence assumption. Similarly, 
inferences in regression can be misleading when regression models are fit to time 
ordered data and the standard regression assumptions are used. This issue is impor
tant so, in the example that follows, we not only show how to detect the presence of 
time dependence, but also how to incorporate this dependence into the multiple re
gression model. 

Example 7.16 (Incorporating time dependent errors in a regression model) power 
companies must have enough natural gas to heat all of their customers' homes and 
businesses, particularly during the cold est days of the year. A major component of 
the planning process is a forecasting exercise based on a model relating the send
outs of natural gas to factors, like temperature, that clearly have some relationship 
to the amount of gas consumed. More gas is required on cold days. Rather than 
use the daily average temperature, it is customary to nse degree heating days 
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When modeling relationships using time ordered data, regression models with 
noise structures that allow for the time dependence are often useful. Modern soft
ware packages, like SAS, allow the analyst to easily fit these expanded models. 

PANEL 7.3 SAS ANALYSIS FOR EXAMPLE 7.16 USING PROC ARIMA 

data a; 
infile 'T7 -4.d at'; 
time =_n...; 
input obsend dhd dhdlag wind xweekend; 

proc arima data = a; 
identify var = obsend crosscor = ( 
dhd dhdlag wind xweekend ); 

estimate p = (1 7) method = ml input = ( 
dhd dhdlag wind xweekend ) plot; 

estimate p = (1 7) noconstant method = ml input = ( 
dhd dhdlag wind xweekend ) plot; 

ARIMA Procedure 

Maximum Likelihood Estimation 

Approx. 

Parameter EstimatEl! Std Error 

MU 2.12957 13.12340 

AR1,l . 0.4700/,1 0.11779 

AR1,2 0.23986 0.11528 

NUMl 5.80976 0.24047 

NUM2 1.42632 0.24932 

NUM3 1.20740 0.44681 

NUM4 -10.10890 6.03445 

Constant Estimate 0.61770069 

I Variance Estimate 228.89402.8\ 

Std Error Estimate 15.1292441 

AIC 528.490321 

SBC 543.492264 
Number of Residuals = 63 

Autocorrelation Check of Residuals 

To Chi 
Lag Square OF Probe 

6 6.04 4 0:1:961 0.079 

12 10.27 10 0;4#" 0.144 

18 15.92 16 ~~1t1~, 0.013 

24 23.44 22 0.018 

PROGRAM COMMANDS 

OUTPUT 

T Ratio Lag Variable Shift 
0.16 0 OBSENO 0 
3.99 OBSENO 0 
2.08 7 OBSEND 0 

24.16 0 DHO 0 

5.72 0 OHDLAG 0 
2.70 0 WIND 0 

-1.68 0 XWEEKEND 0 

Autocorrelations 

0.012 0.022 0.192 -0.127 0.161 

-0.067 -0.111 -0.056 -0.056 -0.108 

0.106 -0.137 -0.170 -0.079 0.018 

0.004 0.250 -0.080 -0.069 -0.051 
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Autocorrelation Plot of Residuals 

Lag Covariance Correlation -1 9 8 7 6 543 2 o 1 234 5 6 7 891 
0 228.894 1.00000 I 1*******************1 
1 18.194945 0.07949 I 1** I 
2 2.763255 0.01207 I I I 
3 5.038727 0.02201 I I I 
4 44.059835 0.19249 I 1**** . I 
5 -29.118892 -0.12722 I *** I I 
6 36.904291 0.16123 I 1*** I 
7 33.008858 0.14421 I 1*** I 
8 -15.424015 -0.06738 I *1 I 
9 -25.379057 -0.11088 I **1 I 

10 -12.890888 -0.05632 I *1 I 
11 -12.777280 -0.05582 I *1 I 
12 -24.825623 -0.10846 I **1 I 
13 2.970197 0.01298 I I I 
14 24.150168 0.10551 I 1** I 
15 -31.407314 -0.13721 I . *** I I 

" ." marks two standard errors 
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Supplement 

THE DISTRIBUTION OF THE LIKELIHOOD 
RATIO FOR THE MULTIVARIATE 
MULTIPLE REGRESSION MODEL 

The development in this supplement establishes Result 7.1l. 

We know that nI == Y'(I - Z(Z'ZfIZ')Y and under Ho, nil == 

Y'[I - Zl(ZiZlr1zUY with Y == zd3(1) + e. Set P == [I - Z(Z'Zf1Z'). 
Since 0 = [I - Z(Z'ZfIZ')Z = [I - Z(Z'ZrIZ'j[ZI i Zz) = [PZI i PZ2) the 

columns of Z are perpendicular to P. Thus, we can write 

nI = (z/3 + e),P(Z/3 + e) = e'pe 

nil = (ZI/3(i) + e)'PI(Zd3(J) + e) = E'PIE 

where PI = 1 - ZI(ZiZlfIZj. We then use the Gram-Schmidt process (see Re
sult 2A.3) to construct the orthonormal vectors (gl' gz,···, gq+l) == G from the 
columns of ZI' Then we continue, obtaining the orthonormal set·from [G, Z2l, and 
finally complete the set to n dimensions by constructing an arbitrary orthonormal 
set of n - r - 1 vectors orthogonal to the previous vectors. Consequently, we have 

gl,gZ, ... ,gq+l> gq+Z,gq+3,···,gr+I' gr+Z,gr+3,···,gn 
~' r J~ 

from columns from columns of Zz arbitrary set of 
of ZI but perpendicular orthonormal 

to columns of Z I vectors orthogonal 
to columns of Z 

Let (A, e) be an eigenvalue-eigenvector pair of Zl(ZiZd-1Zl' Then, since 

[Zl(ZlZd-lZ1J[Zl(ZlZd-lZll == ZI(Z;Zd-IZl, it follows that 

Ae = Zl(ZiZ lf1Z;e = (ZI(ZlZlrIZl/e == A(ZI(ZlZd-IZDe == A
2
e 
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and the eigenvalues of Zl(ZlZd-1Z; are 0 or 1. Moreover, tr(Zl(Z;Zlr1Zl) 

= tr«ZiZlrIZiZI) = tr( 1 ) == q + 1 = Al + A2 + ... + A +1> where 
(q+I)X(q+l) q 

Al :2! A2 :2! '" :2! Aq+1 > 0 are the eigenvalues of Zj (ZiZlr1Zi. This shows that 
Zj(ZlZjrlZl has q + 1 eigenvalues equal to 1. Now, (Zj(ZiZlrIZi)ZI == Zt> so 
any linear combination Zlbc of unit length is an eigenvector corresponding to the 
eigenvalue 1. The orthonormal vectors gc, e = 1,2, ... , q + 1, are therefore eigen
vectors of ZI(ZiZlrIZl, since they are formed by taking particular linear combi

nations of the c~~lmns of Zl' By the spectral decomposition (2-16), we have 

Zl(ZiZlflZi = 2: gcge. Similarly, by writing (Z (Z' ZrIZ') Z = Z, we readily see 
C=l 

that the linear combination Zbc == gc, for example, is an eigenvector of Z (Z'Z flZ' 
r+l 

with eigenvalue A = 1, so that Z (Z'Zr1Z' == 2: gcge. 
C=1 

Continuing; we have PZ == [I - Z(Z'ZrIZ')Z = Z - Z == 0 so gc = Zbc, 
e s r + 1, are eigenvectors of P with eigenvalues A = O. Also, from the way the ge, 
e > r + 1, were constructed, Z'gc = 0, so that Pge = gc. Consequently, these gc's 
are eigenvectors of P corresponding to the n - r - 1 unit eigenvalues. By the spec-

n 

tral decomposition (2-16),P = 2: gegc and 
(=r+2 

nI = E'PE = :± (E'gc)(E'gc)' = :± VcVe 
l=r+2 . C=r+2 

where, because Cov(Vei , l-jk) = E(geE(i)l'(k)gj) = O"ikgegj = 0, e oF j, the e'ge = 

Vc = [VC1,"" VCi ,";" VcmJ' are independently distributed as Nm(O, I). Conse
quently, by (4-22), nI is distributed as Wp,n-r-l(I). In the same manner, 

n 

P _ {gC e> q + 1 
19C - 0 e s q + 1 

so PI = 2: ge gc· We can write the extra sum of squares and cross products as 
(;q+2 

" ,... r+1 r+l 
n(I1 - I) = E'(P1 - P)E = 2: (E'ge) (E'ge)' == 2: VeVc 

f=q+2 e=q+2 

where the Ve are independently distributed as Nm(O, I). By (4-22), n(I1 - i) is 
distributed as Wp,r_q(I) independently of ni, since n(I1 - i) involves a different 
set of independent Vc's. 

The large sample distribution for -[ n - r - 1 - ~ (m - r + q + 1) ]In (/i II/I1 /) 

follows from Result 5.2, with P - Po = m(m + 1)/2 + mer + 1) - m(m + 1)/2 -

m(q + 1) = mer - q) dJ. The use of (n - r - 1 - ~(m - r + q + 1) instead 

of n in the statistic is due to Bartlett [4J following Box [7J, and it improves the 

chi-square approximation. 
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Exercises 

7.1. Given the data 

7.2. 

ZI I 10 5 7 19 11 8 

9325713 

fit the linear regression model lj =)30 + f3IZjl + Bj, j = 1,2, ... ,6. Specifically, 
calculate the least squares estimates /3, the fitted values y, the residuals E, and the 
residual sum of squares, E' E. . . 

Given the data 

ZI 10 5 7 19 11 18 

Z2 2 3 3 6 7 9 

y 15 9 3 25 7 13 

fit the regression model 

Yj = {3IZjl + {32Zj2 + ej' j = 1,2, ... ,6. 

to the standardized form (see page 412) of the variables y, ZI, and Z2' From this fit,deduce 
the corresponding fitted regression equation for the original (not standardized) variables. 

7.3. (Weighted least squares estimators.) Let 

7.S. 

y = Z /3 + E 
(nXI) (/lX('+I)) ((,+1)XI) (nXI) 

where E ( e) = 0 but E ( EE') = 0'2 V, with V (n X n) known and positive definite. For 
V of full rank, show that the weighted least squares estimator is 

Pw = (Z'V-IZrIZ'V-Iy 

If (T2 is unknown, it may be estimated, unbiasedly, by 

(n - r - lr l x (y - ZPw),V-I(y - ZPw). 

Hint: V-I/2y = (V-I/2Z)/3 + V-I/2e is of the classical linear regression form y* = 
" I Z*p + e*,withE(e*) = OandE(e*E*') =O'2I.Thus,/3w = /3* = (Z*Z*)- Z*'Y*. 

Use the weighted least squares estimator in Exercise 7.3 to derive an expression for 
the estimate of the slope f3 in the model lj = f3Zj + ej' j = 1,2, ... ,n, when 
(a) Var (Ej) = (T2, (b) Var(e) = O'2Zj, and (c) Var(ej) = O'2z;' Comment on tQe man
ner in which the unequal variances for the errors influence the optimal choice of f3 w· 

Establish (7-50): phz) = 1 - I/pYY. 
Hint: From (7-49) and Exercise 4.11 

. 2 (Tyy - Uzylz~uzy Ilzzl (O'yy - uzylz~uzy) 
1 - PY(Z) = = --

O'yy I lzz I Uyy 

III 

IIzzluyy 

From Result 2A.8(c),uYY = IIzz IIII I, where O'
yy 

is theentry.ofl-I in the first row and 
first column. Since (see Exercise 2.23) p = V-I/2l V-I/2 and p-I = (V-I/2I V-I/2fl = 
VI/2I-IVI/2, the entry in the (1,1) position of p-I is Pyy = O' yy (Tyy. 

Exercises 421 

1.6. (Generalized inverse of Z'Z) A matrix (Z'Zr is caJled a generalized inverse of Z'Z if 
z'z (Z'Z)-Z'Z ':' z'z. Let rl + 1 = rank(Z) and suppose Al ;:" A2 ;:" ... ;:" Aq +1 > 0 
are the nonzero elgenvalues of Z'Z with corresponding eigenvectors el, e2,"" e'I+I' 
(a) Show that 

',+1 
(Z'Z)- = "I:' A:-Ie.e~ 

./ ~ I I I 
;=1 

is a generalized inverse of Z'Z. 

(b) The coefficients P that minimize the sum of squared errors (y - ZP)'(y - ZP) 
satisfy ~e normal equ~tions (Z'Z)P = Z'y. Show that these equations are satisfied 
for any P such that ZP is the projection of y on the columns of Z. 

(c) Show that ZP = Z(Z'Z)-Z'y is the projection ofy on the columns of Z. (See Foot
note 2 in this chapter.) 

(d) Show directly that P = (Z'ZrZ'y is a solution to the normal equations 
(Z'Z)[(Z'Z)-Z'y) = Z'y. 

Hint: (b) If ZP is the projection, then y - ZP is perpendicular to the columns of Z. 

(d) The eigenvalue-eigenvector requirement implies that (Z'Z)(Ai1ej) = e;for i ~ rl + 1 
and 0 = ei(Z'Z)ej for i > rl + 1. Therefore, (Z'Z) (Ai1ej)eiZ'= ejeiZ'. Summing 
over i gives 

(
',+1 ) 

(Z'Z)(Z'Z)-Z' = Z'Z ~ Aileiei Z' 

(
rl+l) (r+1 ) = ~ eiej Z' = ~ eie; Z' = IZ' = Z' 
l=l 1=1 

since e;Z' = 0 for i > rl + 1. 

7.7. Suppose the classical regression model is, with rank (Z) = r + 1, written as 

y = ZI P(1) + ~ P(2) + e 
(nXI) (/lX(q+I)) ((q+I)XI) (nX(,-q)) ((r-q)xJl (nXI) 

where rank(ZI) := q + 1. and r~nk(Z2) = r - q. If the parameters P(2) are identified 
beforehand as bemg ofpnmary mterest,show that a 100(1 - a)% confidence region for 
P(2) is given by 

(P(2) - P(2))' [ZZZ2 - ZzZI(ZjZ lr
1
Zj Z 2] (P(2) - P(2) ~ ~2(r - q)F,-q,/l-r-l(a) 

Hint: By ExerCise 4.12, with 1 's and 2's interchanged, 

C
22 = [ZZZ2 - Z zZI(ZjZIl-IZ ;Z2r

l
, where (Z'Z)-I = [~~: ~:~J 

Multiply by the square-root matrix (C22rI/2, and conclude that (C22)-If2(P(2) - P(2)1(T2 
is N(O, I), so that 

(P(2) - p(2)),(C22rl
(p(2) - P(2) iS~~_q. 

7.S. Recall that the hat matrix is defined by H = Z (Z'Z)_I Z ' with diagonal elements h jj • 

(a) Show that H is an idempotent matrix. [See Result 7.1 and (7-6).) 
n 

(b) Show that 0 < hjj < 1, j = 1,2, ... , n, and that 2: h jj = r + 1, where r is the 
j=1 

number of independent variables in the regression model. (In fact, (lln) ~ h jj < 1.) 
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(c) Verify, for the simple linear regression model with one independent variable z, that 

the leverage, hji' is given by 

7.9. Consider the following data on one predictor variable ZI and two responses Y1 and Y2: 

"1-2 -1 0 ·1 2 
YI 5 3 4 2 1 
Y2 -3 -1 -1 2 3 

Determine the least squares estimates of the parameters in the bivariate straight-line re

gression model 

ljl = {301 + {3llZjl + Bjl 

lj2 = {302 + {312Zjl + Bj2' j = 1,2,3,4,5 

Also calculate the matrices of fitted values Y and residuals i with Y = [YI 
Verify the sum of squares and cross-products decomposition 

Y'y = Y'Y + i'i 

i Y2)' 

7.10. Using the results from Exercise 7.9, calculate each of the following. 
(a) A 95% confidence interval for the mean response E(Yo1 ) = {301 + {311Z01 corre

sponding to ZOI = 0.5 
(b) A 95 % prediction interval for the response Yo 1 corresponding to Zo 1 = 0.5 
Cc) A 95% prediction region for the responses Y01 and Y02 corresponding to ZOI = 0.5 

7.11. (Generalized least squares for multivariate multiple regression.) Let A be a positive 
defmite matrix, so that d7(B) = (Yj - B'zj)'A(Yj - B'zj) is a squared statistical 
distance from the jth observation Yj to its regression B'zj' Show that the choice n 

B = jJ = (Z'Zr1z'Y minimizes the sum of squared statistical distances, ~ d7(B), 
, )=1 

for any choice of positive definite A. Choices for A i.nc1u~~ I-I and I. 
Jl,int: Repeat the steps in the proof of Result 7.10 With I replaced by A. 

7.12. Given the mean vector and covariance matrix of Y, ZI, and Z2, 

determine each of the following. 
(a) The best linear predictor Po + {3IZ1 + {32Zz of Y 
(b) The mean square error of the best linear predictor 

(c) The population multiple correlation coefficient 

(d) The partial correlation coefficient PYZ(Z, 
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7.13. The test scores for college students described in Example 5.5 have 

[
ZI] [527.74] 

Z = ~2 = 54.69, 
Z3 25.13 

[

569134 ] 
S ;, 600.51 126.05 

217.25 2337 23.11 

Assume joint normality. 

(a) Obtain the maximum likelihood estimates of the parameters for predicting ZI from 
Z2 andZ3 • 

(b) Evaluate the estimated multiple correlation coefficient RZ,(Z2,Z,), 

(c) Determine the estimated partial correlation coefficient R Z "Z2'Z" 

7.14. 1Wenty-five portfolio managers were evaluated in terms of their performance. Suppose 
Y represents the rate of return achieved over a period of time, ZI is the manager's atti
tude toward risk measured on a five-point scale from "very conservative" to "very risky," 
and Z2 is years of experience in the investment business. The observed correlation coef
ficients between pairs of variables are 

Y ZI Z2 

['0 
-35 B2] 

R = -.35 1.0- -.60 
.82 -.60 1.0 

(a) Interpret the sample correlation coefficients ryZ, = -.35 and rYZ2 = -.82. 

(b) Calculate the partial correlation coefficient rYZ!'Z2 and interpret this quantity with 
respect to the interpretation provided for ryZ, in Part a. 

The following exercises may require the use of a computer. 

7.1 S. Use the real-estate data in Table 7.1 and the linear regression model in Example 7 A. 

(a) Verify the results in Example 704. 

(b) AnaJyze the residuals to check the adequacy of the model. (See Section 7.6.) 

(c) Generate a 95% prediction interval for the selling price (Yo) corresponding to total 
dwelling size ZI = 17 and assessed value Z2 = 46. 

(d) Carry out a likelihood ratio test of Ho: {32 = 0 with a significance level of a = .05. 
Should the original model be modified? Discuss. 

7.16. Calculate a Cp plot corresponding to the possible linear regressions involving the 
real-estate data in Table 7.1. 

7.17. Consider the Forbes data in Exercise 1.4. 

(a) Fit·a linear regression model to these data using profits as the dependent variable 
and sales and assets as the independent variables. 

(b) Analyze the residuals to check the adequacy of the model. Compute the leverages 
associated with the data points. Does one (or more) of these companies stand out as 
an outlier in the set of independent variable data points? 

(c) Generate a 95 % prediction interval for profits corresponding to sales of 100 (billions 
of dollars) and assets of 500 (billions of dollars). 

(d) Carry out a likelihood ratio test of Ho: {32 = 0 with a significance level of a = .05. 
Should the original model be modified? Discuss. . 
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7.18. Calculate 
(a) a C

p 
plot corresponding to the possible regressions involving the Forbes data 

Exercise 1.4. 
(b) the AIC for each possible regression. 

7.19. Satellite applications motivated the development of a silver-zinc battery. Tab~e ~.5 
contains failure data collected to characterize the performance of the battery dunng Its 

Zt 

Charge 
rate 

(amps) 

.375 
1.000 
1.000 
1.000 
1.625 
1.625 
1.625 

.375 
1.000 
1.000 
1.000 
1.625 

.375 
1.000 
1.000 
1.000 
1.625 
1.625 

.375 

.375 

life cycle. Use these data.' , 
(a) Find the estimated linear regression of In (Y) on an appropriate ("best") subset of 

predictor variables. ' 
(b) Plot the residuals from the fitted model chosen in Part a to check the 

assumption. 

Data 

Z3 Z4 Zs Y 
Depth of End of 

Discharge discharge charge 

rate (% ofrated Temperature voltage Cycles to 

(amps) ampere-hours) (QC) (volts) failure 

3.13 60.0 40 2.00 -101 

76.8 30 1.99 141 
3.13 

2.00 96 60.0 20 3.13 
1.98 125 60.0 20 3.13 
2.01 43 43.2 10 3.13 
2.00 16 60.0 20 3.13 
2.02 188 60.0 20 3.13 
2.01 10 

5.00 76.8 10 
43.2 10 1.99 3 

5.00 
2.01 386 43.2 30 5.00 
2.00 45 100.0 20 5.00 
1.99 2 

5.00 76.8 10 
10 2.01 76 

1.25 76.8 
10 1.99 78 

1.25 43.2 
76.8 30 2.00 160 

1.25 
0 2.00 3 

1.25 60.0 
30 1.99 216 

1.25 43.2 
20 2.00 73 

1.25 60.0 
30 1.99 314 

3.13 76.8 
20 2.00 170 

3.13 60.0 

S SIt d f S Sidik H Leibecki and J Bozek Failure of Si/ver-Zinc Cells with Competing ource' e ec e rom, ,. " , Le . R h 
Failure Modes-Preliminary Dala Analysis, NASA Technical Memorandum 81556 (Cleveland: WIS esearc 

Center, 1980), 

7.20. Using the battery-failure data in Table 7.5, regress In~Y) on the first princi~~s~ftm~ 
nent of the predictor variables Zb Z2,"" Zs· (See SectIOn 8.3.) Compare the 
the fitted model obtained in Exercise 7.19(a). 
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7.21. Consider the air-pollution data in Table 1.5. Let Yi = N02 and Y2 = 03 be the two 
responses (pollutants) corresponding to the predictor variables Zt = wind and 
Z2 = solar radiation. 
(a) Perform a regression analysis using only the first response Yi, 

(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 
(iii) Construct a 95% prediction interval for N02 corresponding to Zj = 10 and 

Z2 = 80. 
(b) Perform a muItivariate mUltiple regression analysis using both responses Yj and 12· 

(i) Suggest and fit appropriate linear regression models. 
(H) Analyze the residuals. 

(Hi) Construct a 95% prediction ellipse for both N02 and 0 3 for Zt = 10 and Z2 = 80. 
Compare this ellipse with the prediction interval in Part a (iii). Comment. 

7.22. Using the data on bone mineral content in Table 1.8: 
(a) Perform a regression analysis by fitting the response for the dominant radius bone to 

the measurements on the last four bones. 
(i) Suggest and fit appropriate linear regression models. 
(ii) Analyze the residuals. 

(b) Perform a multivariate multiple regression analysis by fitting the responses from 
both radius bones. 

(c) Calculate the AIC for the model you chose in (b) and for the full model. 

7.23. Using the data on the characteristics of bulls sold at auction in Table 1.10: 
(a) Perform a regression analysis using the response Yi = SalePr and the predictor vari

ables Breed, YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and Sale Wt. 
(i) Determine the "best" regression equation by retaining only those predictor 

variables that are individually significant. 
(ii) Using the best fitting model, construct a 95% prediction interval for selling 

price for the set of predictor variable values (in the order listed above) 5,48.7, 
990,74.0,7, .18,54.2 and 1450. 

(Hi) Examine the residuals from the best fitting model. 
(b) Repeat the analysis in Part a, using the natural logarithm of the sales price as the 

response. That is, set Yj = Ln (SalePr). Which analysis do you prefer? Why? 

7.24. Using the data on the characteristics of bulls sold at auction in Table 1.10: 
(a) Perform a regression analysis, using only the response Yi = SaleHt and the predic

tor variables Zt = YrHgt and Zz = FtFrBody. 
(i) Fit an appropriate model and analyze the residuals. 
(ii) Construct a 95% prediction interval for SaleHt corresponding to Zj = 50.5 and 

Z2 = 970. 
(b) Perform a multivariate regression analysis with the responses Y j = SaleHt and 

Y2 = SaleWt and the predictors Zj = YrHgt and Z2 = FtFrBody. 

(i) Fit an appropriate multivariate model and analyze the residuals. 
(ii) Construct a 95% prediction ellipse for both SaleHt and SaleWt for Zl = 50.5 

and Z2 = 970. Compare this eilipse with the prediction interval in Part a (H). 
Comment. 
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.. .' 'bed b some physicians as an antidepressant. However, there 
7.25. Amltnptyh~e IS prdes~rdl ff Yts that seem to be related to ttie use of the drug: irregular 

are also conjecture SI e e ec hit d' I bl d ssures, and irregular waves on tee ec rocar wgram, 
heartbeat, abno~ma D ~o P~ered on 17 patients who were admitted to the hospital 
among other t~mg~. a a ga .' Table 7.6. The two response variables 
after an amitrIptyhne overdose are given ID 

are 
Y

I 
= Total TCAD plasma le~el (TOT) 

yz = Amount of amitriptyline present in TCAD plasma level (AMI) 

The five predictor variables are 

ZI = Gender: liffemale,Oifmale (GEN) 

Z2 = Amount of antidepressants taken at time of overdose (AMT) 

Z3 = PR wave measurement (PR) 

Z4 = Diastolic blood pressure (DIAP) 

Z5 = QRS wave measurement (QRS) 

Table 7.6 Amitriptyline Data 

Zl Z2 
Yl Y2 

AMT TOT AMI GEN 

3149 1 7500 3389 
1975 1101 653 1 

0 3600 1131 810 
596 448 1 675 

1 750 896 844 
2500 1767 1450 1 
350 807 493 1 

1500 1111 941 0 
547 1 375 645 

1050 628 392 1 
3000 1360 1283 1 
450 652 458 1 

1750 860 722 1 
2000 500 384 0 

0 4500 781 501 
1070 405 0 1500 

3000 1754 1520 1 

Source: See [24]. 

Z3 Z4 

PR DIAP 

220 0 
200 0 
205 60 
160 60 
185 70 
180 60 
154 80 
200 70 
137 60 
167 60 
180 60 
160 64 
135 90 
160 60 
180 0 
170 90 
180 0 

(a) Perform a regression analysis using only the fi~st response Y1 • 

(i) Suggest and fit appropriate linear regressIOn models. 

Z5 
QRS 

140 
100 
111 
120 
83 
80 
98 
93 

105 
74 
80 
60 
79 
80 

100 
120 
129 

(ii) Analyze the residuals. _ = 1200 
(iii) Construct a 95% prediction interval for Total TCAD for Zl - 1, Z2 ' 

Z3 = 140, Z4 = 70, and Z5 = 85. • 

(b) Repeat Part a using the second response Yz. 
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(c) Perform a multivariate multiple regression analysis using both responses Yi and yz. 
(i) Suggest and fit appropriate linear regression models. 

(ii) Analyze the residuals. 

(iii) Construct a 95% prediction ellipse for both Total TCAD and Amount of 
amitriptyline for Zl = 1, Z2 = 1200, Z3 = 140, Z4 = 70, and Z5 = 85. Compare 
this ellipse with the prediction intervals in Parts a and b. Comment. 

7.26. Measurements of properties of pulp fibers and the paper made from them are contained 
in Table 7.7 (see also [19] and website: www.prenhall.com/statistics). There are n = 62 
observations of the pulp fiber characteristics, Zl = arithmetic fiber length, Z2 = long 
fiber fraction, Z3 = fine fiber fraction, Z4 = zero span tensile, and the paper properties, 
Yl = breaking length, Y2 = elastic modulus, Y3 = stress at failure, Y4 = burst strength. 

Table 7.7 Pulp and Paper Properites Data 

Y1 Y2 Y3 Y4 Zl Z2 Z3 Z4 
BL EM SF BS AFL LFF FFF ZST 

21.312 7.039 5.326 .932 -.030 35.239 36.991 1.057 
21.206 6.979 5.237 .871 .015 35.713 36.851 1.064 
20.709 6.779 5.060 .742 .025 39.220 30.586 1.053 
19.542 6.601 4.479 .513 .030 39.756 21.072 1.050 
20.449 6.795 4.912 577 -.Q70 32.991 36570 1.049 

: : : 

16.441 6.315 2.997 -.400 -.605 2.845 84554 1.008 
16.294 6.572 3.017 -.478 -.694 1.515 81.988 .998 
20.289 7.719 4.866 .239 -.559 2.054 8.786 1.081 
17.163 7.086 3.396 -.236 -.415 3.018 5.855 1.033 
20.289 7.437 4.859 .470 -.324 17.639 28.934 1.070 

Source: See Lee [19]. 

(a) Perform a regression analysis using each of the response variables Y1, yz, 1-3 and Y4• 

(i) Suggest and fit appropriate linear regression models. 

(ii) Analyze the residuals. Check for outliers or observations with high leverage. 
(iii) Construct a 95% prediction interval for SF (1-3) for Zl = .330, Z2 = 45.500, . 

Zl = 20.375, Z4 = 1.010. 
(b) Perform a muItivariate multiple regression analysis using all four response variables, 

Y1, Yz, 1-3 and Y4,and the four independent variables, Zl, ZZ,Z3 and Z4' 

(i) Suggest and fit an appropriate linear regression model. Specify the matrix of 
estimated coefficients /J and estimated error covariance matrix i. 

(ii) Analyze the residuals. Check for outliers. 

(iii) Construct simultaneous 95% prediction intervals for the individual responses 
Yoi,i = 1,2, 3,4,for the same settings of the independent variables given in part 
a (iii) above. Compare the simultaneous prediction interval for Y03 with the 
prediction interval in part a (iii). Comment. 

7.27. Refer to the data on fixing breakdowns in cell phone relay towers in Table 6.20. In the 
initial design, experience level was coded as Novice or Guru. Now consider three levels 
of experience: Novice, Guru and Experienced. Some additional runs for an experienced 
engineer are given below. Also, in the original data set, reclassify Guru in run 3 as 
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Experienced and Novice in run 14 as Experienced. Keep all the other numbers for these 
two engineers the same. With these changes and the new data below, perform a multi
variate multiple regression analysis with assessment and implementation times as the 
responses, and problem severity, problem complexity and experience level as the predictor 
variables. Consider regression models with the predictor variables and two factor inter
action terms as inputs. (Note: The two changes in the original data set and the additional. 
data below unbalances the design, so the analysis is best handled with regression· 
methods.) 

Problem Problem Engineer Problem· Problem Total 
severity complexity experience assessment implementation resolution 
level level level time time time 

Low Complex Experienced 5.3 9.2 14.5 
Low Complex Experienced 5.0 10.9 15.9 
High Simple Experienced 4.0 8.6 12.6 
High Simple Experienced 4:5 8.7 13.2 
High Complex Experienced 6.9 14.9 21.8 
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PRINCIPAL COMPONENTS 

8.1 Introduction 
A principal component analysis is concerned with explaining the variance-covariance 

structlire of a set of variables through a few linear combinations of these variables. Its 

general objectives are (1) data reduction and (2) interpretation. 

Although p components are required to reproduce the total system variability, 

often much of this variability can be accounted for by a small number k of the prin

cipal components. If so, there is (almost) as much information in the k components 

as there is in the original p variables. The k principal components can then replace 

the initial p variables, and the original data set, consisting of n measurements on .' 

p variables, is reduced to a data set consisting of n measurements on k principal 

components. 
An analysis of principal components often reveals relationships that were not 

previously suspected and thereby allows interpretations that would not ordinarily 

result. A good example of this is provided by the stock market data discussed in 

Example 8.5. 
Analyses of principal components are more of a means to an end rather than an 

end in themselves, because they frequently serve as intermediate steps in much 

larger investigations. For example, principal components may be inputs to a multiple 

regression (see Chapter 7) or cluster analysis (see Chapter 12), Moreover, (scaled) 

principal components are one "factoring" of the covariance matrix for the fact9r 

analysis model considered in Chapter 9. 

8.2 Population Principal Components 

Algebraically, principal components are particular linear combinations of the p ran

dom variables Xl' X 2, . .• , Xp. Geometrically, these linear combinations represent 

the selection of a new coordinate system obtained by rotating the original 
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with X X X th d' 
b z, .. , , p as e coor mate axes. The new axes represent the d' t' 

with max' , bT' Irec lOns 

f th 
Im~m vana Ilty and proVIde a simpler and more parsimonious description 

o e covanance structure. 

mat~S Y. (~r S::ellc~~~l!t~~~c::!ri~opm)p~~~ts ;ependXsoThlely. 0dn the covariance 

t' " I, 2, ... , p' elf evelopment does 

no require a ~ultJvanate normal assumption, On the other hand " al 

~omp?nents derred for multivariate normal populations have useful ini:;~~a
Ions III terms 0 the constant density ellipsoids. Further, inferences can be made 

~~~o~h~.;.)mple components when the popUlation is· multivariate normal. (See 

Let the random vector X' = [X X X J h . 

W'th' I \ 1, 2, ' . , , pave the covanance matrix Y. 
I elge~va ues ",I ~ A2 ~ '" ~ Ap ~ 0, 

Conslder the hnear combinations 

Yp = a~X = ap1X1 + a p2X 2 + '" + appXp 

Then, using (2-45), we obtain 

Var(Y;) = aiY.ai 

Cov(Y;, Yk ) = aiY.ak 

i = 1,2,.,., p 

i, k = 1,2, ... , p 

(8-1) 

(8-2) 

(8-3) 

Thhe principal co~ponents are those un correlated linear combinations Y, y- y 

w ose var~ances m (8-2) are as large as possible. I, 2"·,, p 

. The first. p?ncip~l ,component is the linear combination with maximu 

var!ance. That IS, It m:U:Ir~llZeS Var(l}) = a1Y.al. It is clear that Var (Yd = a'Y.a ca~ 

~e. mcrease~ by multiplYIng any al by some constant. To eliminate this indete~mi~acy 
~o~: ~~~:ement to restrict attention to coefficient vectors of unit length. We there~ 

First principal component = linearcombinatl'on a'X th t .. 
1 a maXlmIZes 

Var(a1X) subject to alal = 1 

Second principal component = linear combination a' X th t " 
2 a maxImizes 

At the ith step, 

Var (a2X) subject to a2a2 = 1 and 

Cov(a1X,a2X) = 0 

ith principal component = linear combination at X that maximizes 

Var(aiX) subject to aia; = 1 and 

Cov(a;X, a"X) = 0 for k < i 
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Result 8.1. Let :t be the covariance matrix associated with the random vector 
X' = [XI, X 2, ... , Xp]. Let :t have the eigenvaIue-eigenvector pairs (AI, el), . 

( \ e) (A e) where Al ~ A2 ~ ... ~ Ap ~ O. Then the ith principal 
1l2' 2,"·' P' P 

ponent is given by 
Y; =..eiX = enXI + ej2X2 + ... + ejpXp, i = 1,2, ... ,p 

With these choices, 

Var(Y;) = ei:tej = Aj 

Cov (Y;, Yk) ~ ei:tek = 0 

i = 1,2, ... ,p 

If some Aj are equal, the choices of the corresponding coefficient vectors, ej, and. 

hence Y;, are not unique. 

Proof. We know from (2-51), with B = :t, that 

a':ta 
max-,- = Al 
.*0 a a 

( attained when a = el) 

But el el = 1 since the eigenvectors are no~malized. Thus, 

a':ta e; :tel, ) 
max-,- = Al = -,- = el:tel = Var(YI 
.*0 a a elel 

Similarly, using (2-52), we get 

a':ta max -, - = Ak+1 k = 1,2, ... ,p - 1 
• J. "l>e2, .. . ,ek a a 

For the choice a = ek+l, with ek+1ej = 0, for i = 1,2, ... , k and k = 1,2, ... , p - 1, 

e"+1:tek+Iiele+lek+1 = ek+l:tek+1 = Var(Yk+d 

But ele+I(:tek+d = Ak+lek+lek+1 = Ak+1 so Var(Yk-: l) = Ak+l· It remains to show 
that ej perpendicular to ek (that is, eiek = 0, i '* k) gives COy (Y;, Yk) = O. ~~w, the 
eigenvectors of:t are orthogonal if all the :igenvalues AI, A2,···, A{' are dIstmct. If 
the eigenvalues are not all distinct, the eIgenvectors correspondm~ to common 
eigenvalues may be chosen to be orthogonal. There~o~e, f~r any t';o .eIgenvectors ej 
and ek' ejek = 0, i '* k. Since :tek = Akek, premultlplicatlOn by ej gIves 

Cov(Y;, Yk ) = eiIek = eiAkek = Akeiek = 0 

for any i *- k, and the proof is complete. • 
From Result 8.1, the principal components are uncorrelated and have variances 

equal to the eigenvalues of :to 

Result 8.2. Let X' = [XI' X 2, .. . , Xp] have covariance matrix:t, with eigenvalue
eigenvector pairs (AJ,el)' (A2,e2), .. ·, (Ap,ep) where Al ~ A2 ~ ... ~ Ap ~ O. 
Let Y

I 
= ejX, Y

2 
= e2X, ... , Yp = e;,x be the principal components. Then 

p p 

CTu + CTn + ... + er = 2: Var(Xj) = Al + A2 + ... + Ap = 2: Var(Y;) 
pp i=1 /=1 
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Proof. From Definition 2A.28, CTU + CT22 + ... + CTpp = tr(:t). From (2-20) with 
A = :t, we can write:t = PAP' where A is the diagonal matrix of eigenvalues and 
P = [el, e2,· .. ,ep ] so that PP' = P'P = I. Using ResuIt 2A.11(c),we have 

tr(:t) = tr(PAP') = tr(AP'P) = tr(A) = Al + A2 + ... + Ap 

Thus, 
p p 

L Var(X;} = tr(:t) = tr(A) = L Var(Y;) 
~I ~I 

Result 8.2 says that 

Total population variance = CTII + CT22 + ... + CT pp 

= Al + A2 + ... + Ap 

• 

(8-6) 

and consequently, the proportion of total variance due to (explained by) the kth 
principal component is 

(

Proportion of total ) 
population variance _ Ak 
due to kth principal - Al + A2 + ... + Ap 

component 

k = 1,2, ... ,p (8-7) 

If most (for instance, 80 to 90%) of the total population variance, for large p, can be· 
attributed to the first one, two, or three components, then these components can 
"replace" the original p variables without much loss of information. 

Each component of the coefficient vector ei = [ejJ, ... , ejk, ... , eip] also merits 
inspection. The magnitude of ejk measures the importance of the kth variable to the 
ith principal component, irrespective of the other variables. In particular, ejk is pro
portional to the correlation coefficient between Y; and X k • 

Result 8.3. If 1] = e;X, 12 = ezX, ... , ~) = e~X are the principal components 
obtained from the covariance matrix :t, then 

ejkv% 
PY;,Xk = .~ 

VCTkk 
i,k = 1,2, ... ,p (8-8) 

are the correlation coefficients between the components Y; and the variables X k · 

Here (A1> el)' (A2, e2),· .. , (Ap, ep ) are the eigenvalue-eigenvector pairs for:t. 

Proof. Set ale = [0, ... ,0, 1, 0, ... , 0] so that X k = a"X and COy (Xk , Y;) = 
Cov(aleX, eiX) = alc:tej, according to (2-45). Since :tej = Ajej, COV(Xk, Y;) = a"Ajej= 
Aieik. Then Var(Y;) = Aj (see (8-5)J and Var(Xk) = CTkkyield 

Cov(Y;, X k) Aiejk e·k VX; 
PYiX.= _~./ = .r.-.r-= :,--: i,k=1,2, ... ,p. 

, vVar(Y;) vVar(Xk ) vA; VCTkk VCTkk 

Although the correlations of the variables with the principal components often 
help to interpret the components, they measure only the univariate contribution of 
an individual X to a component Y. That is, they do not indicate the importance of 
an X to a component Y in the presence of the other X's. For this reason, some 
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statisticians (see, for example, Rencher [16]) recommend that only the coefficients 
eib and not the correlations, be used to interpret the components. Although the co
efficients and the correlations can lead to different rankings as measures of the im
portance of the variables to a given component, it is our experience that these 
rankings are often not appreciably different. In practice, variables with relatively 
large coefficients (in absolute value) tend to have relatively large correlations, so 
the two measures of importance, the first multivariate and the second univariate, 
frequently give similar results. We recommend that both the coefficients and the 
correlations be examined to help interpret the principal components. 

The following hypothetical example illustrates the contents of Results 8.1,8.2, 
and 8.3. 

Example S.I (Calculating the population principal components) 
random variables Xl' X2 and X3 have the covariance matrix 

It may be verified that the eigenvalue-eigenvector pairs are 

Al = 5.83, 

A2 = 2.00, 

A3 = 0.17, 

ei = [.383, -.924,0] 

e2 = [0,0,1] 

e3 = [.924, .383, 0] 

Therefore, the principal components become 

Yi. = eiX = .383X1 - .924X2 

12 = e2X = X3 

}\ = e3X = .924X1 + .383X2 

The variable X3 is one of the principal components, because it is uncorrelated with 
the other two variables. 

Equation (8-5) can be demonstrated from first principles. For example, 

Var(Yd = Var(.383Xl - .924X2) 

= (.383?Var(X1) + (-.924?Var(X2) 

+ 2( .383) ( - .924) Cov (Xl> X 2) 

= .147(1) + .854(5) - .708( -2) 

= 5.83 = Al 

Cov(Y1 , 12) = Cov(.383Xl - .924X2, X 3) 

= .383 Cov(Xl> X 3) - .924 COV(X2' X 3) 

= .383(0) - .924(0) = 0 

It is also readily apparent that 

0"11 + 0"22 + 0"33 = 1 + 5 + 2 = Al + A2 + A3 = 5.83 + 2.00 + .17 
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validating Equation (8-6) for this example. The proportion of total variance accounted 
for by the first principal component isAJ/(Al + A2 + A3) = 5.83/8 = .73.Further,the 
first two components account for a proportion (5.83 + 2)/8 = .98 of the population 
variance. In this case, the components Y1 and Y2 could replace the original three 
variables with little loss of information. 

Next, using (8-8), we obtain 

-.924v'5.83 
VS = -.998 

Notice here that the variable X 2 , with coefficient -.924, receives the greatest 
weight in the component YI . It also has the largest correlation (in absolute value) 
with Yi.. The correlation of Xl, with YI , .925, is almost as large as that for X 2 , indi
cating that the variables are about equally important to the first principal compo
nent. The relative sizes of the coefficients of Xl and X 2 suggest, however, that X 2 
contributes more to the determination of YI than does Xl' Since, in this case, both 
coefficients are reasonably large and they have opposite signs, we would argue that 
both variables aid in the interpretation of Yi., 

Finally, 

(as it should) 

The remaining correlations can be neglected, since the third component is 
unimportant. _ 

It is informative to consider principal components derived from multivariate 
normal random variables. Suppose X is distributed as Np(IA-' l;). We know from 
(4-7) that the density of X is constant on the lA- centered ellipsoids 

which have axes ±cVA; ei' i = 1,2, ... , p, where the (Ai, e;) are the eigenvalue
eigenvector pairs of l;. A point lying on the ith axis of the ellipsoid will have coordi
nates proportional to ej = [ei I, ei2, ... , ei p] in the coordinate system that has origin 
lA- and axes that are parallel to the original axes XI, X2, •.. , X p' It will be convenient 
to set lA- = 0 in the argument that follows. l 

From our discussion in Section 2.3 with A = l;-l, we can write 

2 ,~-1 1 ( ,)2 1 ( , )2 1 2 
C = x...... x = - el x + - e2 x + ... + - (e' x) 

Al A2 Ap p 

IThis can be done without loss of generality because the normal random vector X can always be 
translated to the normal random vector W = X - p. and E(W) =~. However, Cov(X) = Cov(W). 
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where et x, eZ x, ... , e~ x are recognized as the principal components of x. Setting 
YI = el x, Y2 = ezx, ... , Yp = e~x, we have 

1 2 1 2 1 2 
Cz = -;- Yl + -;- Y2 + ... + A' Y p 

"I "2 P 

and this equation defines an ellipsoid (since Aj, A2,' .. , Ap are positive) in a coordi
nate system with axes YI,)2, ... , Yp lying in the ?irect~o~s o~ ej, e2,:'" ~p, 
tively. If Al is the largest eigenvalue, then the major aXIs hes ill the dIrectIOn el· The 
remaining minor axes lie in the directions defined by ez,···, ep • 

To summarize, the principal components YI' = et x, )2 = ez x, ... , Yp = e~x lie 
in the directions of the axes of a constant density ellipsoid. Therefore, any point on 
the ith ellipsoid axis has x coordinates proportional to e; = [e;I' ei2,"" eip] and,· 
necessarily, principal component coordinates of the form [0, ... ,0, Yi' 0, ... ,0). 

When /L =P 0, itis the mean-centered principal component Yi = ei(x - /L) that 

has mean ° and lies in the direction ei' 
A constant density ellipse and the principal components for a bivariate normal __ .. ~15L 

random vector with /L = 0 and p = .75 are shown in Figure 8.1. We see that the 
principal components are obtained by rotating the original coo~dina~e axes ~hrough 
an angle () until they coincide with the axes of the constant denSIty ellIpse. This result 
holds for p > 2 dimensions as well. 

y, = e;x 

11=0 
P = .75 

Figure 8.1 The constant density 
ellipse x'I-l x = cZ and the principal 
components YI , Y2 for a bivariate 
normal random vector X having 
meanO. 

Principal Components Obtained from Standardized Variables 

Principal components may also be obtained for the standardized variables 

Z _ (Xj- ILIl 
1- ~ 

z _ (X2 - 1L2) 
2 - -va:; 

Population Principal Components 437 

In matrix notation, 

(8-10) 

where the diagonal standard deviation matrix VI/2 is defined in (2-35). Clearly, 
E(Z) = 0 and 

Cov (Z) = (VI/2rl l:(VI/2r
l = p 

by (2-37). The principal components of Z may be obtained from the eigenvectors of 
the correlation matrix p of X. All our previous results apply, with some simplifica
tions, since the variance of each Z; is unity. We shall continue to use the notation Y; 
to refer to the ith principal component and (A;, e;) for the eigenvalue-eigenvector 
pair from either p or l:. However, the (A;, e;) derived from :t are, in general, not the 
same as the ones derived from p. 

Result 8.4. The ith principal component of the standardized variables 
Z' = [ZI,Z2, ... ,Zp)withCov(Z) = p,is given by 

i = 1,2, ... , p 

Moreover, 
p p 

2: Var(Y;) = 2: Var(Z;) = p (8-11) 
;=1 i=I 

and 

i,k = 1,2, ... ,p 

In this case, (AI, et>, (Az, e2)"'" CAp, ep) are the eigenvalue-eigenvector pairs for 
p, with Al ~ Az ~ ... ~ Ap ~ 0. 

Proof. Result 8.4 follows from Results 8.1,8.2, and 8.3, with ZI, Z2 • ... , Zp in place 
of XI. X 2 • .•.• Xp and p in place of l:. • 

We see from (8-11) that the total (standardized variables) population variance 
is simply p, the sum of the diagonal elements of the matrix p. Using (8-7) with Z in 
place of X, we find that the proportion of total variance explained by the kth princi
pal component of Z is 

(

Proportion of (standardized») A 
population variance due = ~, 

to kth principal component p 
k=1,2, ... ,p (8-12) 

where the Ak'S are the eigenvalues of p. 

Example 8.2 (Principal components obtained from covariance and correlation matrices 
are different) Consider the covariance matrix 

l:=[! lO~J 
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and the derived correlation matrix 

p = [.~ '~J 
The eigenvalue-ei.,genvector pairs from I are 

Al = 100.16, e; = [.040, .999] 

A2 = .84, e2 = [.999, -.040] 

Similarly, the eigenvalue-eigenvector pairs from pare 

Al = 1 + P = 1.4, e; = [.707, .707J 

A2 = 1 - p = .6, e2 = [.707, -.707] 

The respective principal components become 

and 

p: 

Yj = .040XI + .999X2 
I: Y2 = .999XI - .040X2 

(
XI - ILl) (X2 - IL2) 

Y
I 

= .707Z1 + .707Z2 = .707 --1- + .707 10 

= .707(XI -·ILI) + .0707(X2 - IL2) 

(
XI - ILl) (X2 - IL2) Yz = .707Z1 - .707Z2 = .707 -1- - .707 10 

= .707(XI - ILl) - .0707(X2 - IL2) 

Because of its large variance, X2 completely dominates the first prin~ipal compon~nt 
determined from I. Moreover, this first principal component explams a proportion 

_A_I _ = 100.16 = .992 
Al + A2 101 

of the total population variance. . . 
When the variables XI and X2 are standardized, however, the resultmg 

variables contribute equally to the principal components determined from p. Using 

Result 8.4, we obtain 

py z = ell v'X"; = .707v1.4 = .837 
1·1 

and 
PY1,Z2 = e21 VI;" = .707v1.4 = .837 

In this case, the first principal component explains a proportion 

Al = 1.4 = .7 
P 2 

of the total (standardized) population variance. . 
Most strikingly, we see that the relative importance of the vanables. to,.for 

instance, the first principal component is greatly affected by the standardIZatIOn. 
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When the first principal component obtained from p is expressed in terms of Xl 
and X 2 , the relative magnitudes of the weights .707 and .0707 are in direct opposi
tion to those of the weights .040 and .999 attached to these variables in the principal 
component obtained from l:. • 

The preceding example demonstrates that the principal components derived 
from I are different from those derived from p. Furthermore, one set of principal 
components is not a simple function of the other. This suggests that the standardiza
tion is not inconsequential. 

Variables should probably be standardized if they are measured on scales with 
widely differing ranges or if the units of measurement are not commensurate. For 
example, if Xl represents annual sales in the $10,000 to $350,000 range and X 2 is the 
ratio (net annual income)/(total assets) that falls in the .01 to .60 range, then the 
total variation will be due almost exclusively to dollar sales. In this case, we would 
expect a single (important) principal component with a heavy weighting of Xl' 
Alternatively, if both variables are standardized, their subsequent magnitudes will 
be of the same order, and X 2 (or Z2) will play a larger role in the construction of the 
principal components. This behavior was observed in Example 8.2. 

Principal Components for Covariance Matdces 
with Special Structures 

There are certain patterned covariance and correlation matrices whose principal 
components can be expressed in simple forms. Suppose l: is the diagonal matrix 

f
all 0 .. . 

o an .. . 
l: = . . . . . . . . . 

o 0 

(8-13) 

Setting e; = [0, ... ,0,1,0, ... ,0], with 1 in the ith position, we observe that 

0 0 

fT 
0 n 0 0 

a22 
1 1aii Ie; = aije; or 

0 
0 0 

0 0 

and we conclude that (aj;, e;) is the ith eigenvalue-eigenvector pair. Since the linear 
combination et X = Xi, the set of principal components is just the original set of un
correlated random variables. 

For a covariance matrix with the pattern of (8-13), nothing is gained by extracting 
the principal components. From another point of view, if X is distributed as Np(p, l:), 
the contours of constant density are ellipsoids whose axes already lie in the directions 
of maximum variation. Consequently, there is no need to rotate the coordinate system. 
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Standardization does not substantially alter the situation for the 1: in (8-13). In 
that case, p = I, the p X P identity matrix. Clearly, pe; = le;, so the eigenvalue 1 
has multiplicity p and e; = [0, ... ,0, 1,0, ... ,0], i = 1,2, ... , p, are convenient 
choices for the eigenvectors. Consequently, the principal components determined 
from p are also the original variables Zlo"" Zp. Moreover, in this case of equal 
eigenvalues, the multivariate normal ellipsoids of constant density are spheroids. 

Another patterned covariance matrix, which often describes the correspon
dence among certain biological variables such as the sizes of living things, has the 
general form 

The resulting correlation matrix 

(8-15) 

is also the covariance matrix of the standardized variables. The matrix in (8-15) 
implies that the variables Xl' X 2, . •• , Xp are equally correlated. 

It is not difficult to show (see Exercise 8.5) that the p eigenvalues of the corre
lation matrix (8-15) can be divided into two groups. When p is positive, the largest is 

Al = 1 + (p - l)p 

with associated eigenvector 

ej = [~,~, ... ,~J 
The remaining p - 1 eigenvalues are 

A2 = A3 = .,. = Ap = 1 - P 

and one choice for their eigenvectors is 

ez = [~. v;~ 2· 0, ... ,oJ 
e3 = [k'V21X3'V;~3,0, ... ,oJ 

[ 
1 1 -{i - 1) J 

e~ = ,0, ... ,0 
I VU - 1)(''''~' v'(i-l)i 

[
1 1 -(p - 1) ] 

e~ = V(p _ l)p"'" V(p - 1)/ V(p - l)p 

(8-17) 
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The first principal component 

1 p 
l] = elZ = - 2: Z; 

Vp;=l 

is proportional to the sum of the p standarized variables. It might be regarded as an 
"index" with equal weights. This principal component explains a proportion 

Al 1 + (p - l)p 1 - p 
-= =p+--
p p p 

(8-18) 

of the total population variation. We see that Adp == p for p close to 1 or p large. 
For example, if p = .80 and p = 5, the first component explains 84 % of the 
total variance. When p is near 1, the last p - 1 components collectively con
tribute very little to the total variance and can often be neglected. In this special 
case, retaining only the first principal component Yj = (l/vP) [1,1, ... ,1] X, 
a measure of total size, still explains the same proportion (8-18) of total 
variance. 

If the standardized variables Zl, Z2,' .. , Zp have a multivariate normal distrib
ution with a covariance matrix given by (8-15), then the ellipsoids of constant densi
ty are "cigar shaped," with the major axis proportional to the first principal 
component Y1 = (I/Vp) (1,1, ... ,1] Z. This principal component is the projection 
ofZ on the equiangular line I' = [1,1, ... ,1]. The minor axes (andremainingprin
cipal components) occur in spherically symmetric directions perpendicular to the 
major axis (and first principal component). 

8.3 Summarizing Sample Variation by Principal Components 
We now have the framework necessary to study the problem of summarizing the 
variation in n measurements on p variables with a few judiciously chosen linear 
combinations. 

Suppose the data Xl, X2,"" Xn represent n ipdependent drawings from sOme 
p-dimensional popUlation with mean vector p. and covariance matrix 1:. These data 
yield the sample mean vector x, the sample covariance matrix S, and the sample cor
relation matrix R. 

Our objective in this section will be to construct uncorrelated linear combina
tions of the measured characteristics that account for much of the variation in the 
sample. The uncorrelated combinations with the largest variances will be called the 
sample principal components. 

Recall that the n values of any linear combination 

j = 1,2, ... ,n 

have sample mean 8J.X and sample variance 81S81' Also, the pairs of values 
(8J.Xj,8ZXJ, for two linear combinations, have sample covariance 8jS8z [see 
(3-36)]. 
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The sample principal components are defined as those linear ,",VJ,uumanr 
which have maximum sample variance. As with the population quantities, 
strict the coefficient vectors ai to satisfy aiai = 1. Specifically, 

First sample linear combination aixj that maximizes 
principal component = the sample variance of a;xj subject 

to a1al = 1 

Second sample linear combination a2Xj that maximizes the sample 
principal component = variance of a2Xj subject to a2a2 = 1 and zero 

cOvariance for the pairs (a;xj, a2Xj) 

At the ith step, we have 

ith sample linear combination aixj that maximizes the sample 
principal component = variance of aixj subject to aiai = 1 and zero sample 

covariance for all pairs (aixj, a"xj), k < i 

The first principal component maximizes a\Sa J or, equivalently, 

a1Sa l 

a1a l 

By (2-51), the maximum is the largest eigenvalue Al attained for the 
al = eigenvectqr el of S. Successive choices of ai maximize (8-19) subject 
o = aiSek = aiAkek> or ai perpendicular Jo ek' Thus, as in the proofs of 
8.1-8.3, we obtain the following results conceming sample principal cornDCln€:ni 

If S = {sid is the p X P sample covariance matrix with ·P'",nIVl'IJue··ei!>emlectod"·· 

pairs (AI' ed, (,1.2, e2),"" (Ap, ep), the ith sample principal component is 

by 
i = 1,2, ... ,p 

where Al ~ ,1.2 ~ .' . ~ Ap ~ 0 and x is any observation on the 
)(1,)(2,···,)(p·A1so, 

In addition, 

and 

Sample variance(Yk) = Ab k = 1,2, ... , P 

Sample covariance()li, )lk) = 0, i #' k 

p " ' 
Total sample variance = L Sii = Al + A2 + ... + Ap 

i=l 

i, k = 1, 2, ... , p 

Summarizing Sample Variation by Principal Components 443 

We shall denote the sample principal components by )11,52, ... , )lp, irrespective 
of whether they are obtained from S or R.2 The components constructed from Sand 
R are not the same, in general, but it will be clear from the context which matrix is 
being used, and the single notation Yi is convenient. It is also convenient to label the 
component coefficient vectors ei and the component variances Ai for both situations. 

The observations Xj are often "centered" by subtracting x. This has nO effect on 
the sample covariance matrix S and gives the ith principal component 

.vi = ei(x - x), i = 1,2, ... ,p (8-21) 

for any observation vector x. If we consider the values of the ith component 

j = 1,2, ... ,n (8-22) 

generated by substituting each observation Xj for the arbitrary x in (8-21), then 

;;- l~A'( _) lA'(~( -») lA, 0 Yi = - ~ ei Xj - x = - ei ~ Xj - x = - ej 0 = 
n j=l n j=l n 

(8-23) 

That is, the sample m!?an of each principal component is zero. The sample variances 
are still given by the A;'s, as in (8-20). 

Example 8.3 (Summarizing sample variability with two sample principal components) 
A census provided information, by tract, on five socioeconomic variables for the 
Madison, Wisconsin, area. The data from 61 tracts are listed in Table 8.5 in the exercises 
at the end of this chapter. These data produced the following summary statistics: 

X' = [4.47, 3.96, 71.42, 26.91, 1.64] 

total professional employed government median 
population degree age over 16 employment home value 
(thousands) (percent) (percent) (percent) ($100,000) 

and 

[ 33~ -1.102 4.306 -2.078 
Oill7] -1.102 9.673 -1.5l3 10.953 1.203 

S = 4.306 -1.5l3 55.626 -28.937 -0.044 
-2.078 10.953 -28.937 89.067 0.957 

0.027 1.203 -0.044 0.957 0.319 

Can the sample variation be summarized by one or two principal components? 

2Sample principal components also can be obtained from I = Sn, the maximum likelihood esti
mate of the covariance matrix I, if the Xj are nonnally distributed. (See Result 4.11.) In this case, 
provided that the eigenvalues of I are distinct, the sample principal components can be viewed as 
the maximu~ likelihood estimates of the corresponding population counterparts. (S!!e [1].) We shall 
not consider J. because the assumption of nonnality is not required in this section. Also, I has eigenvalues 
[( n - 1)/n ]A; and c,?-rresponding eigenvectors e;, where (A;, ei) are the eigenvalue-eigenvector pairs for 
S. Thus, both S and I give the same sample principal components eix [see (8-20)] and the same propor
tion of explained variance A;/(.~l + A2 + ... + Ap). Finally, both S a!.1d I give the same sample correla
tion matrix R, so if the variables are standardized, the choice of S or I is irrelevant. 
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We find the following: 

Coefficients for the Principal 
Coefficients in 

Variable el (rh,xk) e2 e3 e4 e5 
Total population - 0.039( - .22) 0.071(.24) 0.188 0.977 
Profession 0.105(.35) 0.130(.26) -0.961 0.171 
Employment (%) -0.492( - .68) 0.864(.73) 0.046 -0.091 
Government 

employment (%) 0.863(.95) 0.480(.32) 0.153 -0.030 
Medium home 

value 0.009(.16) 0.015(.17) -0.125 0.082 

Variance (Ai): 107.02 39.67 8.37 2.87 
Cumulative 

percentage of 
total variance 67.7 92.8 98.1 99.9 

The first principal component explains 67.7% of the total sample variance. The 
first two principal components, collectively, explain 92.8% of the total sample 
ance. Consequently, sample variation is summarized very well by two principal 
ponents and a reduction in the data from 61 observations on 5 observations to 
observations on 2 principal components is reasonable. 

Given the foregoing component coefficients, the first principal cOlnp,one:nl 
appears to be essentially a weighted difference between the percent employed 
government and the percent total employment. The second principal cOIloponelllr' 
appears to be a weighted sum of the two. 

As we said in our discussion of the population components, the component 
coefficients eik and the correlations ryi,Xk should both be exami?ed to inte.rpret the 
principal components. The correlations allow for differences m. t~e vanan~s 
the original variables, but only measure the importance of an indJVldual X Without 
regard to the other X's making up the component. We notice in Example 8.3, 
however, that the correlation coefficients displayed in the table confirm the 
interpretation provided by the component coefficients. 

The Number of Principal Components 

There is always the question of how many components to retain. There is no defin- , 
itive answer to this question. Things to consider include the amount of total 
variance explained, the relative sizes of the eigenvalues (the variances of the 
pIe components), and the subject-matter interpretations of the components. In 
dition, as we discuss later, a component associated with an eigenvalue near 
and, hence, deemed unimportant, may indicate an unsuspected linear 
in the data. 
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Figure 8.2 A scree plot. 

A useful visual aid to determining an appropriate number of principal 
components is a scree plot.3 With the eigenvalues ordered from largest to smallest, 
a scree plot is a plot of Ai versus i-the magnitude of an eigenvalue versus its 
number. To determine the appropriate number of components, we look for an 
elbow (bend) in the scree plot. The number of components is taken to be the 
point at which the remaining eigenvalues are relatively small and all about 
the same size. Figure 8.2 shows a scree plot for a situation with six principal 
components. 

An elbow occurs in the plot in Figure 8.2 at about i = 3. That is, the eigenvalues 
after A2 are all relatively small and about the same size. In this case, it appears, 
without any other evidence, that two (or perhaps three) sample principal compo
nents effectively summarize the total sample variance. 

Example 8.4 (Summarizing sample variability with one sample principal component) 
In a study of size and shape relationships for painted turtles, Jolicoeur and Mosi
mann [11] measured carapace length, width, and height. Their data, reproduced in 
Exercise 6.18, Table 6.9, suggest an analysis in terms of logarithms. (Jolicoeur [10] 
generally suggests a logarithmic transformation in studies of size-and-shape rela
tionships.) Perform a principal component analysis. 

3 Scree is the rock debris at the bottom of a cliff. 
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The natural logarithms of the dimensions of 24 male turtles have sample mean 
vector i' = [4.725,4.478,3.703) and covariance matrix 

[

11.072 8.019 8.160] 
S = 10-3 8.019 6.417 6.005 

8.160 6.005 6.773 

A principal component analysis (see Panel 8.1 on page 447 for the output from 
the SAS statistical software package) yields the following summary: 

Coefficients for the Principal Components 
(Correlation Coefficients in Parentheses) 

Variable el{ryj,Xk) e2 e3 
In (length) .683 (.99) -.159 -.713 

In (width) .510 (.97) -.594 .622 

In (height) .523 (.97) .788 .324 

Variance (A;): 23.30 X 10-3 .60 x'1O-3 .36 X 10-3 

Cumulative 
percentage of total 

100 variance 96.1 98.5 

A scree plot is shown ih Figure 8.3. The very distinct elbow in this plot occurs 
at i = 2. There is clearly one dominant principal component. 

The first principal component, which explains 96% of the total variance, has an 

interesting subject-matter interpretation. Since 

YI = .683 In (iength) + .510 In (width) + .523 In (height) 

= In [(iength)·683(width).51O(height).523) 

~i X 103 

20 

10 

oL---~--~==~------~ 
3 

Figure 8.3 A scree plot for the 
turtle data. 
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PANEL 8.1 SAS ANALYSIS FOR EXAMPLE 8.4 USING PROC PRINCOMP. 

title 'Principal Component Analysis'; 1 
data turtle; 
infile 'E8-4.dat'; 
input length width height; PROGRAM COMMANDS 
xl = log(length); x2 =Iog(width); x3 =Iog(height); 
proc princomp coy data = turtle out = result; 
var xl x2 x3; 

24 Observations 
3 Variables 

PRINl 
PRIN2 
PRIN3 

Principal Components Analysis 

Simple Statistics 
Xl X2 X3 

Mean 4.725443647 4.477573765 3.703185794 
StD 

Xl 

X2 

X3 

0.105223590 0.080104466 0.082296771 

I Covariance Matrix 

Xl X2 X3 

0.0110720040 -1 0.0080191419 0.0081596480 

0.0080191419 0.0064167255 I 0.0060052707 

0.0081596480 0.0060052707 0.00677275851 

Total Variance = 0.024261488 

Eigenvalues of the Covariance Matrix 1 
Eigenvalue 

0.023303 
0.000598 
0.000360 

. " 

Difference 
0.022705 
0.000238 

Eigenvectors 

. PRINl PRIN.2 
Xl 
X2 
X3 

'0.683102 -.159479 
0.510220. .,..594012 
0:572539. , > ().7884~ 

Proportion 
0.960508 
0.024661 
0.014832 

PRIN3 
-.712697 

0.62.1953 
. 0.324401 

Cumulative 
0.96051 
0.98517 
1.00000 

OUTPUT 
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the first principal component may be viewed as the In (volume) of a box with ad-
justed dimensions. For instance, the adjusted height is (height).5Z3, which ... 
in some sense, for the rounded shape of the carapace. • 

Interpretation of the Sample Principal Components 

The sample principal components have several interpretations. First, suppose the 
underlying distribution of X is nearly Ni 1', I). Then the sample principal components, 
Yj = e;(x - x) are realizations of population principal components Y; = e;(X - I' 
which have an Np(O, A) distribution. The diagonal matrix A has entries AI, Az,· " , Ap 
and (A j , e;) are the eigenvalue-eigenvector pairs of I. . . 

Also, from the sample values Xj' we can approximate I' by x and I by S. If S 
positive definite, the contour consisting of all p X 1 vectors x satisfying 

(x - X)'S-I(X - x) = cZ 

estimates the constant density contour (x - p.),I-I(X - 1') = c
2 

of the underlying 
normal density. The approximate contours can be drawn on the scatter plot to indi
cate the normal distribution that generated the data. The normality assumption is 
useful for the inference procedures discussed in Section 8.5, but it is not required 
for the development of the properties of the sample principal components summa
rized in (8-20). 

Even when the normal assumption is suspect and the scatter plot may depart 
somewhat from an elliptical pattern, we can still extract the eigenvalues from S and ob
tain the sample principal components. Geometrically, the data may be plotted as n 
points in p-space. The data can then be expressed in the new coordinates, which 
coincide with the axes of the contour of (8-24). Now, (8-24) defines .a hyperellipsoid 
that is centered at x and whose axes are given by the eigenvectors of S-I or, 
equivalently, of S. (See Section 2.3 and Result 4.1, with S in place of I.) The lengths 

of these hyperellipsoid axes are proportional to 0;, i = 1,2, ... , p, where 

Al ;:: Az ;:: ... ;:: Ap ;:: 0 are the eigenvalues of S. . 
Because ej has length 1, the absolute value of the ith principal component, 

1 yd = 1 e;(x - x) I, gives the length of the projection of the vector (x - x) on the 
unit vector ej. [See (2-8) and (2-9).] Thus, the sample principal components 
Yj = e;(x - x), i = 1,2, ... , p, lie along the axes of the hyperellipsoid, and their 
absolute values are the lengths of the projections of x - x in the directions of the 
axes ej. Consequently, the sample principal components can be viewed as the 
result of translating the origin of the original coordinate system to x and then 
rotating the coordinate axes until they pass through the scatter in the directions of 
maximum variance. 

The geometrical interpretation of the sample principal components is illustrated 
in Figure 8.~ for E. = 2. Figure 8.4(a) shows an ellipse of constant distanc~, centered 
at x, with Al > Az. The sample principal components are well determmed. They 
lie along the axes of the ellipse in the perpendicular directions of 
~ampl~ variaflce. Fjgure 8.4(b) shows a constant distance ellipse, cen~ered at x, 
Ai == Az. If A I = Az, the axes of the ellipse (circle) of constant distance are 
uniquely determined and can lie in any two perpendicular directions, including 
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"2' 

(x - xl'S-' (x - x) = c2 

(x-x)'S-'(x-x)=c2 

-------=x-,--~------~x, 

Figure 8.4 Sample principal components and ellipses of constant distance. 

directions of the original coordinate axes. Similarly, the sample principal components 
can lie in any two perpendicular directions, including those of the original coordi
nate axes. When the contours of constant distance are nearly circular or, equiva
lently, when the eigenvalues of S are nearly equal, the sample variation is homogeneous 
in all directions. It is then not possible to represent the data well in fewer than p 
dimensions. 

If the last few eigenvalues Aj are sufficiently small such that the variation in the 
corresponding ej directions is negligible, the last few sample principal components 
can often be ignored, and the data can be adequately approximated by their repre
sentations in the space of the retained components. (See Section 8.4.) 

Finally, Supplement 8A gives a further result concerning the role of the sam
ple principal components when directly approximating the mean-centered data 
Xj - x. 

Standardizing the Sample Principal Components 

Sample principal components are, in general, not invariant with respect to changes 
in scale. (See Exercises 8.6 and 8.7.) As we mentioned in the treatment of popula
tion components, variables measured on different scales or on a common scale with 
widely differing ranges are often standardized. For the sample, standardization is 
accomplished by constructing 

Xjl - XI 

~ 
XjZ - Xz 

Zj = n-I/2(Xj - x) = VS; j = 1,2, ... , n 
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The n X p data matrix of standardized observations 

[
ZI] [ZlI Z12 ... ZIP] 

~ = Z:~ = Z~l Z~2 '.' . Z? 

zn Znl Zn2 znp 

Xli - Xl Xl2 - X2 Xl p - Xp 

~ vS;; .VS;; 
X21 - Xl X22 - Xz X2p - Xp 

vs;-;- VS; VS;; 

Xnl - Xl Xn2 - Xz Xnp - Xp 

~ VS; VS;; 
yields the sample mean vector [see (3-24)] 

=0 1 Z' 1 Z' 1 z=-(I' ) =- 1=-n n n 

and sample covariance matrix [see (3-27)] 

S = _l_(Z - !n'z)'(z - !n'z) z n-1 n n 

= _l_(Z - li')'(Z - lz') 
n - 1 

=_l_Z'Z 
n - 1 

(n - l)SI1 (n - l)S12 

Sl1 ~VS; 
(n - l)S12 (n - l)s22 

n-1 ~VS; sZ2 

(n - l)Slp (n - l)s2p 

~vs;;, VS; vs;;, 

(n - l)Slp 

~~ 
(n - l)szp 

Vs;~ 

(n - 1)spp 

spp 

(8-26) 

(8-27) 

=R (8-28) 

The sample principal components of ~he standardized .observations ar:; given br, 
(8-20), with the matrix R in place of S. ~mce the observatlO?S are already centered 
by construction, there is no need to wnte the components In the form of (8-21). 
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If Zl, Z2, ... , Zn are standardized observations with covariance matrix R, the ith 
sample principal component is 

i = 1,2, ... , p 

where (Ai, e;) is the ith eigenvalue-eigenvector pair of R with 
Al ~ Az ~ ... ~ Ap ~ O. Also, 

Sample variance (Yi) = Ai i = 1,2, ... , p 
Sample covariance (Yi, Yk) ~ 0 

In addition, (8-29) 

Total (standardized) sample variance = tr(R) = p = Al + Az + ... + Ap 
and 

i,k = 1,2, ... ,p 

Using (8-29), we see that the proportion of the total sample variance explained by the ith sample principal component is 

(

Proportion of (standardiZed») i 
sample variance due to ith = --l. 

sample principal component p 
i = 1,2, ... ,p (8-30) 

A rule of thumb suggests retaining only those components whose variances Ai are greater than unity or, equivalently, only those components which, individually, explain at least a proportion 1/ p of the total variance. This rule does not have a great deal of theoretical support, however, and it should not be applied blindly. As we have mentioned, a scree plot is also useful for selecting the appropriate number of components. 

Example 8.S (Sample principal components from standardized data) The weekly rates of return for five stocks (JP Morgan, Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil) listed on the New York Stock Exchange were determined for the period January 2004 through December 2005. The weekly rates of return are defined as (current week closing price-previous week closing price )/(previous week closing price), adjusted for stock splits and dividends. The data are listed in Table 8.4 in the Exercises. The observations in 103 successive weeks appear to be independently distributed, but the rates of return across stocks are correlated, 
because as one 6xpects, stocks tend to move together in response to general economic conditions. 

Let xl, Xz, ... , Xs denote observed weekly rates of return for JP Morgan, Citibank, Wells Fargo, Royal Dutch Shell, and ExxonMobil, respectively. Then 

x' = [.0011, .0007, .0016, .0040, .0040) 
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and 

[L~ .632 .511 .115 

m] .632 1.000 .574 .322 .213 

R = .511 .574 1.000 .183 .146 

.115 .322 .183 1.000 .683 

.155 .213 .146 .683 LOoo 

We note that R is the covariance matrix of the standardized observations 

Xl - XI Xz - Xz Xs - Xs 
Zl = ~ ,Zz = VS; , ... ,Zs = ~. 

The eigenvalues and corresponding normalized eigenvectors of R, determined by a 
computer, are 

AI = 2.437, ej = [ .469, .532, .465, .387, .361) 

Az = 1.407, e2 = [-.368, -.236, -.315, .585, .606) 

A3 = .501, e) = [-.604, - .136, .772, .093, -.109) 

A4 = .400, e4 = [ .363, - .629, .289, -.381, .493) 

As = .255, e5 = [ .384, - .496, .071, .595, -.498) 

Using the standardized variables, we obtain the first two sample principal 
components: 

.h = elz = .469z1 + .532z2 + .465z3 + .387z4 + .361zs 

Yz = ezz = - .368z1 - .236z2 - .315z3 + .585z4 + .606zs 

These components, which account for 

Cl ; A2) 100% = C.437 ; 1.407) 100% = 77% 

of the total (standardized) sample variance, have interesting interpretations. The 
first component is a roughly equally weighted sum, or "index," of the five stocks. 
This component might be called a general stock-market component, or, simply, a 
market component. 

The second component represents a contrast between the banking stocks 
(JP Morgan, Citibank, Wells Fargo) and the oil stocks (Royal Dutch Shell, Exxon
Mobil). It might be called an industry component. Thus, we see that most of the 
variation in these stock returns is due to market activity and uncorrelated industry 
activity. This interpretation of stock price behavior also has been suggested by 
King [12). 

The remaining components are not easy to interpret and, collectively, represent 
variation that is probably specific to each stock. In any event, they do not explain 
much of the total sample variance. • 
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Example 8.6 (Components from a correlation matrix with a special structure) Geneticists 
are often concerned with the inheritance of characteristics that can be measured 
several times during an animal's lifetime. Body weight (in grams) for n = 150 
female mice were obtained immediately after the birth of their first four litters.4 

The sample mean vector and sample correlation matrix were, respectively, 

and 

x' = [39.88,45.08,48.11,49.95] 

[

1.000 

R = .7501 
.6329 

.6363 

.7501 .6329 

1.000 .6925 

.6925 1.000 

.7386 .6625 

The eigenvalues of this matrix are 

.6363] 

.7386 

.6625 

1.000 

Al = 3.085, A2 = .382, A3 = .342, and A4 = .217 

We note that the first eigenvalue is nearly equal to 1 + (p - 1)1' = 1 + (4 - 1) (.6854) 
= 3.056, where I' is the arithmetic average of the off-diagonal elements of R. The 

remai~ing eig~nvalues are small and about equal, although A4 is somewhat smaller 
than Az and A3 . Thus, there is some evidence that the corresponding population 
correlation matrix p may be of the "equal-correlation" form of (8-15). This notion 
is explored further in Example 8.9. 

The first principal component 

'vI = elz = .49z1 + .52zz + .49z3 + .50z4 

accounts for loo(AJ/p) % = 100(3.058/4)% = 76% of the total variance. Although 
the average postbirth weights increase over time, the variation in weights is fairly 
well explained by the first principal component with (nearly) equal coefficients. _ 

Comment. An unusually small value for the last eigenvalue from either the sam
ple covariance or correlation matrix can indicate an unnoticed linear dependency in 
the data set. If this occurs, one (or more) of the variables is redundant and should 
be deleted. Consider a situation where Xl, xz, and X3 are subtest scores and the 
total score X4 is the sum Xl + Xz + X3' Then, although the linear combination 
e'x = [1,1,1, -I)x = Xl + X2 + X3 - X4 is always zero, rounding error in the 
computation of eigenvalues may lead to a small nonzero value. If the linear 
expression relating X4 to (Xl> XZ,X3) was initially overlooked, the smallest 
eigenvalue-eigenvector pair should provide a clue to its existence. (See the discus
sion in Section 3.4, pages 131-133.) 

Thus, although "large" eigenvalues and the corresponding eigenvectors are im
portant in a principal component analysis, eigenvalues very close to zero should not 
be routinely ignored. The eigenvectors associated with these latter eigenvalues may 
point out linear dependencies in the data set that can cause interpretive and compu
tational problems in a subsequent analysis. 

4Data courtesy of 1. 1. Rutledge. 
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8.4 Graphing the Principal Components 
Plots of the principal components can reveal suspect observations, as well as provide 
checks on the assumption of normality. Since the principal components are 
combinations of the original variables, it is not unreasonable to expect them to 
nearly normal. it is often necessary to verify that the first few principal components 
are approximately normally distributed when they are to be used as the input 
for additional analyses. 

The last principal components can help pinpoint suspect observations. Each 
observation can be expressed as a linear combination 

Xj = (xjedel + (xje2)e2 + .,. + (xjep)ep 

= Yjle, + Yj2e2 + ... + Yipep 

of the complete set of eigenvectors el , ez, ... , ep of S. Thus, the magnitudes of the 
principal components determine how well the firs~ fe,w fit the o~se~vations. That is, 
YiJeJ + Yj2e2 + ... + Yj,q-leq-l differs from Xj by Yjqeq + '" + Yjpep, the square of 

whose length is YJq + "; + YJp.,Suspect,obs~rvation~ will oftednlbe SUhCh t.hllabt atlleast 
one of the coordinates Yjq' ... , Yj p contnbutmg to this square engt Wl e arge. 
(See Supplement 8A for more general approximation results.) -

The following statements summarize these ideas. 

1. To help check the normal assumption, construct scatter diagrams for pairs of the 
first few principal components. Also, make Q-Q plots from the sample values 
generated by each principal component. 

2. Construct scatter diagrams and Q-Q plots for the last few principal compo
nents, These help identify suspect observations. 

Example 8.7 (Plotting the principal components for the turtle data) W~ illustra~e 
the plotting of principal components for the data on male turtles discussed m 
Example 8.4. The three sample principal components are 

Yl = .683(XI - 4,725) + .51O(x2 - 4.478) + .523(X3 - 3,703) 

52 = -.159(XI - 4.725) - .594(X2 - 4.478) + .788(X3 - 3.703) 

5'3 = -,713(xI - 4.725) + ,622(X2 - 4.478) + .324(X3 - 3,703) 

where Xl = In (length), X2 = In (width), and X3 = In (height), respectively. 
Figure 8.5 shows the Q-Q plot for Yz and Figure 8.6 sh~ws the scatte~ plot of 

(Yl, 52), The observation for the first turtle is circled and lies 10 the l0:-ver nght cor
ner of the scatter plot and in the upper right corner of the Q-Q plot; It may be sus
pect, This point should have been checked for recording errors, or the turtle 
have been examined for structural anomalies. Apart from the first turtle, the 
plot appears to be reasonably elliptical. The plots for the other sets of principal 
ponents do not indicate any substantial departures from normality. 
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Figure 8.S A Q-Q plot for the 
second principal component Yz from 
the data on male turtles. 

Figure 8.6 Scatter plot of the 
principal components ,h and Yz of the 
data on male turtles. 

The diagnostics involving principal components apply equally well to the 
checking of assumptions for a multivariate multiple regression modeL In fact, 
having fit any model by any method of estimation, it is prudent to consider the 

or 

Residual vector = (observation vector) _ (v(ect?r of pr)edicted) 
esttmated values 

Ej = Yj - P\ 
(pXI) (pXI) (pXI) 

j = 1,2, .. " n (8-31) 

for the multivariate linear model. Principal components, derived from the 
covariance matrix of the residuals, 

1 ~(A ;;:)(A ;;: --.£.J e· - e· e· - e·), 
n - P j=l J J J J 

(8-32) 

can be scrutinized in the same manner as those determined from a random 
sample. You should be aware that there are linear dependencies among the residuals 
from a linear regression analysis, so the last eigenvalues will be zero, within round
ing error. 
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8.S large Sample Inferences 
We have seen that the eigenvalues and eigenvectors of the covariance (correlation) 
matrix are the essence of a principal component analysis. The eigenvectors deter
mine the directions of maximum variability, and the eigenvalues specify the vari
ances. When the first few eigenvalues are much larger than the rest, most of the total 
variance can be "explained" in fewer than p dimensions. 

In practice, decisions regarding the quality of the principal component 
approximation must be made on the basis of the eigenvalue-eigenvector 

pairs (Ai, Ci) extracted from S or R. Because of sainpling variation, these eigen
values and eigenvectors will differ from their underlying population counter
parts. The sampling distributions of Ai and Ci are difficult to derive and beyond 
the scope of this book. If you are interested, you can find some of these deriva
tions for multivariate normal populations in [1], [2], and [5]. We shall simply sum
marize the pertinent large sample results. 

Large Sample Properties of Ai and ei 
Currently available results concerning large sample confidence intervals for Ai and ei 
assume that the observations XI' X2, ... , Xn are a random sample from a normal 
population. It must also be assumed that the (unknown) eigenvalues of :t are dis
tinct and positive, so that Al > A2 > ... > Ap > o. The one exception is the case 
where the number of equal eigenvalues is known. Usually the conclusions for dis
tinct eigenvalues are applied, unless there is a strong reason to believe that :t has a 
special structure that yields equal eigenvalues. Even when the normal assumption is 
violated the confidence intervals obtained in this manner still provide some indica
tion of the uncertainty in Ai and Ci· 

Anderson [2] and Girshick [5] have established the following large sample distribu

tion theory for the eigenvalues A' = [Ab.··' Ap] and eigenvectors Cl,···, cp of S: 

1. Let A be the diagonal matrix of eigenvalues Ab···' Ap of:t, then Vii (A - A). 
is approximately Np(O, 2A2). 

2. Let 

then Vii (ei - ei) is approximately Np(O, E;). 

3. Each Ai is distributed independently of the elements of the associated ei· 

Result 1 implies that, for n large, the Ai are independently distributed. Moreover, 

Ai has an approximate N(Aj, 2Ar/n) distribution. Using this normal distribution, we 

obtainP[lAi - Ad:5 z(a/2)AiV271i] = 1 - a. A large sample 100(1 - a)% confi

dence interval for Ai is thus provided by 

A,· A· 
___ -!....--;=:- <: A. <: I 

(1 + z(a/2)V271i) - 1- (1 - z(a/2)v2fn) 
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where z(a/2) is the upper 100(a/2)th percentile of a standard normal distribution. 
Bonferroni-type simultaneous 100(1 - a)% intervals for m A/s are obtained by 
replacing z(a/2) with z(a/2m). (See Section 5.4.) 

Result 2 implies that the e/s are normally distributed about the corresponding 
e/s for large samples. The elements of each ei are correlated, and the correlation 
?epends to a large extent on the separation of the eigenvalues AI, A2, ... , Ap (which 
IS unknown) and the sample size n. Approximate standard errors for the coeffi
s.ients eik are given by the square rools of the diagonal elements of (l/n) Ei where 
Ei is derived from Ei by substituting A;'s for the A;'s and e;'s for the e;'s. 

Example 8.8 (Constructing a confidence interval for '\1) We shall obtain a 95% con
fidence interval for AI, the variance of the first population principal component, 
using the stock price data listed in Table 8.4 in the Exercises. 

Assume that the stock rates of return represent independent drawings from 
an N5(P,,:t) population, where :t is positive definite with distinct eigenvalues 
Al > A2 > ... > A5 > O. Since n = 103 is large, we can us~ (8-33) with i = 1 to con
struct a 95% confidence interval for Al. From Exercise 8.10, Al = .0014 and in addition, 
z(.025) = 1.96. Therefore, with 95% confidenc~, 

.0014 .0014 

( 
, (2) :5 Al :5 ,!2 or .0011:5 Al :5 .0019 

1 + 1.96 V 103 (1 - 1.96 V ~ ) • 

Whenever an eigenvalue is large, such as 100 or even 1000, the intervals gener
ated by (8-33) can be quite wide, for reasonable confidence levels, even though n is 
fairly large. In general, the confidence interval gets wider at the same rate that Ai 
gets larger. Consequently, some care must be exercised in dropping or retaining 
principal components based on an examination of the A/s. 

Testing for the Equal Correlation Structure 

The special correlation structure Cov(Xj , X k ) = Yajjakk p, or Corr (Xi, X k ) = p, 
all i ~ k, is one important structure in which the eigenvalues of :t are not distinct 
and the previous results do not apply. 

To test for this structure, let 

Ho: P = po = [~~ ~] 
(pxp)· . 

p p 1 

and 

A test of Ho versus HI may be based on a likelihood ratio statistic, but Lawley [14] 
has demonstrated that an equivalent test procedure can be constructed from the off
diagonal elements of R. 
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Lawley's procedure requires the quantities 

1 p 
rk = -- 2: 'ik k = 1,2, ... ,p; 

P - 1 i=I 
i.,k 

A (p ~ 1f[1 - (1 - r)2] 
y = ~ 2 

P - (p - 2)(1 - r) 

2 
r= ( l)2:2:rik p P - i<k 

It is evident that rk is the average of the off-diagonal elements in the kth column (or 
row) of Rand r is the overall average of the off-diag<;mal elements. 

The large sample approximate 'a-level test is to reject Ho in favor of HI if 

T = (n - :)2 [2:2: (rik - 7')2 - r ± (rk - r)2] > XtP+I)(p-2)/2(a) 
(1 - r) i<k k=l 

where XtP+I)(p-2)/2(a) is the upper (100a)th percentile of a chi-square distribution 

with (p + 1)(p - 2)/2 d.f. 

Example 8.9 (Testing for equicorrelation structure) From Example 8.6, the sample 
correlation matrix constructed from the n = 150 post-birth weights of female 
mice is 

['0 
.7501 .6329 

@

63l _ .7501 1.0 .6925 .7386 
R - .6329 .6925 1.0 .6625 

.6363 .7386 .6625 1.0 

We shall use this correlation matrix to illustrate the large sample test in (8-35). 
Here p = 4, and we set 

H,p ~ p, ~ r~ 
HJ:p '* Po 

Using (8-34) and (8-35), we obtain 

7 : :l 
p 1 p 

p p 1 

1 rI = '3 (.7501 + .6329 + .6363) = .6731, r2 = .7271, 

r3 = .6626, r4 = .6791 

r = _2_ (.7501 + .6329 + .6363 + .6925 + .7386 + .6625) = .6855 
4(3) 

2:2: (rik - r)2 = (.7501 - .6855)2 
i<k 

+ (.6329 - .6855f + ... + (.6625 - .6855)2 

= .01277 

8.6 

and 
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4 

2: (rk - 7')2 = (.6731 - .6855f + ... + (.6791 - .6855)2 = .00245 
k=I 

(4 - 1f[1 - (1 - .6855)2] 
Y = ~--'---"-----'----':~ = 2.1329 

4 - (4 - 2)(1 - .6855f 

(150 - 1) 
T = (1 ~ .6855)2 [.01277 - (2.1329)(.00245)] = 11.4 

Since (p + 1) (p - 2)/2 = 5(2)/2 = 5, the 5% critical value for the test in (8-35) is 
X~(.05) = 11.07. The value of our test statistic is approximately equal to the large 
sample 5% critical point, so the evidence against Ho (equal correlations) is strong, 
but not overwhelming. 

As we saw in Example 8.6, the smallest eigenvalues A2 , A3 , and A4 are slightly 
different, with A4 being somewhat smaller than the other two. Consequently, with 
the large sample size in this problem, small differences from the equal correlation 
structure show up as statistically significant. _ 

Assuming a multivariate normal population, a large sample test that all vari
ables are independent (all the off-diagonal elements of l: are zero) is contained in 
Exercise 8.9. 

Monitoring Quality with Principal Components 
In Section 5.6, we introduced multivariate control charts, including the quality ellipse 
and the T2 chart. Today, witlI electronic and other automated methods of data collec
tion, it is not uncommon for data to be collected on 10 or 20 process variables. Major 
chemical and drug companies report measuring over 100 process variables, including 
temperature, pressure, concentration, and weight, at various positions along the pro
duction process. Even witlI 10 variables to monitor, there are 45 pairs for which to cre
ate quality ellipses. Clearly, another approach is required to both visually display 
important quantities and still have the sensitivity to detect special causes of variation. 

Checking a Given Set of Measurements for Stability 

Let Xl, X2, ... , Xn be a random sample from a multivariate normal distribution with 
mean p. and covariance matrix l:. We consider the first two sample principal compo
nents, YiI = el(xi - x) and Yi2 = eZ(xi - x). Additional principal components 
could be considered, but two are easier to inspect visually and, of any two components, 
the first two explain tlIe largest cumulative proportion of the total sample variance. 

If a process is stable over time, so that the measured characteristics are influ
enced only by variations in common causes, then the values of the first two principal 
components should be stable. Conversely, if tlIe principal components remain stable 
over time, tlIe common effects that influence tlIe process are likely to remain con
stant. To monitor quality using principal components, we consider a two-part proce
dure. The first part of the procedure is to construct an ellipse format chart for the 
pairs of values (Yjl, Yi2) for j = 1, 2, ... , n. 
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By (8-20), the sample variance of the first principal component YI is given by the 
largest eigenvalue AI, and the sample variance of the second principal component 

is the second-largest eigenvalue '\2' The two sample components are uncorrelated, • 
so the quality ellipse for n large (see Section 5.6) reduces to the collection of pairs of.· 
possible values CYI, .rz) such that 

'2 '2 
YI + Y2 < 2( ) , ,- X2 a 
Al A2 

Example 8.10 (An ellipse format chart based on the first two principal components) 
Refer to the police department overtime data given in Table 5.8. Table 8.1 contains 
the five normalized eigenvectors and eigenvalues of the sample covariance matrix S. 

The first two sample components explain 82 % of the total variance. 
The sample values for all five components are displayed in Table 8.2. 

Table 8.1 Eigenvectors and Eigenvalues of Sample Covariance Matrix for 
Police Department Data 

Variable e) e2 e3 e4 

Appearances overtime (x) .046 -.048 .629 -.643 
Extraordinary event (xz) .039 .985 -.077 -.151 

Holdover hours (X3) -.658 .107 .582 .250 
COA hours (X4) .734 .069 .503 .397 

Meeting hours (xs) -.155 .107 .081 .586 

Aj 2,770,226 1,429,206 '628,129 221,138 

Table 8.2 Values of the Principal Components for 
the Police Department Data 

Period Yjl Yj2 Yj3 Yj4 YjS 

1 2044.9 588.2 425.8 -189.1 -209.8 
2 -2143.7 -686.2 883.6 -565.9 -441.5 
3 -177.8 -464.6 707.5 736.3 38.2 
4 -2186.2 450.5 -184.0 443.7 -325.3 
5 -878.6 -545.7 115.7 296.4 437.5 
6 563.2 -1045.4 281.2 620.5 142.7 
7 403.1 66.8 340.6 -135.5 521.2 
8 -1988.9 -801.8 -1437.3 -148.8 61.6 
9 132.8 563.7 125.3 68.2 6115 

10 -2787.3 -213.4 7.8 169.4 -202.3 
11 283.4 3936.9 -0.9 276.2 -159.6 
12 761.6 256.0 -2153.6 -418.8 28.2 
13 -498.3 244.7 966.5 -1142.3 182.6 
14 2366.2 -1193.7 -165.5 270.6 -344.9 
15 1917.8 -782.0 -82.9 -196.8 -89.9 
16 2187.7 -373.8 170.1 -84.1 -250.2 

es 
.432 

-.007 
-.392 
-.213 

.784 

99,824 
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4000 
F·igure 8.7 The 95% control ellipse 

based on the first two principal 
components of overtime hours. 

Let us construct a 95% ellipse format chart using the first two sample principal 
components and plot the 16 pairs of component values in Table 8.2. 

Although n = 16 is not large, we use x~(.05) = 5.99, and the ellipse becomes 

'z 'z :1 + :2 :5 5.99 
Al Az 

This ellipse centered at (0,0), is shown in Figure 8.7, along with the data. 
One point is out of control, because the second principal component for this 

point has a large value. Scanning Table 8.2, we see that this is the value 3936.9 for pe
riod 11. According to the entries of e2 in Table 8.1, the second principal component 
is essentially extraordinary event overtime hours. The principal component approach 
has led us to the same conclusion we came to in Example 5.9. • 

In the event that special causes are likely to produce shocks to the system, the 
second part of our two-part procedure-that is, a second chart-is required. This 
chart is created from the information in the principal components not involved in 
the ellipse format chart. 

Consider the deviation vector X - /L, and assume that X is distributed as 
Np(/L, I,). Even without the normal assumption, Xj - /L can be expressed as the 
sum of its projections on the eigenvectors of I, 

X - /L = (X - /L)'elel + (X - /L)'eZe2 

+ (X - /L)'e3e3 + ... + (X - /L)'epep 
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or 
x - p- = Yjel + Y2e2 + Y3e3 + ... + Ypep 

where Yi = (X - p-) I ei is the population ith principal c~m~onent centered to have 
mean O. The approximation to X - p- by the first two pnnclpal components has the 
form Y1el + Y2e2' This leaves an unexplained component of 

X - p- - Y1ej - Y2e2 

Let E = [el, e2, ... , epJ be the orthogonal matrix whose columns are the eigenvec
tors of~. The orthogonal transformation of the unexplained part, 

E'(X - ~ -Y,', - y~,)" m -[!]- [1] ~ m ~ UJ 
so the last p - 2 principal components are obtained as 2an orthogonal transfo~mat~on 
of the approximation errors. Rather than base the.T . chart on the approxImatIOn 
errors, we can, equivalently, base it on these last prmclpal components. Recall that 

Var (Y;) = Ai for i = 1,2, ... , P 

and Cov(Yi, Y
k

) = 0 for i "* k. Consequently, the statistic Y(2)~Y~2).Y(2)Y(2)' based 
on the last p - 2 population principal components, becomes 

Y~ Y~ Y~ _ + _ + ... + _ (8-38) 
A3 A4 Ap 

This is just the sum of the squares of p - 2 independent standard normal variables, 
A-1/2y; and so has a chi-square distribution with p - 2 degrees of freedom. 

k Ink ~erms of the sample data, the principal components and eigenval ueS must be 
estimated. Because the coefficients of the linear combinations ej are also estimates, 
the principal components do not have a normal distrib~tion even when the pop~l~
tion is normal. However, it is customary to create a T -chart based on the statistic 

'2 '2 '2 
Yj3 Yj4 Yjp T} = -;;- + -;;- + ... + -,-
A3 A4 Ap 

which involves the estimated eigenvalues and vectors. Further, it is usual to appeal 
to the large sample approximation described by (8-38) and set the upper control 

limit of the T2-chart as UCL = c2 = ~-2( a). 
This T2-statistic is based on high-dimensional data. For example, when p = 20 

variables are measured, it uses the information in the 18-dimensional space per?en
dicular to the first two eigenvectors el and e2' Still, this T2 based on the unexplamed 
variation in the original observations is reported as highly effective in picking up 

special causes of variation. 

6 

f.. 4 

2 
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Example 8.11 (A T 2-chart for the unexplained [orthogonal] overtime hours) 
Consider the quality control analysis of the police department overtime hours in 
Example 8.10. The first part of the quality monitoring procedure, the quality ellipse 
based on the first two principal components, was shown in Figure 8.7. To illustrate 
the second step of the two-step monitoring procedure, we create the chart for the 
other principal components. 

Since p = 5, this chart is based on 5 - 2 = 3 dimensions, and the upper control 
limit is X~(.05) = 7.81. Using the eigenvalues and the values of the principal com
ponentl', given in Example 8.10, we plot the time sequence of values 

'2 '2 '2 

T~ = Yj3 + Yj4 + YjS 
J ' A A 

A3 A4 As 

where the first value is T2 = .891 and so on. The T 2-chart is shown in Figure 8.8. 

F---------------------------------------~~~------------~UCL 

o --------------------------------------------------------------------------

o 5 10 15 
Period 

Figure 8.8 A T2-chart based on the last three principal components of overtime hours. 

Since points 12 and 13 exceed or are near the upper control limit, something has 
happened during these periods. We note that they are just beyond the period in 
which the extraordinary event overtime hours peaked. 

From Table 8.2, Y3j is large in period 12, and from Table 8.1, the large coefficients 
in e3 belong to legal appearances, holdover, and COA hours. Was there some adjust
ing of these other categories following the period extraordinary hours peaked? _ 

Controlling Future Values 
Previously, we considered checking whether a given series of multivariate observa
tions was stable by considering separately the first two principal components and 
then the last p - 2. Because the chi-square distribution was used to approximate 
the UCL of the T2-chart and the critical distance for the ellipse format chart, no fur
ther modifications are necessary for monitoring future values. 
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Example 8.12 (Control ellipse for future principal components) In Example 8.10, 
determined that case 11 was out of control. We drop this point and recalculate 
eigenvalues and eigenvectors based on the covariance of the remaining 15 
tions. The results are shown in Table 8.3. 

Appearances overtime (Xl) 
Extraordinary event (X2) 

Holdover hours (X3) 
COA hours (X4) 

Meeting hours (xs) 

The principal components have changed. The component consisting primarily 
extraordinary event overtime is now the third principal component and is not inclUd
ed in the chart of the first two. Because our initial sample size is only 16, dropping a 
single case can make a substantial difference. Usually, at least 50 or more observa
tions are needed, from stable operation of the process, in order to set future limits. 

Figure 8.9 gives the 99% prediction (8-36) ellipse for future pairs of values for 
the new first two principal components of overtime. The 15 stable pairs of principal 
components are also shown. 
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Figure 8.9 A 99% ellipse , 
format chart for the first two 
principal components of 
future values of overtime. 
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. In ~ome applications of multivariate control in the chemical and pharmaceutical 
mdustnes, more than 100 variables are monitored simultaneously. These include nu
merous process variables as well as quality variables. Typically, the space orthogonal 
to the first few principal components has a dimension greater than 100 and some of 
the eigenvalues are very small. An alternative approach (see [13]) to constructing a 
control chart, that avoids the difficulty caused by dividing a small squared principal 
co~ponent by a very small eigenvalue, has been successfully applied. To implement 
thIS approach, we proceed as follows. . 

For each stable observation, take the sum of squares of its unexplained component 

db j = (Xj - X - Yjlel - Yj2e2) , (Xj - X - Yjlel - Yj2e2) 

Note that, by inserting EE! = I, we also have 

which is just the sum of squares of the neglected principal components. 
Using either form, the dbj are plotted versus j to create a control chart. The 

lower limit of the chart is 0 and the upper limit is set by approximating the distribu
tion of db j as the distribution of a constant c times a chi-square random variable with 
IJ degrees of freedom. 

For the chi-square approximation, the constant c and degrees of freedom IJ are 
chosen to match the sample mean and variance of the db j, j = 1,2, ... , n. In particu
lar, we set 

and detennine 

2" 1 ~ 2 
du = - "'-' du j = C IJ 

n j=l 

The upper control limit is then cx;(a), where a = .05 or .01. 



Supplement 

THE GEOMETRY OF THE SAMPLE 

PRINCIPAL COMPONENT 
ApPROXIMATION 

In this supplement, we shall present interpretations for approximations to the data 
based on the first r sample principal components. The interpretations of both the 
p-dimensional scatter plot and the n-dimensional representation rely on the algebraic 
result that follows. We consider approximations of the form A = [ab a2, ... , an]' 
to the mean corrected data matrix (nXp) 

[Xl - X, X2 - X, ... , Xn - X]' 

The error of approximation is quantified as the sum of the np squared errors 

(SA-I) 

Result SA. I Let A be any matrix with rank(A) ~ r < min (p, n). Let Er = 
(nXp) 

[eb e2, ... , er], where ei is the ith eigenvector of S. The error of approximation sum 
of squares in (8A-l) is minimized by the choice 

so the jth column of its transpose A' is 

8j = hlel + Yj2e2 + ... + }ljrer 

466 
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where 

[Yjl, Yj2,···, YjrJ' = [el(Xj - x), e2(Xj - x), ... , e~(xj - x) l' 
are the valu~s of the first r sample principal components for the jth unit. Moreover, 

L (Xj - x - 8j)' (Xj - x - 8j) = (n - 1) (A +1 + ... + A ) 
,=1 r p 

where Ar+1 ~ ... ~ Ap are the smallest eigenvalues of S. 

proo:: C?nsider first any A whose transpose A' has columns a· that are a linear 
~~ matlOn of a flXe.d .set of r perpendicular vectors UI, ~2' ... ' Un so that 

- [u(, u2, ... , ur] satIsfies U'U = I. For fixed U x- - X-I·S be t . t db .t .. ' , s approxlma e y 
I S projectIon on the space spanned by U(, u2, ... , Ur (see Result 2A.3), or 

(Xj - X)'UIUI + (Xj - X)'U2U2 + ... + (x- - i)'u U , r r 

= uz(Xj - x) 

[

UHXj - X)l 

[UbU2, ... ,Ur] : =UU'(xj-i) 

u;(Xj - x) 

This follows because, for an arbitrary vector b-, ' 
Xj - i - Ubj = Xj - i - UU'(Xj - i) + UU'(Xj - x) - Ubj 

= (I - UU') (Xj - i) + U(U'(Xj - i) - bj) 

so the error sum of squares is 

(Xj - i - Ubj)'(xj - i - Ubj) = (Xj - i)'(1 - UV')(Xj - x) + 0 

(SA-2) 

+ (V' (Xj - x) - b j)' (U' (Xj - x) - bj) 

where the cross product vanishes because (I - UU') U = U - UU'U = 
U - U = 0 The last t . . . . _ =., !r:n IS posl~lve.unless bj IS chosen so that b- = U'(x- - i) 
and UbI UU (Xj - x) IS the projectIOn of x- - i on the plane' , 

Further, with the choice a- = Ub- = UV"( x- - x) (SA 1) b· 
n '" ' - ecomes 

L (Xj - x - UU'(Xj - i»' (x- - i - UU'(x- - -x» 
,=1 " 

n 

= 2: (Xj - i)' (I - UV') (x - i) 
,=1 ' 

= t (Xj - i)' (Xj - x) - ± (Xj - i)'UU'(x - x) (SA-3) 
,-I j=1 ' 

We are now in a position to minimize the error over choices of U b . _. h 
last term· (SA 3) B h Y maxlmlZmg t e m -. y t e properties of trace (see Result 2A.12), 

n 2: (Xj - i)'UU'(xj - x) = ± tr[(x- - i)'UU'(x- - i)] 
,=1 j=I" 

n 

= L tr[UU'(xj - i)(x- - i)'] 
j=1 ' 

= (n - 1) tr[UU'S] = (n - 1) tr[U'SU] (SA-4) 
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That is, the best choice for U maximizes the sum of the diagonal elements of U'SU. 
From (S-19), selecting DJ to maximize D1SD], the first diagonal element of U' SU, gives 
01 = el' For ~2 perpendicular to e], ~2SD2 i~m~ed by e2. [See (2-52).] Continuing, 
we find that U = [e], e2,"" er] = Er and A' = ErE;[Xl - X, X2 - x, ... , XIl - x],as 
asserted. A , " 

With this choice the ith diagonal element of U'SU is e:Sei = e:p'iei) = Ai so 
n [ n 

tr [U'siJ] = AJ + A2 + ... + Ar . Also, L (Xj - i)' (Xj - x) = tr L (Xj - i) (Xj - i)' 
j=1 j=1 

= (n - 1) tr(S) = (n - l)(Al + A2 + ... + A/?). Let U = U in (SA-3), and the 
error bound follows. • 

The p-Dimensional Geometrical Interpretation 

The geometrical interpretations involve the determination of best approximating 
planes to the p-dimensional scatter plot. The plane through the origin, determined 
by uJ, U2,"" u" consists of all points x with 

for some b 

This plane, translated to pass through a, becomes a + Ub for some b. 
We want to select the r-dimensional plane a + Ub that minimizes the sum of 

" 
squared distances L dJ between the observations Xj and the plane. If Xj is approxi-

j=1 

" mated by a + Ubj with L bj = 0,5 then 
j=1 

" L (Xj - a - Ubj)'(xj - a - Ubi) 
j=1 

n 

= L (Xj - x - Ubj + i-a)' (Xj - x - Ubj + x - a) 
j=1 

" = L (Xj - x - Ubj)' (Xj - x - Ubj) + n(x - a)' (x - a) 
j=1 

n " A " A 

2: L (Xj - x - ErE;(xj - i»'(xj - x - ErE;(xj - x» 
j=1 

by Result SA.1, since [Ublo'''' Ub,,] = A' has rank (A) :;; r. The lower bound is 
reached by taking a = x, so the plane passes through the sample mean. This plane is 
determined bye], e2"'" er' The coefficients of ek are ek(xj - x) = Jjb the kth 
sample principal component evaluated at the jth observation. . 

The approximating plane interpretation of sample principal components IS 

illustrated in Figure S.10. 
An alternative interpretation can be given. The investigator places a plane 

through x and moves it about to obtain the largest spread among the shadows of the 

5 If ~ b· = nb <F 0, use a + Ubj = (a + Ub) + U(bj - b) = a' + Ubi. 
~ J. . 
i=l 

d" 
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3 

r--"-------___ _+_ 2 Figure 8_10 The r = 2-dimensional 
plane that approximates the scatter 

n 

plot by minimizing 2: dY. 
j=J 

ob~rvati,ons. Fr':.m (8A-22, the projection of the deviation x; - i on the plane Ub is 
Vj -: l!U (Xj - x). Now, v = 0 and the sum a/the squared lengths a/the projection 
d ev la t/O I1S 

11 n 

.? vjVj = ~ (Xj - i)'UU'(xj - x) = (n - 1) tr[U'SU] 
J-1 J=1 

is maximized by U = E. Also, since v = 0, 

It n 

(n - l)S. = L (v; - v)(Vj - v)' = L V·V~ 
j=1 j=1 J J 

and this plane also maximizes the total variance 

1 [" ] 1 [" ] tr(S.) = ( _ 1) tr L Vjvj = tr L v'v· 
11 j=1 (11 - 1) ;=1 ) J 

The n-Dimensional Geometrical Interpretation 

Let ~s now consider, by columns, the approximation of the mean-centered data 
matnx by A. For: = 1, t~e ith column [Xli - Xi' X2i - Xi,' .. , X"i - X;]' is approxi
mated by a multIple cib of a fixed vector b' = [b], b2 , ..• , bIll. The square of the 
length of the error of approximation is 

n 

LT = .L (Xji - Xi - ci bj )2 
j=1 

Considering A to be of rank one we conclude from Result SA 1 that 
(nxp)' . 
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Exercises 

3 

~----... 2 ~~----------~2 

(a) Principal component of S (b) Principal component of R 

Figure 8.11 The first sample principal component,'vI' minimizes the 
sum of the squares of the distances, L r; from the deviation vectors, 
d; = [Xli - Xi, X2i - Xi,"" Xni - Xi], to a line. 

p 

minimizes the sum of squared lengths 2: LT. That is, the best direction is determined 
i=1 ' 

by the vector of values of the first principal component. This is illustrated in 
Figure 8.11( a). Note that the longer deviation vectors (the larger s;;'s) have the most 

p 

influence on the minimization of 2: LT· 
i=1 

If the variables are first standardized, the resulting vector [(Xli - Xi)/YS;;, 
(XZ' - X)/vs:. (X . - x-)/vs:.] has length n - 1 for all variables, and each 
vec~or e~erts ~~~~i infl~~nce ~n th~'choice of direction. [See Figure 8.11(b).] --

In either case, the vector b is moved around in n-space to minimize the sum of 
P z· d' the squares of the distances 2: L7. In the former case Li IS the squared Istance 

i=1 
between [Xli - Xi> XZi - Xi,"" Xni - Xi)' and its projection on the line determined 
by b. The second principal component minimizes the same quantity among all 
vectors perpendicular to the first choice. 

8.1. Determine the population principal components YI and Yz for the covariance matrix 

I = [~ ~J 
Also, calculate the proportion of the total population variance explained by the first 
principal component. 

8.2. Convert the covariance matrix in Exercise 8.1 to a correlation matrix p. 
(a) Determine the principal components YI and Y2 from p and compute the proportion 

of total population variance explained by YI . 
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(b) Compare the components calculated in Part a with those obtained in Exercise 8.1. 
Are they the same? Should they be? 

(c) Compute the correlations PYI>ZI' PYI>Z2' and PY2,z!, 

8.3. Let 

[
2 0 0] 

1= 0 4 0 
004 

Determine the principal components YI, Y2 , and Y3' What can you say about the eigen
vectors (and principal components) associated with eigenvalues that are not distinct? 

8.4. Find the principal components and the proportion of the total population variance 
explained by each when the covariance matrix is 

1 1 
--<p<-

v2 v2 

8.S. (a) Find the eigenvalues of the correlation matrix 

[

1 P p] P = pIp 
P P 1 

Are your results consistent with (8-16) and (8-17)? 
(b) Verify the eigenvalue-eigenvector pairs for the p X P matrix p given in (8-15). 

8.6. Data on XI = sales and X2 = profits for the 10 largest companies in the world were 
listed in Exercise 1.4 of Chapter 1. 
From Example 4.12 

i = [155.60J s = [7476.45 303.62J 
14.70 ' 303.62 26.19 

(a) Determine the sample principal components and their variances for these data. (You 
may need the quadratic formula to solve for the eigenvalues of S.) 

(b) Find the proportion of the total sample variance explained by 'vI' 
(c) Sketch the constant density ellipse (x - X)'S-I(X - x) = 1.4, and indicate the 

principal components 511 and 512 on your graph. 
(d) Compute the correlation coefficients 'Yl>}(k' k = 1,2. What interpretation, if any, can 

you give to the first principal componeflt? 

8.7. Convert the covariance matrix S in Exercise 8.6 to a sample correlation matrix R. 

(a) Find the sample principal components 511, Yz and their variances. 
(b) Compute the proportion of the total sample variance explained by 511' 
(c) Compute the correlation coefficients 'YI>Zk' k = 1,2. Interpret 'vI' 
(d) Compare the components obtained in Part a with those obtained in Exercise 8.6( a). 

Given the original data displayed in Exercise 1.4, do you feel that it is better to 
determine principal components from the sample covariance matrix or sample 
correlation matrix? Explain. 
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8.8. Use the results in Example 8.5. 
(a) Compute the correlations r,;,Zk for i = 1,2 and k = 1,2, ... ,5. Do?these ~orrela- • 

tions reinforce the interpretations given to the first two components. Explam. 

(b) Test the hypothesis 

versus 

[

1 p p p 

p 1 p P 

Ho: P = Po = p p 1 p 
p p p 1 

. p p p' p 

at the 5% level of significance. List any assumptions required in carrying out this test. 

8.9. (A test that all variables are independent.) 
(a) Consider that the normal theory likelihood ratio test of Ho: :t is the diagonal matrix 

IT 
o 

0'22 

o 

Show that the test is as follows: Reject Ho if 

Is In/2 
A = --- = I R I

n/2 < c 
p n/2 TI Sji 

;=1 

For a large sample size, -2ln A is approximately X~(p-l)/~' Bartlett [3] suggests th~t 
the test statistic -2[1 - (2p + 1l)/6nJlnA be used m place of -:~lnA .. Th~s 
results in an improved chi-square approximation. The larg~ sample a CrItical pomt IS 

X
2 )1 (a) Note that testing:t = :to is the same as testmg p = I. p(p-I 2 . 

(b) Show that the likelihood ratio test of Ho: :t = 0'21 rejects Ho if 

l IT A ]n12 A. . A npl2 

I S Inl2 . I geometrIC mean Aj 
,~I _ < C 

A ~ (1,(8)/ p )"'~ ~ (;, ~ i,), - [Mithm'ti' moon J 
for a large sample size, Bartlett [3] suggests that 

-2[1 - (2p2 + P + 2)/6pn) In A 

.. al 'nt is 
is approximately Xtp+2){p-1)/2' Thus, the large sample a CrItIc pO! . 

2 (a) This test is called a sphericity test, because the constant denSIty . 
X(p+2){p-l)/2 • 2 
contours are spheres when:t = 0' I. 
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Hint: 

(a) max L(JL,:t) is given by (5-10), and max L(JL, :to) is the product of the univariate 
p,};' 

likelihoods, maX(27T)-n/2O'i;n12eXP[-±(Xjj-JLY/2O'il]. Hence ILi = n-I±xjj 
J.LjUjj j=l j=l 

and o-jj = (1In) ± (Xjj - Xj)2. The divisor n cancels in A, so S may be used. 
j=1 

(b) Verify 0-2 = [± (xj1 - Xl)2 + ... + ± (Xjp - xp/J/n p under Ho. Again, 
/=1 /=1 

the divisors n cancel in the statistic, so S may be used. Use Result 5.2 to calculate the 
chi-square degrees of freedom. 

The following exercises require the use of a computer. 

8.10. The weekly rates of return for five stocks listed on the New York Stock Exchange are given 
in Table 8.4. (See the stock-price data on the following website: www.prenhal1.comlstatistics.) 
(a) Construct the sample covariance matrix S, and find the sample principal components 

in (8-20). (Note that the sample mean vector x is displayed in Example 8.5.) 
(b) Determine the proportion of the total sample variance explained by the first three 

principal components. Interpret these components. 
(c) Construct Bonferroni simultaneous 90% confidence intervals for the variances 

AI, A2, and A3 of the first three population components YI, Y2 , and Y3 • 

(d) Given the results in Parts a-c, do you feel that the stock rates-of-return data can be 
summarized in fewer than five dimensions? Explain. 

Table 8-4 Stock-Price Data (Weekly Rate Of Return) 

JP Wells Royal Exxon 
Week Morgan Citibank Pargo Dutch Shell Mobil 

1 0.01303 -0.00784 -0.00319 -0.04477 0.00522 
2 0.00849 0.01669 -0.00621 0.01196 0.01349 
3 -0.01792 -0.00864 0.01004 0 -0.00614 
4 0.02156 -0.00349 0.01744 -0.02859 -0.00695 
5 0.01082 0.00372 -0.01013 0.02919 0.04098 
6 0.01017 -0.01220 -0.00838 0.01371 0.00299 
7 0.01113 0.02800 0.00807 0.03054 0.00323 
8 0.04848 -0.00515 0.01825 0.00633 0.00768 
9 -0.03449 -0.01380 -0.00805 -0.02990 -0.01081 

10 -0.00466 0.02099 -0.00608 -0.02039 -0.01267 
: : 

94 0.03732 0.03593 0.02528 0.05819 0.01697 
95 0.02380 0.00311 -0.00688 0.01225 0.02817 
96 0.02568 0.05253 0.04070 -0.03166 -0.01885 
97 -0.00606 0.00863 0.00584 0.04456 0.03059 
98 0.02174 0.02296 0.02920 0.00844 0.03193 
99 0.00337 -0.01531 -0.02382 -0.00167 -0.01723 

100 0.00336 0.00290 -0.00305 -0.00122 -0.00970 
101 0.01701 0.00951 0.01820 -0.01618 -0.00756 
102 0.01039 -0.00266 0.00443 -0.00248 -0.01645 
103 -0.01279 -0.01437 -0.01874 -0.00498 -0.01637 
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'der the census-tract dat~ listed in Table 8.5. Suppose the observations on 
S.II. Consl d' lue home were recorded in ten thousands, rather than hundred thousands, 

Xs = me Jan va . h . h I fth table by 10 
of dollars; that is, multiply all the numbers listed m t e SlXt co umn 0 e . 

C t the sample covariance matrix S for the census-tract data when 
(a) on~truc d' lue home is recorded in ten thousands of dollars. (Note that . 

Xs - me lan va . ' . . E I 
. atrix can be obtained from the covanance matnx given m xamp e 8.3 

covanance m . h f'f hid ow by 10 d th by multiplying the off-diagonal elements m t e I t co umn an r an e 
diagonal element S55 by 100. Why?) . . 

(b) Obtain the eigenvalue-eigen~e~tor pairs and the first two sample pnnclpal compo-
nents for the covariance matnx m Part a. ., . 

c Corn ute the proportion of totar variance explained .by the f~r~t two pnnclpal 
( ) p t obtained in Part b Calculate the correlatIOn coefficients, ry;.Xk' and 

~omponetnths e components if p' ossible. Compare your results with the results in' 
mterpre es f h' h . I h 

I 8 3 What. can you say about the effects 0 t IS C ange m sca e on t e . 
Exampe ., 
principal components? 

'd h . II tion data listed in Table 1.5. Your job is to summarize these data in 
Sl2ConslertealT-poU .' t I' fh • . _ 7 d' ensions if possible. Conduct a pnnclpal componen ana YSls 0 t e·· 

Tract 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

fewer ~an bP t-h thel~ovariance matrix S and the correlation matrix R. What have you 
data usmg 0 .' . f I' ? C th d t be 

d? D 't make any difference which matnx IS chosen or ana YSls. an e a a 
learne. oes I . h' . It? . d' th e or fewer dimensions? Can you mterpret t e prmclpa componen s. summarIZe m re 

Professional Employed Government Median 
Total home value 

population degree age over 16 employment 

(percent) (percent) (percent) ($100,000) 
(thousands) 

5.71 69.02 30.3 1.48 
2.67 

72.98 43.3 1.44 
2.25 4.37 

64.94 32.0 2.11 
3.12 10.27 

71.29 24.5 1.85 
5.14 7.44 

74.94 31.0 2.23 
5.54 9.25 

4.84 53.61 48.2 1.60 
5.04 

67.00 37.6 1.52 
3.14 4.82 

67.20 36.8 1.40 
2.43 2.40 

83.03 19.7 2.07 
5.38 4.30 

72.60 24.5 1.42 
7.34 2.73 

: 

1.16 78.52 23.6 1.50 
7.25 

73.59 22.3 1.65 2.93 5.44 
77.33 26.2 2.16 4.47 5.83 
79.70 20.2 1.58 

3.74 2.26 
74.58 21.8 1.72 

9.21 2.36 
86.54 17.4 2.80 

2.14 6.30 
78.84 20.0 2.33 

6.62 4.79 
5.82 71.39 27.1 1.69 

4.24 
78.01 20.6 1.55 4.71 4.72 
74.23 20.9 1.98 

6.48 4.93 

. f d' nt census tracts are likely to be correlated. That is, these 61 observations may not 
Note' ObservatIOns rom a Jace . . '. . I C plete data set available at www.prenhall.com/statJstlcs. 
constitute a random samp e. om 
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8.13. In the radiotherapy data listed in Table 1.7 (see also the radiotherapy data on the 
website www.prenhall.com/statistics). the n = 98 observations on p = 6 variables rep
resent patients' reactions to radiotherapy. 

(a) Obtain the covariance and correlation matrices Sand R for these data. 

(b) Pick one of the matrices S or R (justify your choice), and determine the eigenval
ues and eigenvectors. Prepare a table showing, in decreasing order of size, the per
cent that each eigenvalue contributes to the total sample variance. 

(c) Given the results in Part b, decide on the number of important sample principal 
components. Is it possible to summarize the radiotherapy data with a single reaction
index component? Explain. 

(d) Prepare a table of the correlation coefficients between each principal component 
you decide to retain and the original variables. If possible, interpret the components. 

8.14. Perform a principal component analysis using the sample covariance matrix of the 
sweat data given in Example 5.2. Construct a Q-Q plot for each of the important 
principal components. Are there any suspect observations? Explain. 

S.IS. The four sample standard deviations for the postbirth weights discussed in Example 8.6 
are 

v'5,';' = 32.9909, VS22 = 33.5918, Vs)) = 36.5534, and VS44 = 37.3517 

Use these and the correlations given in Example 8.6 to construct the sample covariance 
matrix S.Perform a principal component analysis using S. 

S.16. Over a period of five years in the 1990s, yearly samples of fishermen on 28 lakes in 
Wisconsin were asked to report the time they spent fishing and how many of each 
type of game fish they caught. Their responses were then converted to a catch rate per 
hour for 

Xl = Bluegill X2 = Black crappie X3 = Smallmouth bass 

X4 = Largemouth bass Xs = Walleye X6 = Northern pike 

The estimated correlation matrix (courtesy of Jodi Barnet) 

1 .4919 .2636 .4653 -.2277 .0652 
.4919 .3127 .3506 - .1917 .2045 

R= 
.2635 .3127 .4108 .0647 .2493 
.4653 .3506 .4108 -.2249 .2293 

-.2277 -.1917 .0647 -.2249 -.2144 
.0652 .2045 .2493 .2293 -.2144 1 

is based on a sample of about 120. (There were a few missing values.) 
Fish caught by the same fisherman live alongside of each other, so the data should 

provide some evidence on how the fish group. The first four fish belong to the centrar
chids, the most plentiful family. The walleye is the most popular fish to eat. 

(a) Comment on the pattern of correlation within the centrarchid family XI through X4' 

Does the walleye appear to group with the other fish? 

(b) Perform a principal component analysis using only Xl through X4' Interpret your 
results. 

(c) Perform a principal component analysis using all six variables. Interpret your results. 
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8.11. Using the data on bone mineral content in Table 1.8, perform a principal component 

analysis of S. 
8.18. The data on national track records for women are'listed in Table 1.9. 

(a) Obtain the sample correlation matrix R for these data, and determine its ~·5""·'alU". 
and eigenvectors. 

(b) Determine the first two principal components for the standardized variables. Pre
pare a table showing the correlations of the standardized variables with the 
nents, and the cumulative percentage of the total (standardized) sample 
explained by the two components. 

(c) Interpret the two principal components obtained in Part b. (Note that the first 
component is essentially a normalized unit vector and might measure the athlet
ic excellence of a given nation. The second component might measure the rela
tive strength of a nation at the various running distances.) 

(d) Rank the nations based on their score on the first principal component. Does this 
ranking correspond with your inituitive notion of athletic excellence for the various 

countries? 
8.19. Refer to Exercise 8.18. Convert the national track records for women in Table 1.9 to -

speeds measured in meters per second. Notice that the records for 800 m, 1500 m, 
3000 m, and the marathon are given in minutes. The marathon is 26.2 miles, or 
42,195 meters, long. Perform a principal components analysis using the covariance 
matrix S of the speed data. Compare the results with the results in Exercise 8.18. Do 
your interpretations of the components differ? If the nations are ranked on the basis of 
their s~ore on the first principal component, does the subsequent ranking differ from 
that in Exercise 8.18? Which analysis do you prefer? Why? 

8.20. The data on national track records -for men are listed in Table 8.6. (See also the data 
on national track records for men on the website www.prenhall.comlstatistics) Repeat 
the principal component analysis outlined in Exercise 8.18 for the men. Are the results 
consistent with those obtained from the women's data? 

8.21. Refer to Exercise 8.20. Convert the national track records for men in Table 8.6 to speeds 
measured in meters per second. Notice that the records for 800 m, 1500 m, 5000 m, 
10,000 m and the marathon are given in minutes. The marathon is 26.2 miles, or 
42,195 meters, long. Perform a principal component analysis using the covariance matrix 
S of the speed data. Compare the results with the results in Exercise 8.20. Which analysis 

do you prefer? Why? 

8.22. Consider the data on bulls in Table 1.10. Utilizing the seven variables YrHgt, FtFrBody, 
PrctFFB, Frame, BkFat, SaleHt, and Sale Wt, perform a principal component analysis 
using the covariance matrix S and the correlation matrix R. Your analysis should include 

the following: 
(a) Determine the appropriate number of components to effectively summarize the 

sample variability. Construct a scree plot to aid your determination. 

(b) Interpret the sample principal components. 
(c) Do you think it is possible to develop a "body size" or "body configuration" index 

from the data on the seven variables above? Explain. 
(d) Using the values for the first two principal components, plot the data in a two

dimensional space with YI along the vertical axis and Yz along the horizontal axis. 
Can you distinguish groups representing the three breeds of cattle? Are there any 

outliers? 
(e) Construct a Q-Q plot using the first principal component. Interpret the plot. 
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Table 8.6 National1rack Records for Men 

lOOm 200 m 400 m 800 m 1500 m 5000 m 10,000 m Marathon 
Country (s) (s) (s) (min) (min) (min) (min) (min) 

Argentina 10.23 20.37 46.18 1.77 3.68 13.33 27.65 129.57 
Australia 9.93 20.06 44.38 1.74 3.53 12.93 27.53 127.51 
Austria 10.15 20.45 45.80 1.77 3.58 13.26 27.72 132.22 
Belgium 10.14 20.19 45.02 1.73 3.57 12.83 26.87 127.20 
Bermuda 10.27 20.30 45.26 1.79 3.70 14.64 30.49 146.37 
Brazil 10.00 19.89 44.29 1.70 3.57 13.48 28.13 126.05 
Canada 9.84 20.17 44.72 1.75 3.53 13.23 27.60 130.09 
Chile 10.10 20.15 45.92 1.76 3.65 13.39 28.09 132.19 
China 10.17 20.42 45.25 1.77 3.61 13.42 28.17 129.18 
Columbia 10.29 20.85 45.84 1.80 3.72 13.49 27.88 131.17 
Cook Islands 10.97 22.46 51.40 1.94 4.24 16.70 35.38 171.26 
Costa Rica 10.32 20.96 46.42 1.87 3.84 13.75 28.81 133.23 
Czech Republic 10.24 20.61 45.77 1.75 3.58 13.42 27.80 131.57 
Denmark 10.29 20.52 45.89 1.69 3.52 13.42 27.91 129.43 
DominicanRepublic 10.16 20.65 44.90 1.81 3.73 14.31 30.43 146.00 
Finland 10.21 20.47 45.49 1.74 3.61 13.27 27.52 131.15 
France 10.02 20.16 44.64 1.72 3.48 12.98 27.38 126.36 
Germany 10.06 20.23 44.33 1.73 3.53 12.91 27.36 128.47 
Great Britain 9.87 19.94 44.36 1.70 3.49 13.01 27.30 127.13 
Greece 10.11 19.85 45.57 1.75 3.61 13.48 28.12 132.04 
Guatemala 10.32 21.09 48.44 1.82 3.74 13.98 . 29.34 132.53 
Hungary 10.08 20.11 45.43 1.76 3.59 13.45 28.03 132.10 
India 10.33 20.73 45.48 1.76 3.63 13.50 28.81 132.00 
Indonesia 10.20 20.93 46.37 1.83 3.77 14.21 29.65 139.18 
Ireland 10.35 20.54 45.58 1.75 3.56 13.07 27.78 129.15 
Israel 10.20 20.89 46.59 1.80 3.70 13.66 28.72 134.21 
Italy 10.01 19.72 45.26 1.73 3.35 13.09 27.28 127.29 
Japan 10.00 20.03 44.78 1.77 3.62 13.22 27.58 126.16 
Kenya 10.28 20.43 44.18 1.70 3.44 12.66 26.46 124.55 
Korea, South 10.34 20.41 45.37 1.74 3.64 13.84 28.51 127.20 
Korea, North 10.60 21.23 46.95 1.82 3.77 13.90 28.45 129.26 
Luxembourg 10.41 20.77 47.90 1.76 3.67 13.64 28.77 134.03 
Malaysia 10.30 20.92 46.41 1.79 3.76 14.11 29.50 149.27 
Mauritius 10.13 20.06 44.69 1.80 3.83 14.15 29.84 143.07 
Mexico 10.21 20.40 44.31 1.78 3.63 13.13 27.14 127.19 
Myanmar(Burma) 10.64 21.52 48.63 1.80 3.80 14.19 29.62 139.57 
Netherlands 10.19 20.19 45.68 1.73 3.55 13.22 27.44 128.31 
New Zealand 10.11 20.42 46.09 1.74 3.54 13.21 27.70 128.59 
Norway 10.08 20.17 46.11 1.71 3.62 13.11 27.54 130.17 
Papua New Guinea 10.40 21.18 46.77 1.80 4.00 14.72 31.36 148.13 
Philippines 10.57 21.43 45.57 1.80 3.82 13.97 29.04 138.44 
Poland 10.00 19.98 44.62 1.72 3.59 13.29 27.89 129.23 
Portugal 9.86 20.12 46.11 1.75 3.50 13.05 27.21 126.36 
Romania 10.21 20.75 45.77 1.76 3.57 13.25. 27.67 132.30 
Russia 10;11 20.23 44.60 1.71 3.54 13.20 27.90 129.16 
Samoa 10.78 21.86 49.98 1.94 4.01 16.28 34.71 161.50 
Singapore 10.37 21.14 47.60 1.84 3.86 14.96 31.32 144.22 
Spain 10.17 20.59 44.96 1.73 3.48 13.04 27.24 127.23 
Sweden 10.18 20.43 45.54 1.76 3.61 13.29 27.93 130.38 
Switzerland 10.16 20.41 44.99 1.71 3.53 13.13 27.90 129.56 
Taiwan 10.36 20.81 46.72 1.79 3.77 13.91 29.20 134.35 
Thailand 10.23 20.69 46.05 1.81 3.77 14.25 29.67 139.33 
Thrkey 10.38 21.04 46.63 1.78 3.59 13.45 28.33 130.25 
USA 9.78 19.32 43.18 1.71 3.46 12.97 27.23 125.38 

Source: lAAFlATES Track and Field Statistics Handbook for the Helsinki 2005 Olympics. Courtesy of Ottavio Castellini. 
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8.23. A naturalist for the Alaska Fish and Game Department studies grizzly bears with the 
goal of maintaining a healthy population. Measurements on n = 61 bears provided 
following summary statistics: . 

Variable Weight Body Neck Girth Head Head 
(kg) length (cm) (cm) length width 

(cm) (cm) (cm) 

Sample 
mean x 95.52 164.38 55.69 93.39 17.98 31.13 

Covariance matrix 

3266.46 1343.97 731.54 1175.50 162.68 238.37 
1343.97 721.91 324.25 537.35 80.17 117.73 
731.54 324.25 179.28 281.17 39.15 56.80 s= 

1175.50 537.35 281.17 474.98 63.73 94.85 
162.68 80.17 39.15 63.73 9.95 13.88 
238.37 117.73 56.80 94.85 13.88 21.26 

(a) Perform a principal component analysis using the covariance matrix. Can the data 
be effectively summarized in fewer than six dimensions? 

(b) Perform a principal component analysis using the correlation matrix. 
(c) Comment on the similarities and differences between the two analyses. 

8.24. Refer to Example 8.10 and the data in Table 5.8, page 240. Add the variable X6 = regular 
overtime hours whose values are (read across) 

6187 

7679 

7336 6988 6964 

8259 10954 9353 

and redo Example 8.10. 

8425 6778 
6291 4969 

5922 

4825 

7307 

6019 

8.25. Refer to the police overtime hours data in Example 8.10. Cons~ruct an .al~ern~te cont~ol 
chart, based on the sum of squares db j, to monitor the unexplaIned vanatlon m the ong
inal observations summarized by the additional principal components. 

8.26. Consider the psychological profile data in Table 4.6. Using the five var~abl~s, Indep, Sup~, 
Benev, Conform and Leader, performs a principal component analYSIS usmg the cov~n
ance matrix S and the correlation matrix R Your analysis should include the followmg: 
(a) Determine the appropriate number .of. components t~ e~ectively summarize the 

variability. Construct a scree plot to aid m your determInation. 
(b) Interpret the sample principal components. . 
(c) Using the values for the: first two principal co~pone~ts, plot the dat~ m a tW?

dimensional space with YI along the vertical aXIs and Y2 along the honzontal axiS. 
Can you distinguish groups representing the two socioeconomic levels and/or the 
two genders? Are there any outliers? .. 

(d) Construct a 95% confidence interval for Ab the variance of the first population 
principal component from the covariance matrix. 

8.27. The pulp and paper properties data is given in Table 7.7. Using the four paper variables, 
BL (breaking length), EM (elastic modulus), .SF .(Stress at f~ilure) and. BS 
strength), perform a principal component analYSIS USIng the covanance matnx Sand 
correlation matrix R. Your analysis should include the following: 
(a) Determine the appropriate number of components to effectively summarize 

variability. Construct a scree plot to aid in your determination. 
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(b) Interpret the sample principal components. 

(c) D? you t~ink it it i.s possible to develop a "paper strength" index that effectively con
tams the mformatlOn in the four paper variables? Explain. 

(d) Using the values for the first two principal components, plot the data in a two
dimensional space with YI along the vertical axis and Y2 along the horizontal axis. 
Identify any outliers in this data set. 

8.28. ~urvey data were coll.ected as part of a study to assess options for enhancing food secu
nty.through the sustaInable use of natural resources in the Sikasso region of Mali (West 
Afnca). A total of n = 76 farmers were surveyed and observations on the nine variables 

XI = Family (total number of individuals in household) 

X2 = DistRd (distance in kilometers to nearest passable road) 

X3 = Cotton (hectares of cotton planted in year 2000) 

X4 = Maize (hectares of maize planted in year 2000) 

Xs = Sorg (hectares of sorghum planted in year 2000) 

X6 = Millet (hectares of miJIet planted in year 2000) 

X7 = Bull (total number of bullocks or draft animals) 

Xs = Cattle (total); X9 = Goats (total) 

were recorded. The data are listed in Table 8.7 and on the website www.prenhall.com/statistics 
(a) Construct two-dimensional scatterplots of Family versus DistRd, and DistRd versus 

Cattle. Remove any obvious autliers from the data set. 

Table 8.7 Mali Family Farm Data 

Family DistRD Cotton Maize Sorg Millet Bull Cattle Goats 
12 80 1.5 1.00 3.0 .25 2 0 1 54 8 6.0 4.00 0 1.00 6 32 5 11 l3 .5 1.00 0 0 0 0 0 21 13 2.0 2.50 1.0 0 1 0 5 61 30 3.0 5.00 0 0 4 21 0 20 70 0 2.00 3.0 0 2 0 3 29 35 1.5 2.00 0 0 0 0 0 29 35 2.0 3.00 2.0 0 0 0 0 57 9 5.0 5.00 0 0 4 5 2 23 33 2.0 2.00 1.0 0 2 1 7 : : : : 

20 0 1.5 1.00 3.0 0 1 6 0 27 41 1.1 .25 1.5 1.50 0 3 1 18 500 2.0 1.00 1.5 .50 1 0 0 30 19 2.0 2.00 4.0 1.00 2 0 5 77 18 8.0 4.00 6.0 4.00 6 8 6 21 500 5.0 1.00 3.0 4.00 1 0 5 l3 100 .5 .50 0 1.00 0 0 4 24 100 2.0 3.00 0 .50 3 14 10 29 90 2.0 1.50 1.5 1.50 2 0 2 57 90 10.0 7.00 0 1.50 7 8 7 
Source: Data courtesy of Jay Angerer. 
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(b) Perform a principal component analysis using the correlation matrix R. Determine 
the number of components to effectively summarize the variability. Use the propor" 
tion of variation explained and a scree plot to aid in your determination. 

(c) Interpret the first five principal components. Can you identify, for example, a 
size" component? A, perhaps, "goats and distance to road" component? 

8.29. Refer to Exercise 5.28. Using the covariance matrix S for the first 30 cases of car 
assembly data, obtain the sample principal components. 
(a) Construct a 95% ellipse format chart using the first two principal components.vl 

Yz. Identify the car locations that appear to be out of control. 
(b) Construct an alternative control chart, based on the sum of squares db j, to 

the variation in the original observations summarized by the remaining four princi" 
pal components. Interpret this chart. 
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FACTOR ANALYSIS AND INFERENCE 
FOR STRUCTURED COVARIANCE 
MATRICES 

9.1 Introduction 

Factor analy~is ~as p~o~oked rather turbulent controversy throughout its history. Its 
modern begInnIngs he m the early-20th-century attempts of Karl Pearson, Charles 
Spea~m?n, a~d others to define and measure intelligence. Because of this early 
aSSOCIatIOn With constructs such as intelligence, factor analysis was nurtured and 
developed primarily by scientists interested in psychometrics. Arguments over the 
psychological interpretations of several early studies and the lack of powerful com
puting facilities impeded its initial development as a statistical method. The advent 
of high-speed computers has generated a renewed interest in the theoretical and 
computational aspects of factor analysis. Most of the original techniques have been 
~ba?doned and early controversies resolved in the wake of recent developments. It 
IS std I true, however, that each application of the technique must be examined on its 
own merits to determine its success. . 

~e e~sential purpose of factor analysis is to describe, if possible, the covariance 
relatIOnshIps a~ong many variables in terms of a few underlying, but un observable, 
rando~ quantities called factors. Basically, the factor model is motivated by the 
follOWIng argument: Suppose variables can be grouped by their correlations. That is, 
suppose all variables within a particular group are highly correlated among them
~e~ves, bu~ have relatively small correlations with variables in a different group. Then 
It IS concelvabl.e that each group of variables represents a single underlying construct, 
or factor, that IS responsible for the observed correlations. For example, correlations 
from the group of test scores in classics, French, English, mathematics, and music 
colIect.ed by Spearman suggested an underlying "intelligence" factor. A second group 
of variables, repr~se~ting physical-fitness scores, if available, might correspond to 
another factor. It IS thiS type of structure that factor analysis seeks to confirm. 

481 
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FaCtor analysis can be considered an extension of principal component analysis, 
Both can be viewed as attempts to approximate the covariance matrix l:. However 
the approximation based on the factor analysis model is more elaborate. Th~ 
primary question in factor analysis is whether the data are consistent with a 
prescribed structure. 

9.2 The Orthogonal Factor Model 
The observable random vector X,.with p components, has mean p, and C01varian,.,..' 

matrix l:. The factor model postulates that X is linearly dependent upon a few un
observable random variables Fl , F2, ... , Fm, called common factors, and p addition
al sources of variation El, E2, ... , E p' called errors or, sometimes, specific factors. 1 In 
particular, the factor an~lysis model is 

Xl - ILl = £llFl + £12F2 + ... + flmFm + El 

X 2 - IL2 = £2lF l + £22F2 + ... + f2mFm + E2 

or, in matrix notation, 

X-IL= L F + E 
(pXl) (pXm)(mXl) (pXl) 

The coefficient £ij is called the loading of the ith variable on the jth factor, so the matrix 
L is the matrix of factor loadings. Note that the ith specific factor Ei is associated only 
with the ith response Xi' The p deviations Xl - ILl, X 2 - IL2,' .. , Xp - ILp are 
expressed in terms of p + m random variables Fj, F2, . .. , Fm, El, E2, ... , E p which are 
unobservable. This distinguishes the factor model of (9-2) from the multivariate regres
sion model in (7 -23), in which the independent variables [whose position is occupied by 
Fin (9-2)] can be observed. 

With so many unobservable quantities, a direct verification of the factor model 
from observations on Xl, X 2, ... , Xp is hopeless. However, with some additional 
assumptions about the random vectors F and e, the model in (9-2) implies certain 
covariance relationships, which can be checked. 

We assume that 

E(F) = 0 , 
(mxI) 

Cov (F) = E[FF'] = I 
(mXm) 

. ["' 0 

jJ E(e) = 0 , Cov(e) = E[ee'] = 'It = ? 0/2 (9-3) 
(pXl) (pXp) : 

0 0 

1 As Maxwell [12] points out, in many investigations the E, tend to be combinations of measurement 
error and factors that are uniquely associated with the individual variables. 
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and that F and e are independent, so 

Cov(e,F) = E(eF') = 0 
(pXm) 

These assumptions and the relation in (9-2) constitute the orthogonal factor model.2 

Orthogonal Factor Model with m Common Factors 

X=p,+L F+e 
(pXl) (pXl) (pXm)(mXl) (pXl) 

ILi = mean of variable i 

Ei = ith specific factor 

Fj = jth common factor 

eij = loading ofthe ith variable on the jth factor 

The unobservable random vectors F and e satisfy the following conditions: 

F and e are independent 

E(F) = 0, Cov (F) = I 

E( e) = 0, Cov (e) = 'It, where 'I' is a diagonal matrix 

(9-4) 

Th~ orthogonal factor model implies a covariance structure for X From the 
model In (9-4), . 

so that 

(X - p,) (X - p,)' = (LF + e) (LF + e), 

= (LF + e) «LF)' + e') 

= LF(LF)' + e(LF)' + LFe' + ee' 

l: = Cov(X) = E(X - p,) (X - p,)' 

= LE(FF')L' + E(eF')L' + LE(Fe') + E(ee') 

= LL' + 'It 

according to (9-3). Also by independence, Cov (e, F) = E( e F') = 0 
Also, by the model in (9-4), (X - p,) F' = (LF + e) F' = LF F' + eF'. 

Cov(X,F) = E(X - p,)F' = LE(FF') + E(eF') = L. 

2 AllOWing. the factors F to be correlated so that Cov (F) is not diagonal ~ 
m?deL The obhque model presents some additional estimation difficulties a . 
thiS book. (See [10].) l)Y 
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Covariance Structure for the Orthogonal Factor Model 

1. Cov(X) = LL' + 'If 

or 

2. Cov(X,F) = L 

or 

Var(Xi) = e'rl + '" + Crm + I/Ii 

COv(X;,Xk) = CilCkl + .,. + CimCkm 

The model X - p. = LF + e is linear in the common factors. If the p responses
X are, in fact, related to underlying factors, but the relationship is nonlinear, such as 
in Xl - ILl = Cl1 F1F3 + Bl,X2 - IL2 = C21 F2F3 + e2,andsoforth,th~nthecovari_ 
ance structure LV + 'If given by (9-5) may not be adequate. The very lmportant as
sumption of linearity is inherent in the formulation of the traditional factor model. 

That portion of the variance of the ith variable contributed by the m common 
factors is called the ith communality. That portion of Var (XJ = (J"ii due to the spe- . 
cific factor is often called the uniqueness, or specific variance. Denoting the ith com
munality by hr, we see frOm (9-5) that 

CrI + CT2 + '" + CYm + I/Ii 
~ 

communality + specific variance 

or 

(9-6) 

and 

i = 1,2, ... , P 

The ith communality is the sum of squares of the loadings of the ith variable on the 
m common factors. 

Example 9.1 (Verifying the relation l: = LL' + 'I' for two factors) Consider the co
variance matrix 

[

19 30 

l: = 30 57 
2 5 

12 23 

2 12] 5 23 
38 47 
47 68 
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The equality 

['9 3. 2 12J [4 1] ~J + [~ 
0 0 

~J 30 57 5 23 7 2 4 7 -1 4 0 
2 5 38 47 = -1 6 [1 2 6 0 1 

12 23 47 68 1 8 0 0 
or 

l: = LL' + 'If 
may be verified by matrix algebra. Therefore, l: has the structure produced by an 
m = 2 orthogonal factor model. Since 

['" '''J [4 lJ L = C2l C22 _ 7 2 
C3l e32 - -1 6 ' 

£41 £42 1 8 

r"' 
0 0 

JJr~ 
0 0 

'If = 0 1/12 0 4 0 
0 0 1/13 0 1 
0 0 0 0 0 

the communality of Xl is, from (9-6), 

hi = cL + e1 2 = 42 + 12 = 17 

and the variance of Xl can be decomposed as 

~J 
(J"ll= (erl+Cfz) + I/Il=hr+I/Il 

or 

19 
~ 

variance 

+ 2 
'--v---' ~ 

communality + specific 
variance 

A similar breakdown occurs for the other variables. 

17 + 2 

• 
Thefactor model assumes thatthe p + pep - 1 )/2 = pep + 1 )/2 variances and 

covariances for X can be reproduced from the pm factor loadings C
ij 

and the p specif
ic variances I/Ii' When m = p, any covariance matrix l: can be reproduced exactly as 
LV [see (9-11)], so 'I' can be the zero matrix. However, it is when m is' small relativp 

to p that factor analysis is most useful. In this case, the factor model provides a"'" 
pIe" explanation of the covariation in X with fewer parameters than the pep 
parameters in l:. For example, if X contains p = 12 variables, and the factr 
(9-4) with m = 2 is appropriate, then the pep + 1)/2 = 12(13)/2 = '7~ 
l: are described in terms of the mp + p = 12(2) + 12 = 36 pararr 
the factor model. 

/ 
/ 
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Unfortunately for the factor analyst, most covariance matrices cannot be fac
tored as LL' + '11, where the number of factors m is much less than p. The follOWing 
example demonstrates one of the problems that can arise when attempting to deter
mine the parameters Cij and o/i from the variances and covariances of the observable 
variables. 

Example 9.2 (Nonexistence of a proper solution) Let p = 3 and m = 1, and suppose 
the random variables Xl> Xz, and X3 have the positive definite covariance matrix 

. [1 .9 .7] 
I = .9 1 .4 

.7 .4 1 

Using the factor model in (9-4), we obtain 

Xl - ILl = C11 Fl + El 

X z - IL2 = C21 Fl + E2 

X3 - IL3 = C31 Fl + E3 

The covariance structure in (9-5) implies that 

or 

The pair of equations 

implies that 

I = LV + '11 

.90 = C11C21 

1 = C~l + o/z 

. 70 = C11C31 

.40 == C21C31 

Substituting this result for C21 in the equation 

. 90 = C11 C21 

·70 = C11C31 

AD = C21C3l 

1 = C~1 + 0/3 

yieldS efl = 1.575, or Cl1 = ± 1.255. Since Var(Fd = 1 (by assumption) and 
Var(XI ) = 1, C11 = Cov(XI,Fd = Corr(X1 ,FI ). Now, a correlation coeffic~ent 
cannot be greater than unity (in absolute value), so, from this point of View, 
I Cll l = 1.255 is too large. Also, the equation 

1 =' Cl1 + o/l> or 0/1 = 1 - Cl1 
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gives 

0/1 = 1 - 1.575 = -.575 

which is unsatisfactory, since it gives a negative value for Var (e1) = 0/1' 
Thus, for this example with m = 1, it is possible to get a unique numerical solu

tion to the equations I = LL' + '1'. However, the solution is not consistent with 
the statistical interpretation of the coefficients, so it is not a proper solution. _ 

When m > 1, there is always some inherent ambiguity associated with the factor 
model. To see this, let T be any m X m orthogonal matrix

1 
so that TT' = T'T = I. 

Then the expression in (9-2) can be written 

where 

Since 

and 

x - p- = LF + E = LTT'F + E = L*F* + E 

L* = LT and F* = T'F 

E(F*) = T' E(F) = 0 

Cov(F*) = T'Cov(F)T = T'T = I 
(mXm) 

(9-7) 

it is impossible, on the basis of observations on X, to distinguish the loadings L from 
the loadings L*. That is, the factors F and F* = T'F have the same statistical prop
erties, and even though the loadings L* are, in general, different from the loadings 
L, they both generate the same covariance matrix I. That is, 

I = LV + '11 = LTT'L' + 'I' = (L*) (L*), + 'I' (9-8) 

This ambiguity provides the rationale for "factor rotation," since orthogonal matrices 
correspond to rotations (and reflections) of the coordinate system for X . 

Factor loadings L are determined only up to an orthogonal matrix T. Thus, the 
loadings 

L* = LT and L (9-9) 
both give the same representation. The communalities, given by the diagonal 
elements of LL' = (L*) (L*), are also unaffected by the choice of T . 

The analysis of the factor model proceeds by imposing conditions that allow 
one to uniquely estimate Land '11. The loading matrix is then rotated (multiplied 
by an orthogonal matrix), where the rotation is determined by some "ease-of
interpretation" criterion. Once the loadings and specific variances are obtained, fac
tors are identified, and estimated values for the factors themselves (called factor 
scores) are frequently constructed. 
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9.3 Methods of Estimation 

Given observations XI, x2,' .. , xn on p generally correlated variables, factor analysis. 
seeks to answer the question, Does the factor model of (9-4), with a small number of. 
factors, adequately represent the data? In essence, we tackle this statistical model_ 
building problem by trying to verify the covariance relationship in (9-5). 

The sample covariance matrix S is an estimator of the unknown population 
covariance matrix 1:. If the off-diagonal elements of S are small or those ofthe sample 
correlation matrix R essentially zero, the variables are not related, and a factor 
analysis will not prove useful. In .these circumstances, the specific factors play the . 
dominant role, whereas the major aim of factor analysis is to determine a few 
important common factors. . 

If 1: appears to deviate significantly from a diagonal matrix, then a factor model 
can be entertained, and the initial problem is one of estimating the factor loadings f.;. 

and specific variances !/Ii' We shall consider two of the most popular methods of para~ 
meter estimation, the principal component (and the related principal factor) method 
and the maximum likelihood method. The solution from either method can be 
in order to simplify the interpretation of factors, as described in Section 9.4. It is 
always prudent to try more than one method of solution; if the factor model is appro
priate for the problem at hand, the solutions should be consistent with one another. 

Current estimation and rotation methods require iterative calculations that must 
be done on a computer. Several computer programs are now available for this purpose. 

The Principal Component (and Principal Factor) Method 
The spectral decomposition of (2-16) provides us with one factoring of the covariance ma
trix 1:. Let 1: have eigenvalue-eigenvector pairs (Ai. ei) with A1 ;:=: A2 ;:=: ••• ;:=: Ap;:=: O. 
Then 

[ ~e;l .~ '.~ , '.1> VA;ei 
~ ivA,., i vA,., i··· , vA,.,] ::~~: 

(9-10) 

This fits the prescribed covariance structure for the factor analysis model having as 
many factors as variables (m = p) and specific variances !/Ii = 0 for all i. The load
ing matrix has jth column given by VAj ej. That is, we can write 

1: L L' + 0 = LV 
(pXp) (pxp)(pXp) (pXp) 

(9-11) 

Apart from the scale factor VAj, the factor loadings on the jth factor are the coeffi
cients for the jth principal component of the population. 

Although the factor analysis representation of I in (9-11) is exact, it is not par
ticularly useful: It employs as many common factors as there are variables and does 
not allow for any variation in the specific factors £ in (9-4). We prefer models that . 
explain the covaiiance structure in terms of just a few common factors. One 
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approach, when the last p - m eigenvalues are small, is to neglect the contribution 
of A,?,+lem+l e:r,+l .+ .. , + Apepe~ to 1: in (9-10). Neglecting this contribution, we 
obtam the apprOlumation 

[ ~elJ 1: == [VAr" el ! ~ e2 ! ... ! \lA,;; em] .~.~~-.. = L L' 
: (pXm) (mXp) 

\lA,;;e:r, 

(9-12) 

The appr.oxi~ate representation in (9-12) assumes that the specific factors e in (9-4) 
are of mm~r Import~nce and can also be ignored in the factoring of 1:. If specific 
factors are mcluded m the model, their variances may be taken to be the diagonal 
elements of 1: - LL', where LL' is as defined in (9-12). 

Allowing for specific factors, we find that the approximation becomes 

I==LL'+'IJt 

[ ~elj r'" 
-__ . __ •••.•••• '1'1 

_ : " ~ei 0 
- [~el : \IX; e2 i ... i \lA,;; em] ::::::c:::;:: + ~ 

~em o 
m 

where!/li = (Tu - 2: th for i = 1,2, ... , p. 
j=l 

To apply this approach to a data set xl> X2,"" Xn , it is customary first to center 
the observations by subtracting the sample mean x. The centered observations 

---r:;~l r;~J r:;~ = ;~l Xj x - : - : = : 

Xjp xp Xjp - xp 

j = 1,2, .. . ,n (9-14) 

have the same sample covariance matrix S as the original observations. 
. In cases in whi~h the units of the variables are not commensurate, it is usually 

deSirable to work WIth the standardized variables 

(Xjl - Xl) 

~ 
(Xj2 - X2) 

VS; j = 1,2, ... ,n 

(Xjp - xp) 

~ 
whose sample covariance matrix is the sample correlation matrix R of the observa
tions xl, ~2' ... , Xn • St~ndardization avoids the problems of having one variable with 
large vanance unduly mfluencing the determination of factor loadings. 
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The representation in (9-13), when applied to the sample covariance matrix S Or 
the sample correlation matrix R, is known as the principal component solution. The 
name follows from the fact that the factor loadings are the scaled coefficients of the 
first few sample principal components. (See Chapter 8.) 

Principal Component Solution of the Factor Model 
The principal component factor analysis of the sample covariance matrix S is 
specified in terms of its eigen.value-eigenvector pairs (AI, ed, (A2, ~), ... , 
(Ap, ep), where Al ~ A2 ~ ... ~ Ap. Let m < p be ,!.he number of common fac
tors. Then the matrix of estimated factor loadings {fij } is given by 

I: = [~e1 ! Vfze2 ! ... ! VA:em ] (9-15) 

The estimat~<ispecific variances are provided by the diagonal elements of the 
matrix S - LL', so 

~ = r~'~' ~] 
o 0 'iilp 

with (9-16) 

Communalities are estimated as 
~2 ~2 ~2 ~2 

hi = fi 1 + fi 2 + ... + f im (9-17) 

The prirlcipal component factor anl!lysis of the sample correlation matrix is 
obtained by starting with R in place of S. 

For the principal component solution, the estimated loadings for a given 
factor do not change as the number of factors is increased. For example, if m = 1, 

I: = [~ed, and if m = 2, I: = [~e1 ! ~ e2]' where (AI, e1) and (A2, C2) 
are the first two eigenvalue-eigenvector pairs for S (or R). 

By the d~initio~ of 'iili, the diagonal elements of S are equal to the diagonal 
elements of LV + '1'. However, the off-diagonal elements of S are not usually 
reproduced by 1:1:' + 'if. How, then, do we select the number of factors m? 

If the number of common factors is not determined by a priori considerations, 
such as by theory or the work of other researchers, the choice of m can be based on 
the estimated eigenvalues in much the same manner as with principal components. 
Consider the residual matrix 

(9-18) 

resulting from the approxinlation of S by the principal component solution. The diago
nal elements are zero, and if the other elements are also small, we may subjectively 
take the m factor model to be appropriate. AnalytiCally, we have (see Exercise 9.5) 

Sum of squared entries of (S - (1:1:' + 'if» s A~+l + ... + A~ 
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Consequently, a small value for the sum of the squares of the neglected eigenvalues 
implies a small value for the sum of the squared errors of approximation. 

Ideally, the contributions of the first few factors to the sample variances of the 
variables should be large. The contribution to the sample variance s·· from the 
.........2 It 

fIrst common factor is f il' The contribution to the total sample variance, s]] + 
S22 + ... + sPI' = tr(S), from the first common factor is then 

e1\ + e~1 + '" + e:1 = (~Cl)'(~el) = Al 

since the eigenvector el has unit length. In general, 

l
A. 

(

Proportion ~f tot~l) Sll + S22 ~ .•. + s pp 

sample vanance = 

due to jth factor Aj 
- p 

for a factor analysis of S 

(9-2D) 
for a factor analysis of R 

C~iterion (9-20) is frequently used as a heuristic device for determining the appro
pnate number of common factors. The number of common factors retained in the 
model is increased until a "suitable proportion" of the total sample variance has 
been explained. 

Another convention, frequently encountered in packaged computer programs, 
is to Set m equal to the number of eigenvalues of R greater than one if the sample 
correlation matrix is factored, or equal to the number of positive eigenvalues of S if 
the sample covariance matrix is factored. These rules of thumb should not be ap
plied indiscriminately. For example, m = p if the rule for S is obeyed, since all the 
eigenvalues are expected to be positive for large sample sizes. The best approach is 
to retain few rather than many factors, assuming that they provide a satisfactory in
terpretation of the data and yield a satisfactory fit to S or R. 

Example 9.3 (Factor analysis of consumer-preference data) In a consumer-preference 
study, a random sample of customers were asked to rate several attributes of a new 
product. The responses, on a 7-point semantic differential scale, were tabulated and 
the attribute correlation matrix constructed. The correlation matrix is presented next: 

Attribute (Variable) 1 2 3 4 5 
Taste 

TOO 
.02 ® .42 

Oll Good buy for money 2 .02 1.00 .13 .71 @ 
Flavor 3 .96 .13 1.00 .50 .11 
Suitable for snack 4 .42 .71 .50 1.00 ® 
Provides lots of energy 5 .01 .85 .11 .79 1.00 

It is clear from the circled entries in the correlation matrix that variables 1 and 
3 and variables 2 and 5 form groups. Variable 4 is "closer" to the (2,5) group than 
the (1,3) group. Given these results and the small number of variables, we might ex
pect that the apparent linear relationships between the variables can be explained in 
terms of, at most, two or three common factors. 



, I 

492 Chapter 9 Factor Analysis and Inference for Structured Covariance Matrices 

The first two eigenvalues, A1 = 2.85 and A2 = 1.81, of R are the only eigenval_ 
ues greater than unity. Moreover, m = 2 common factors will account for a cumula_ 
tive proportion 

A1 + A2 = 2.85 + 1.81 = .93 
P 5 

of the total (standardized) sample variance. The estimated factor loadings, commu
nalities, and specific variances, obtained using (9-15), (9-16), and (9-17), are given in 
Table 9.1. 

Table 9.1 

Estimated factor 
loadings 
~VI Communalities eij = Aieij 

F2 
~2 

Variable F1 hi 

1. Taste .56 .82 .98 

2. Good buy 
-.53 .88 for money .78 

3. Flavor .65 .75 .98 
4. Suitable 

for snack .94 ~.10 .89 
5. Provides 

lots of energy .80 -.54 .93 

Eigenvalues 2.85 1.81 

Cumulative 
proportion 
of total 
(standardized) 

.571 .932 sample variance 

Now, 

[

.56 

.78 

Ll> + ~ = .65 
.94 
.80 

-.53 [.56 .82] 

.75 .82 
.78 .65 

-.53 .75 
.94 .80J 

-.10 -.54 
-.10 
-.54 

o 
.12 0 . [0.02 0 

o 
o 

+ 0 0 .02 0 
o 0 o .11 

o 0 o o 

~ ] = [1.00 

.07 

.01 

1.00 

Specific 
variances 

';fri = 1 - h~ 

.97 

.11 
1.00 

.02 

.12 

.02 

.11 

.07 

.44 

.79 

.53 
1.00 

Table 9.2 

Methods of Estimation 493 

nearly reproduces the correlation matrix R. Thus, on a purely descriptive basis, we 
would judge a two-factor model with the factor loadings displayed in Table 9.1 as pro
viding a good fit to the data. The communalities (.98, .88, .98, .89, .93) indicate that the 
two factors account for a large percentage of the sample variance of each variable. 

We shall not interpret the factors at this point. As we noted in Section 9.2, the 
factors (and loadings) are unique up to an orthogonal rotation. A rotation of the 
factors often reveals a simple structure and aids interpretation. We shall consider 
this example again (see Example 9.9 and Panel 9.1) after factor rotation has been 
discussed. _ 

Example 9.4 (Factor analysis of stock-price data) Stock-price data consisting of 
n = 103 weekly rates of return on p = 5 stocks were introduced in Example 8.5. 
In that example, the first two sample principal components were obtained from R. 
Taking m = 1 and m = 2, we can easily obtain principal component solutions to 
the orthogonal factor model. Specifically, the estimated factor loadings are the 
sample principal component coefficients (eigenvectors of R), scaled by the 
square root of the corresponding eigenvalues. The estimated factor loadings, 
communalities, specific variances, and proportion of total (standardized) sample 
variance explained by each factor for the m = 1 and m = 2 factor solutions are 
available in Table 9.2. The communalities are given by (9-17). So, for example, with 

~2 ~2 ~2 2 2 
m = 2, h1 = ell + e12 = (.732) + (-.437) = .73. 

One-factor solution Two-factor solution 

Estimated factor Specific Estimated factor Specific 
loadings variances loadings . variances 

Variable F1 
~ ~2 

ifJi = 1 - hi F1 F2 -;Pi = 1- hJ 
1. JPMorgan .732 .46 .732 -.437 
2. Citibank .831 .31 .831 -.280 
3. Wells Fargo .726 .47 .726 -.374 
4. Royal Dutch Shell .605 .63 .605 .694 
5. ExxonMobil .563 .68 .563 .719 

Cumulative 
proportion of total 
(standardized) 
sample variance 
explained .487 .487 .769 

The residual matrix corresponding to the solution for m = 2 factors is 

[ 

0 -.099 -.185 
-.099 0 

R - LL' - ~ = -.185 -.134 
-.025 .014 

.056 -.054 

-.134 

o 
.003 
.006 

.056] .014 -.054 
.003 .006 
o -.156 

-.156 0 

-.025 

.27 

.23 

.33 
~15 
.17 
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The proportion of the total variance explained by the two-factor solution !.~appreciably 
larger than that for the one-factor solution. However. for. m = 2: ~L' p~oduces 
numbers that are, in general, larger than the sample correlatIons. ThIs IS partIcularly 

true for '13' . 
It seems fairly clear that the first factor, Flo represents general economIc con-

ditions and might be called a market factor. All of the stocks load highly on this f~c
tor, and the loadings are about equal. The second factor contr~sts the. banktng 
stocks with the oil stocks. (The banks have relatively large negattve loadtngs, and 
the oils have large positive loadings, on the factor.) Thus, F2 seems to differentiate 
stocks in different industries and might be called an industry factor. To 
rates of return appear to be determined by general market co?ditions a?d activi~ies 
that are unique to the different industries, as well as a res~du~ or ftrm speC:lfic · 
factor. This is essentially the conclusion reached by an exammatton of the sample 
principal components in Example 8.5. • 

A Modified Approach-the Principal Factor Solution 

A modification of the principal component approach is sometimes considered. We 
describe the reasoning in terms of a factor analysis of R, although the procedure is 
also appropriate for S. If the factor model p = LV + 'I' is correctly specified, the 
m common factors should account for the off-diagonal elements of p, as well as 
the communality portions of the diagonal elements 

Pii = 1 = IzT + "'i 
If the specific factor contribution "'i is removed from the diagonal or, equivalently, 
the 1 replaced by hr, the resulting matrix i~ p - 'I' = ~~'. . . 

Suppose, now, that initial estimates "'i of t~~ speCIfIC ~anances .are "avallabl~; 
Then replacing the ith diagonal element of R by hi = 1 - "'i . we obtam a reduced 
sample correlation matrix 

Now, apart from sampling variation, all of the elements of the reduced sampl.e cor
relation matrix Rr should be accounted for by the m common factors. In partIcular, 

Rr is factored as 

where L; = {e;j} are the estimated loadings. . . 
The principal factor method of factor analysIs employs the esttmates 

L; = [vAfe~ i vA;e; i'" i ~e~l 
m 

• "" e*2 "'i = 1 - £.J ij 
j=1 

(9-21) 
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where (A;, e7), i = 1,2, ... , m are the (largest) eigenvalue-eigenvector pairs deter
mined from R r . In turn, the communalities would then be (re)estimated by 

};*2 = ~e*? 
l £.J I) 

(9-23) 
j=1 

The principal factor solution can be obtained iteratively, with the communality esti
mates of (9-23) becoming the initial estimates for the next stage. 

In the spirit of the principal component solution, consideration of the estimated 
eigenvalues Ai, A;, ... , A; helps determine the number of common factors to retain. 
An added complication is that now some of the eigenvalues may be negative, due to 
the use of initial communality estimates. Ideally, we should take the number of com
mon factors equal to the rank of the reduced popUlation matrix. Unfortunately, this 
rank is not always well determined from R" and some judgment is necessary. 

Although there are many choices for initial estimates of specific variances, the 
most popular choice, when one is working with a correlation matrix, is "'; = 1/ rU

, 

where rii is the ith diagonal element of R-I. The initial communality estimates then 
become 

*2 • 1 
hi = 1 - "'i = 1 - -,-; 

r" 
(9-24) 

which is equal to the square of the multiple correlation coefficient between Xi and 
the other p - 1 variables. The relation to the multiple correlation coefficient means 
that h? can be calculated even when R is not of full rank. For factoring S, the initial 
specific variance estimates use Sii, the diagonal elements of S-I. Further discussion 
of these and other initial estimates is contained in [6]. 

Although the principal component method for R can be regarded as a principal 
factor method with initial communality estimates of unity, or specific variances 
equal to zero, the two are philosophically and geometrically different. (See [6].) In 
practice, however, the two frequently produce comparable factor loadings if the 
number of variables is large and the number of common factors is small. 

We do not pursue the principal factor solution, since, to our minds, the solution 
methods that have the most to recommend them are the principal component 
method and the maximum likelihood method, which we discuss next. 

The Maximum likelihood Method 

If the common factors F and the specific factors E can be assumed to be normally 
distributed, then maximum likelihood estimates of the factor loadings and specific 
variances may be obtained. When Fj and Ej are jointly normal, the observations 
Xj - /L = LFj + Ej are then normal, and from (4-16), the likelihood is 

L(/L,~) = (21T) - i, ~ '-~e -m tr[r1
( ~1 (Xj-i)(Xj-iY+n(i-IL)(i-ILY)] 

-(n-l)p (n-l) ~!) [ (... )] 
= (21T)--2-'~'--2-e\2 tr I-I {;1(xj-i)(Xj-i)' (9-25) 

X (21T) -~, ~ ,-!e -(~)(i-IL)'I-l (i-IL) 
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which depends on L and 'I' through l: = LV + qr. This mo~el is still not well 
defined, because of the multiplic;ity of choices for L made ?ossl~le by orthogonal 
transformations. It is desirable to make L well defined by lffiposlOg the computa
tionally convenient uniqueness condition 

a diagonal matrix (9-26) 

The maximum likelihood estimates I, and q, must be obtained by numerical 
maximization of (9-25). Fortunately, efficient computer programs now exist that en-
able one to get these estimates rather easily. : . 

We summarize some facts about maximum likelihood estimators and, for now, 
rely on a computer to perform the numerical details. 

Result 9.1. Let X l ,X2, ... ,Xn be a random sample from Np(JL,l:), where 
l: = LL' + 'I' is the covariance matrix for the m common factor model of (9-4). 
The maximum likelihood estimators 1" q" and jL = x maximize (9-25) subject to 
l:.jr-li being diagonal. 

so 

The maximum likelihood estimates of the communalities are 

for i = 1,2, ... , P 

'2 '2 '2 

( ) 
e·+e·+···+e Proportion oftotal sample = I} 2} P} 

variance due to jth factor Sll + S22 + .. , + s pp 

(9-27) 

(9-28) 

Proof. By the invariance property of maximum likeliho~d estim~tes (se!? Section ~.3), 
functions of L and 'I' are estimated by the same functIOns of L and '1'. In particu
lar, the communalities hr = erl + ... + erm have maximum likelihood estimates 
'2 '2 '2 • 
hi = ea + ... + eim · 

If, as in (8-10), the variables are standardized so that Z = V-
I
/2(X - JL), then 

the covariance matrix p of Z has the representation 

p = V-l/2l:V-I/2 = (V-I/2L) (V-l/2L), + V-lf2'1'V-l/2 (9-29) 

) . hi d' t' L - V-I/2Land Thus, p has a factorization analogous to (9-5 Wit o~ 109.ma fiX • - . 

specific variance matrix '1'. = V-l/2'1'V-l/2. By the lO~anance pro.perty of maXi
mum likelihood estimators, the maximum likelihood estimator of p IS 

jJ = CV-l/21,) CV-I/2I,)' + y-I/2q,y-l/2 

" .T. (9-30) = L.L~ + 'r. 

where V-l/2 and i are the maximum likelihood estimators of V-
l
/2 and L, respec

tively. (See Supplement 9A.) . .' 
As a consequence of the factorization of (9-30), whenever the maximum hkeli-

hood analysis pertains to the correlation matrix, we call 

i = 1,2, ... ,p 
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the maximum likelihood estimates of the communalities, and we evaluate the im
portance of the factors on the basis of 

. '2 '2 '2 

,(proportion of total (standardiZed») = f lj + e2j + ... + fpj (9-32) 
sample variance due to jth factor p 

To avoid more tedious notations, the preceding ei/s denote the elements of i •. 

Comment. Ordinarily, the observations are standardized, and a sample corre
lation matrix is factor analyzed. The sample correlation matrix R is inserted for 
[en - l)/njS in the likelihood function of (9-25), and the maximum likelihood 
estimates i. and .jr. are obtained using a computer. Although the likelihood in (9-25) is 
appropriate for S, not R, surprisingly, this practice is equivalent to obtaining the maxi-

mum likelihood estimates i and .jr based on the sample covariance matrix S, setting 
i. = y-l/2i and .jr. = V-l/2.jrV-I/2. Here V-I/2 is the diagonal matrix with the recip
rocal of the sample standard deviations (computed with the divisor vn) on the main 
diagonaL 

Going In the other direction, given the estimated loadings i. and specific 
variances '1'. obtained from R, we find that the resulting maximum likelihood 
estimates for a factor analysis of the co variance matrix [(n - 1 )/n j S are 

i = yl/2i. and .jr = yl/2.jr. V 1/2, or 

where Uii is the sample variance computed with divisor n. The distinction between 
divisors can be ignored with principal component solutions. _ 

The equivalency between factoring Sand R has apparently been confused in 
many published discussions of factor analysis. (See Supplement 9A.) 

Example 9.S (Factor analysis of stock-price data using the maximum likelihood 
method) The stock-price data of Examples 8.5 and 9.4 were reanalyzed assuming 
an m = 2 factor model and using the maximum likelihood method. The estimated 
factor loadings, communalities, specific variances, and proportion of total (stan
dardized) sample variance explained by each factor are in Table 9.3.3 The corre
sponding figures for the m = 2 factor solution obtained by the principal component 
method (see Example 9.4) are also provided. The communalities corresponding to 
the maximum likelihood factoring of R are of the form [see (9-31)] h;2 = ei~ + ei~' 

So, for example, 

hI = (.115)2 + (.765f = .58 

3 The maximum likelihood solution leads to a Heywood case. For this example, the solution of the 
likelihood equations give estimated loadings such that a specific variance is negative. The software pro
gram obtains a feasible solution by slightly adjusting the loadings so that all specific variance estimates 
are nonnegative. A Heywood case is suggested here by the .00 value for the specific variance of Royal 
Dutch Shell. 
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3 

Maximum likelihood Principal components 

Estimated factor Specific Estimated factor Specific 
.loadings variances loadings variances 

Variable F2 
' '2 

Fl F2 ';(,i = 1 - h? FI "'i = 1 - hi I 

.115 .755 .42 .732 -.437 .27 
.788 .27 .831 -.280 .23 

1. J PMorgan 
.322 

-374 
2. Citibank 

.182 .652 .54 .726 .33 
-.000 .00 .605 .694 .15 

3. Wells Fargo 
1.000 

-.032 .53 .563 .719 .17 
4. Royal Dutch Shell 
5. Texaco .683 

Cumulative 
proportion of total 
(standardized) 
sample variance 

.647 .487 .769 explained .323 

The residual matrix is 

[ 0 

.001 -.002 .000 ffi2] .001 0 .002 .000 -.033 

R - fi' - ,p = -.002 .002 0 .000 .001 

.000 .000 .000 0 .000 

.052 -.033 .001 .000 0 

The elements of R - LL' - ,p are much smaller than those of the residual matrix 
corresponding to the principal component factoring of R presented in Example 9.4. 
On this basis, we prefer the maximum likelihood approach and typically feature it in 
subsequent examples. 

The cumulative proportion of the total sample variance explained by the factors 
is larger for principal component factoring than for maximum likelihood factoring. 
It is not surprising that this criterion typically favors principal component factori~g. 
Loadings obtained by a principal component factor analysis are related to the prm
cipal components, which have, by design, a variance optimizing property. [See the 
discussion preceding (8-19).] . 

Focusing attention on the maximum likelihood solution, we see that all :a~
abIes have positive loadings on FI . We call this factor the market factor, as we dId m 
the principal component solution. The interpretation of the second factor is not as 
clear as it appeared to be in the principal component solution. The bank stocks have 
large positive loadings and the oil stocks have negligible loadings on the second fac
tor F

2
. From this perspective, the second factor differentiaties the bank stocks from 

the oil stocks and might be called an industry factor. Alternatively, the second factor 
might be simply called a banking factor. 

R= 

1.000 
.6386 
.4752 
.3227 
.5520 
.3262 
.3509 
.4008 
.1821 

-.0352 
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The patterns of the initial factor loadings for the maximum likelihood solution 
are constrained by the uniqueness condition that L',p-lL be a diagonal matrix. 
Therefore, useful factor patterns are often not revealed until the factors are rotated 
(see Section 9.4). • 

Example 9.6 (Factor analysis of Olympic decathlon data) Linden [11] originally con
ducted a factor analytic study of Olympic decathlon results for all 160 complete 
starts from the end of World War 11 until the mid-seventies. Following his approach 
we examine the n = 280 complete starts from 1960 through 2004. The recorded 
values for each event were standardized and the signs of the timed events changed 
so that large scores are good for all events. We, too, analyze the correlation matrix, 
which based on all 280 cases, is 

.6386 .4752 .3227 .5520 .3262 .3509 .4008 .1821 -.0352 
1.0000 .4953 .5668 .4706 .3520 .3998 .5167 .3102 .1012 

.4953 1.0000 .4357 .2539 .2812 .7926 .4728 .4682 -.0120 

.5668 .4357 1.0000 .3449 .3503 .3657 .6040 .2344 .2380 

.4706 .2539 .3449 1.0000 .1546 .2100 .4213 .2116 .4125 

.3520 .2812 .3503 .1546 1.0000 .2553 .4163 .1712 .0002 

.3998 .7926 .3657 .2100 .2553 1.0000 .4036 .4179 .0109 

.5167 .4728 .6040 .4213 .4163 .4036 1.0000 .3151 .2395 

.3102 .4682 .2344 .2116 .1712 .4179 .3151 1.0000 .0983 

.1012 -.0120 .2380 .4125 .0002 .0109 .2395 .0983 1.0000 

From a principal component factor analysis perspective, the first four eigen
values, 4.21, 1.39, 1.06, .92, of R suggest a factor solution with m = 3 or m = 4. A 
subsequent interpretation, much like Linden's original analysis, reinforces the 
choice m = 4. 

In this case, the two solution methods produced very different results. For the prin
cipal component factorization, all events except the 1,500-meter run have large positive 
loading on the first factor. This factor might be labeled general athletic ability. Factor 2, 
which loads heavily on the 400-meter run and 1,500-meter run might be called a run
ning endurance factor. The remaining factors cannot be easily interpreted to our minds. 

For the maximum likelihood method, the first factor appears to be a general ath
letic ability factor but the loading pattern is not as strong as with principal compo
nent factor solution. The second factor is primarily a strength factor because shot put 
and discus load highly on this factor. The third factor is running endurance since the 
400-meter run and 1,500-meter run have large loadings. Again, the fourth factor is 
not easily identified, althoug~ it may have something to do with jumping ability or 
leg strength. We shall return to an interpretation of the factors in Example 9.11 after 
a discussion of factor rotation. 

The four-factor principal component solution accounts for much of the total 
(standardized) sample variance, although the estimated specific variances are 
large in some cases (for example, the javelin). This suggests that some events 
might require unique or specific attributes not required for the other events. The 
four-factor maximum likelihood solution accounts for less of the total sample 
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variance, bpt, as t}1e following residual matrices indicate, the maximum likelihood 
estimates ~ and 't do a better job of reproducing R than the principal component 
estimates L and "It. 

Principal component: 

R - LL' - 'If = 

o -.082 -.006 -.021 -.068 .031 -.016 .003 .039 .062 
-.082 0 -.046 .033 -.107 -.078 -.048 -.059 .042 .006 
-.006 -.046 0 .006 -.010 -.014 -.003 -.013 -.151 .055 
-.021 .033.006 0 -.038 -.204 -.015 -.078 -.064 -.086 
-.068 -.107 -.010 -.038 0 .096 .025 -.006 .030 -.074 

.031 -.078 -.014 -.204 .096 0 .015 -.124 .119 .085 
-.016 -.048 -.003 -.015 .025 .015 o -.029 -.210 .064 

.003 . ~.059 -.013 -.078 -.006 -.124 -.029 o - .026 - .084 

.039 

.062 
.042 - .151 - .064 .030 
.006 .055 -.086 -.074 

.119 - .210 - .026 0 - .078 

.085 .064 -.084 -.078 0 

Maximum likelihood: 

R - if; - ~ = 

o .000 .000. - .000 - .000 .000 '-.000 .000 - .001 000 
.000 0 -.002 
.000 -.002 0 

-.000 .023 .004 
-.000 .005 -.001 

.000 - .017 - .009 
- .000 - .003 .000 

.000 - .030 - .001 
-.001 .047 -.001 

.000 - .024 .000 

.023 .005 .017 

.004 - .000 - .009 
o -.002 -.030 

- .002 0 - .002 
- .030 - .002 0 
- .004 .001 .022 

- .003 - .030 .047 - .024 
.000 -.001 -.001 .000 

-.004 -.006 -.042 .010 
.001 .001 .000 - .001 
.022 .069 .029 - .019 

o -.000 -.000 .000 
- .006 .001 .069 - .000 o .021 .011 
- .042 .001 .029 -.000 .021 0 -.003 

.010 -.001 -.019 .000 .011 -.003 0 

• 
A Large Sample Test for the Number of Common Factors 

The assumption of a normal population leads directly to a test of the adequacy of 
the model. Suppose the m common factor model holds. In this case l: = LV + "It, 
and testing the adequacy of the m common factor model is equivalent to testing 

Ho: l: = L L' + "It (9-33) 
(pXp) (pXm) (mxp) (pXp) 

versus Hi: l: any other positive definite matrix. When l: does not have any special 
form, the maximum of the likelihood function [see (4-18) and Result 4.11 with i = 
((n -l)/n)S = SnJisproportionalto 

(9-34) 
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Using Bartlett's correction, we evaluate the test statistic in (9-39): 

ILl: + q, I 
[n - 1 - (2p + 4m + 5)/6) In I Sn I 

[ 
(10 + 8 + 5)] 

= 103 - 1 - 6 In (1.0216) = 2.10 

Since ~[(p - m)2 - p - m) = ![(5 - 2)2 - 5 - 2) = 1, the 5% critical value 
Xy( .05) = 3.84 is not exceeded, and we fail to reject Ho. We conclude that the data do 
not contradict a two-factor model.. In fact, the observed significance level, or P-value, 
P[Xy > 2.10) == .15 implies that Ho would not be rejected at any reasonable level.. • 

~ !-arge sample variances and covariances for the maximum likelihood estimates 
£;., !J!i have been derived when these estimates have been determined from the sample 
U:variance matrix S. (See [10).) The expressions are, in general, quite complicated. 

9.4 Factor Rotation 
As we indicated in Section 9.2, all factor loadings obtained from the initialloadings 
by an orthogonal transformation have the same ability to reproduce the covariance 
(or correlation) matrix. [See (9-8).) From matrix algebra, we know that an orthogo
nal transformation corresponds to a rigid rotation (or reflection) of the coordinate 
axes. For this reason, an orthogonal transformation of the factor loadings, as well as 
the implied orthogonal transformation of the factors, is called factor rotation. 

If L is the p X m matrix of estimated factor loadings obtained by any method 
(principal component, maximum likelihood, and so forth) then 

L* = LT, where TT' = T'T = I (9-42) 

is a p X m matrix of "rotated" loadings. Moreover, the estimated covariance (or 
correlation) matrix remains unchanged, since 

(9-43) 

Equation (9-43) indicates that the residual matrix, Sn~- LL' - q, = Sn - L*L*' - q" 
~emains unchanged. Moreover, the specific variances !J!i, and hence the communalitie,!' 
hr, ~ are unaltered. Thus, from a mathematical viewpoint, it is immaterial whether L 
or L * is obtained. 

Since the originalloadings may not be readily interpretable, it is usual practice 
to rotate them until a "simpler structure" is achieved. The rationale is very much 
akin to sharpening the focus of a microscope in order to see the detail more clearly. 

Ideally, we should like to see a pattern of loadings such that each variable loads 
highly on a single factor and has small to moderate loadings on the remaining factors. 
However, it is not always possible to get this simple structure, although the rotated load
ings for the decathlon data discussed in Example 9.11 provide a nearly ideal pattern. 

We shall concentrate on graphical and analytical methods for determining an 
orthogonal rotation to a simple structure. When m = 2, or the common factors are 
considered two at a time, the transformation to a simple structure can frequently be 
determined graphically. The uncorrelated common factors are regarded as unit 
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v~ct0.fS al~ng perpe?dicular co~rdinate axes. A plot of the pairs of factor loadings 
( Cil , Cd YIel~s p pomts, each pomt corresponding to a variable. The coordinate axes 
~an tp*en be vIsually rotated through an angle--call it </>-and the new rotated load
mgs Cij are determined from the relationships 

i. = i T (9-44) (pX2) (pX2)(2X2) r" [ ~'~ sin </> ] clockwise 
-sm</> cos</> rotation 

where 

T=[COS</> -sin</> ] counterclockwise 
sin </> cos </> rotation 

~e relati?n~hip ~n (9-44) is rarely implemented in a two-dimensional graphical 
analysIs. In thIS sItuat~on, c!usters of variables are often apparent by eye, and these 
c~usters enable one to Ident~ the common factors without having to inspect the mag
mt~des. of ~e rotated loadmgs. On the other hand, for m > 2; orientations are not 
easIly v~suahz.ed, and the. magnitudes of the rotated loadings must be inspected to find 
a mean~n~ful mterpretatIOn of the original data. The choice of an orthogonal matrix T 
that satisfies an analytical measure of simple structure will be considered shortly. 

Example 9.8 (A ~irst look ~t factor rotation) Lawley and Maxwell [10] present the 
sa~ple correlatIOn matrIX of examination scores in p = 6 subject areas for 
n - 220 male students. The correlation matrix is 

Gaelic English History Arithmetic Algebra Geometry 
1.0 .439 .410 .288 .329 .248 

R= 
1.0 .351 .354 .320 .329 

1.0 .164 .190 .181 
1.0 .595 .470 

1.0 .464 

1.0 

~nd a maximum likelihood solution for m = 2 common factors yields the estimates 
m Table 9.5. 

Table 9.S 

Estimated 
factor loadings Communalities 

Variable FI F2 ~2 

hi 
1. Gaelic .553 :429 .490 2. English .568 .288 .406 3. History .392 .450 .356 
4. Arithmetic .740 -.273 .623 
5. Algebra .724 -.211 .569 
6. Geometry .595 -.132 .372 
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All the variables have positive loadings on the first factor. Lawley 
Maxwell suggest that this factor reflects the overall response of the students to in-
struction and might be labeled a general intelligence factor. Half the loadings ' : 
positive and half are negative on the second factor. A fact~r with this ?~ttern 
loadings is called a bipolar factor. (The assignment of negatIve and posltlve. ' . 
is arbitrary, because the signs of the loadings on a factor can be reversed wIthout " 
affecting the analysis.) This factor is not easily identified,but is such that individu
als who get above-average scores on the verbal tests get above-aver~ge Scores 
the factor. Individuals with above-average scores on the mathematIcal tests 
below-average scores on the factor. Perhaps this factor can be classified as 
"math,nonmath" factor. 

The factor loading pairs (fil' f i2 ) are plotted as points in Figure 9.1. The poi.nt& 
are labeled with the numbers of the corresponding variables. Also shown is a clock
wise orthogonal rotation of the coordinate axes through an a~gle Aof c/J == 20°. This 
angle was chosen so that one of the new axes passes throug~ (C41 • ( 42 )· W~~n this is 
done. all the points fall in the first quadrant (the factor loadmgs are all pOSltlve), and 
the two distinct clusters of variables are more clearly revealed. 

The mathematical test variables load highly on Fr and have negligible load
ings on F;. The first factor might be called a l/l~lhelllalica!-abiliIY factor. Similarly, 
the three verbal test variables have high loadmgs on F 2 and moderate to small 
loadings on Fr. The second factor might be l~beled a ver~al-ability factor; 
The general-intelligence factor identified initially IS submerged m the factors F I 

and F;. . . ° 
The rotated factor loadings obtained from (9-44) wIth c/J = 20 and the 

corresponding communality estimates are shown in. Table 9.6. The magnitudes of 
the rotated factor loadings reinforce the interpretatIOn of the factors suggested by 

Figure 9.1. . . 
The communality. estimates are unchanged by the orthogonal rotatIOn, smce 

ii: = iTT'i' = i*i*', and the communalities are the diagonal elements of these 

matrices. 
We point out that Figure 9.1 suggests an oblique rotation of the coordinates. 

One new axis would pass through the cluster {1,2,3} and the othe~ through the 
{4, 5, 6} group. Oblique rotations are so named because they correspon~ to a 
non rigid rotation of coordinate axes leading to new axes that are not perpendIcular. 

F2 F1 
I 

I 
.5 I 

I 
I 

I 
I 

-3 _I 

-2 

Figure 9.1 Factor rotation for test 
scores. 
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Table 9.6 

Estimated rotated 
factor loadings Communali ties 

Variable F~ F; j,~ = j,2 • • 
1. Gaelic .369 

aID 
.490 

2. English .433 .467 .406 
3. History 

l!J 
.558 .356 

4. Arithmetic .789 .001 .623 
5. Algebra .752 .054 .568 
6. Geometry .604 .083 .372 

It is apparent, however, that the interpretation of the oblique factors for this 
example would be much the same as that given previously for an orthogonal 
rotation. • 

Kaiser [9] has suggested an analytical measure of simple structure known as the 
varimax (or normal varimax) criterion. Define 'l7j = f7/hi to be the rotated coeffi
cients scaled by the square root of the communalities. Then the (normal) varimax 
procedure selects the orthogonal transformation T that makes 

1 m [ p ~*4 (p ~*2)2/ ] V = - 2: 2: £ij - 2: £ij P 
P J=I .=1 .=1 

(9-45) 

as large as possible. 
Scaling the rotated coefficients C;j has the effect of giving variables with small 

communalities relatively more weight in the determination of simple structure. 
After the transformation T is determined, the loadings 'l7j are multiplied by hi so 
that the original communalities are preserved. 

Although (9-45) looks rather forbidding, it has a simple interpretation. In 
words, 

V <X ~ (variance of squares of (scaled) loadings for) 
j=I jth factor 

(9-46) 

Effectively, maximizing V corresponds to "spreading out" the squares of the load
ings on each factor as much as possible. Therefore, we hope to find groups of large 
and negligible coefficients in any column of the rotated loadings matrix L*. 

Computing algorithms exist for maximizing V, and most popular factor analysis 
computer programs (for example, the statistical software packages SAS, SPSS, 
BMDP, and MINITAB) provide varimax rotations. As might be expected, varimax 
rotations of factor loadings obtained by different solution methods (principal com
ponents, maximum likelihood, and so forth) will not, in general, coincide. Also, the 
pattern of rotated loadings may change considerably if additional common factors 
are included in the rotation. If a dominant single factor exists, it will generally be ob
scured by any orthogonal rotation. By contrast, it can always be held fixed and the 
remaining factors rotated. 
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Example 9.9 (Rotated loadings for the consumer-preference data) Let us return to . 
the marketing data discussed in Example 9.3. The original factor loadings lODltal1~pil 
by the principal component method), the communalities; and the (varimax) 
factor loadings are shown in Table 9.7. (See the SAS statistical software output 
Panel 9.1.) 

Variable 

1. Taste 
2. Good buy for money 
3. Flavor 
4. Suitable for snack 
5. Provides lots of energy 

Cumulative proportion 
of total (standardized) 
sample variance explained 

Estimated 
factor 

loadings 
Fl F2 

.56 .82 

.78 -.52 

.65 .75 

.94 -.10 

.80 -.54 

.571 .932 

Rqtated 
estimated factor 

loadings 
F~ F; 

.507 .932 

Communalities 
hr 
.98 
.88 
.98 
.89 
.93 

It is clear that variables 2, 4, and 5 define factor 1 (high loadings on factor 1, 
small or negligible loadings on factor 2), while variables 1 and 3 define factor 2 (high 
loadings on factor 2, small or negligible loadings on factor 1). Variable 4 is most 
closely aligned with factor 1, although it has aspects of the trait represented by 
factor 2. We might call factor 1 a nutritional factor and factor 2 a taste factor. 

The factor loadings for the variables are pictured with respect to the original 
and (varimax) rotated factor· axes in Figure 9.2. • 
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Figure 9.2 Factor rotation for 
hypothetical marketing data. 
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PANEL 9.1 SAS ANALYSIS FOR EXAMPLE 9.9 USING PROC FACTOR. 

title 'Factor Analysis'; 
data consumer(type = corr); 
_type_='CORR'; 
input _name_$ taste money flavor snack energy; 
cards; 
taste 1.00 
money .02 1.00 
flavor .96 .13 1.00 PROGRAM COMMANDS 
snack .42 .71 .50 1.00 
energy .01 .85 .11 .79 1.00 

proc factor res data=consumer 
method=prin nfact=2rotate=varimax preplot plot; 
var taste money flavor snack energy; 

!Initial Factor Method: Principal Components I 
Prior Communality Estimates: ONE 

Eigenvalue 
Difference 

Proportion 
Cumulative 

TASTE 

Eigenvalues of the Correlation Matrix: Total = 5 Average = 1 

1 2 3 4 
2.853090 1.806332 0.204490 0.102409 
1.046758 1.601842 0.102081 0.068732 

0.5706 0.j61~ 1 0.0409 0.0205 
0.5706 ... 0.931~ 0.9728 0.9933 

2 factors will be retained by the NFACTOR criterion. 

TASTE 
MONEY 
FLAVOR 
SNACK 
ENERGY 

MONEY 

0.878920 

! Factor Pattern. I 
FAcrORi .. ;FAdb~2; 

0.55986 0.81610 
0.77726 .-0.52420 
0.64534' 074795 
0.·93911:.o:1o/m 
0.79821 :-0.5-4323 

FLAVOR SNACK ENERGY 

OUTPUT 

5 
0.033677 

0.0067 
1.0000 

(continues on next page) 
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PANEL 9.1 (continued) 

I Rotation Method: Varimax I 

TASTE 
MONEY 
FlAVOR 
SNACK 
ENERGY 

Rotated Factor Pattern 

FACTOR 1 FACTOR2 -
0.01970 0.98948 
0.93744 -0.01123 
0.12856 0.97947 
0.84244 0.42805 
0.96539 -0.01563 

Variance explained by each factor 

FACTOR 1 
2.537396 

FACTOR2 
2.122027 

Rotation of factor loadings is recommended particularly . for loadi~gs 
obtained by maximum likelihooq, sjpce, the initi~1 values are c.onstr~med to. s.atls~ 
the uniqueness condition that L''I'-IL be a diagonal matnx. This condition. IS 
convenient for computational purposes, but may not lead to factors that can easily 

be interpreted. 

Example 9.10 (Rotated loadings for the stock-price data) Ta?le 9.8 shows the init.ial 
and rotated maximum likelihood estimates of the factor loadmgs for the stoc~-pnce 
data of Examples 8.5 and 9.5. An m = 2 factor model is assumed. The estimated 

Table 9.8 

Maximum likelihood 
Specific estimates of facfOf-- Rotated estimated 

loadings factor loadings variances 

Variable FI F2 Fj Fi ~r = 1 - hf 

JPMorgan .115 .755 

~ 
.024 .42 

Citibank .322 .788 .821 .227 .27 

Wells Fargo .182 .652 .669 .104 .54 

Royal Dutch Shell 1.000 -.000 .118 (.993J .00 

ExxonMobil .683 .032 .113 .675 .53 

Cumulative 
proportion 
of total 
sample variance 

.323 .647 .346 .647 explained 
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specific variances and cumulative proportions of the total (standardized) sample vari
ance explained by each factor are also given. 

An interpretation of the factors suggested by the unrotated loadings was pre
sented in Example 9.5. We identified market and industry factors. 

The rotated loadings indicate that the bank stocks (JP Morgan, Citibank, and 
Wells Fargo) load highly on the first factor, while the oil stocks (Royal Dutch 
Shell and ExxonMobil) load highly on the second factor. (Although the rotated 
loadings obtained from the principal component solution are not displayed, the 
same phenomenon is observed for them.) The two rotated factors, together, 
differentiate the industries. It is difficult for us to label these factors intelligently. 
Factor 1 represents those unique economic forces that cause bank stocks to 
move together. Factor 2 appears to represent economic conditions affecting oil 
stocks. 

As we have noted, a general factor (that is, one on which all the variables load 
highly) tends to be "destroyed after rotation." For this reason, in cases where a gen
eral factor is evident, an orthogonal rotation is sometimes performed with the gen
eral factor loadings fixed.5 _ 

Example 9.11 (Rotated loadings for the Olympic decathlon data) The estimated 
factor loadings and specific variances for the Olympic decathlon data were 
presented in Example 9.6. These quantities were derived for an m = 4 factor 
model, using both principal component and maximum likelihood solution 
methods. The interpretation of all the underlying factors was not immediately 
evident. A varimax rotation [see (9-45)] was performed to see whether the rotated 
factor loadings would provide additional insights. The varimax rotated loadings 
for the m = 4 factor solutions are displayed in Table 9.9, along with the specific 
variances. Apart from the estimated loadings, rotation will affect only the distribu
tion of the proportions of the total sample variance explained by each factor. The 
cumulative proportion of the total sample variance explained for all factors does 
not change. 

The rotated factor loadings for both methods of solution point to the same 
underlying attributes, although factors 1 and 2 are not in the same order. We see 
that shot put, discus, and javelin load highly on a factor, and, following Linden 
[11], this factor might be caUed explosive arm strength. Similarly, high jump, 
llD-meter hurdles, pole vault, and-to some extent-long jump load highly on 
another factor. Linden labeled this factor explosive leg strength. The lOO-meter 
run, 400-meter run, and-again to some extent-the long jump load highly on a 
third factor. This factor could be called running speed. Finally, the I5DO-meter run 
loads heavily and the 400-meter run loads heavily on the fourth factor. Linden 
called this factor running endurance. As he notes, "The basic functions indicated in 
this study are mainly consistent with the traditional classification of track and 
field athletics." 

5Some general-purpose factor analysis programs allow one to fix loadings associated with certain 
factors and to rotate the remaining factors. 
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9.9 

Variable 

lOO-m 
run 

Long 
jump 

Shot 
put 

High 
jump 

400-m 
run 

run 

Cumulative 
proportion 
of total 
sample 
variance 
explained 

Principal component Maximum likelihood 

Estimated Estimated 
rotated Specific rotated A 

factor loadings, e7j variances factor loadings, f7j 

F; F~ F; F: ~ ~2 

rpi = 1 - hi Fi F; F; F: rpi = 1-

.182 1.8851 .205 -.139 .12 .204 .296 -.005 .01 

.291 .055 .29 .280 1.5541 1;~~L .155 .39 

.302 .252 -.097 .17 1.8831 .278 .228 -.045 .09 

.267 .221 .293 .33 .254 1.7391 .057 .242 .33 

.17 .142 .151 

.28 

.23 

-.002 . 019 .075 .15 .001 .110 -.070 

.22 .43 .62 . 76 .20 .37 .51 .62 

Plots of rotated maximum likelihood loadings for factors pairs (1,2) 
and (1,3) are displayed in Figure 9.3 on page 513. The points are generally 
grouped along the factor axes. Plots of rotated principal component loadings are 
very similar. . • 

Oblique Rotations 

Orthogonal rotations are appropriate for a factor model in which the common ~ac-" 
tors are assumed to be independent. Many investigators in social sciences conSIder 
oblique (nonorthogonal) rotations, as well as orthogonal rotations. The former are 

1.0 I-

0.8 I-

N 0.6 I-

i 
Il< 

0.4 r-

0.2 

CV 
0.0 -

L 
0.0 

Factor Scores 513 

1.0 

0 
0.8 

.... 0.6 .... 
B 2 
~ • 

0 () 0.4 

9 0.2 6 8 () • • • 
4 9 • • 0.0 

J f f J 
0.2 0.4 0.6 0.8 0.4 0.6 0.8 

Factor f Factor I 

Figure 9.3 Rotated maximum likelihood loadings for factor pairs (1, 2) and (1, 3)
decathlon data. (The numbers in the figures correspond to variables.) 

often suggested after one views the estimated factor loadings and do not follow 
from our postulated model. Nevertheless, an oblique rotation is frequently a useful 
aid in factor analysis. . 

If we regard the m common factors as coordinate axes, the point with the m 

coordinates (ei 1, ej2 , •.. , ejl1l ) represents the position of the ith variable in the factor 
space. Assuming that the variables are grouped into nonoverlapping clusters, an or
thogonal rotation to a simple structure corresponds to a rigid rotation of the coordi; 
nate axes such that the axes, after rotation, pass as closely to the clusters as possible . 
An oblique rotation to a simple structure corresponds to a nonrigid rotation of the 
coordinate system such that the rotated axes (no longer perpendicular) pass (near
ly) through the clusters. An oblique rotation seeks to express each variable in terms 
of a minimum number of factors-preferably, a single factor. Oblique rotations are 
discussed in several sources (see, for example, [6] or [10]) and will not be pursued in 
this book . 

9.S Factor Scores 
In factor analysis, interest is usually centered on the parameters in the factor model. 
However, the estimated values of the common factors, called factor scores, may also 
be required. These quantities are often used for diagnostic purposes, as well as in-
puts to a subsequent analysis. . 

Factor scores are not estimates of unknown parameters in the usual sense. 
Rather, they are estimates of values for the unobserved random factor vectors Fj , 

j = 1,2, ... , n. That is, factor scores 

fj = estimate of the values fj attained by Fj (jth case) 

'" 
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The estimation situation is complicated by the fact that the unobserved quantities f. 
and Ej outnumber the observed Xj. To overcome this difficulty, some rather heUris~ 
tic, but reasoned, approaches to the problem of estimating factor values have been 
advanced. We describe two of these approaches. 

Both of the factor score approaches have two elements in common: 

1. They treat the estimated factor loadings eij and specific variances ~i as if they 
were the true values. 

2. They involve linear transformations of the original data, perhaps centered 
or standardized. "TYpically, th.e estimated rotated loadings, rather than the . 
original estimated loadings, are used to compute factor scores. The com
putational formulas, as given in this section, do not change when rotated load
ings are substituted for unrotated loadings, so we will not differentiate 
between them. 

The Weighted Least Squares Method 

Suppose first that the mean vector p" the factor loadings L, and the specific variance 
'Ware known for the factor model 

X-p, L F+E 
(pXl) (pXJ) (pXm)(mXJ) (pxJ) 

Further, regard the specific factors E' = [Bb B2' .•• , Bp] as errors. Since 
Var( Si) = I/Ii, i = 1, 2, ... , p, need not be equal, Bartlett [2] has suggested that 
weighted least squares be used to estimate the common factor values. 

The sum of the squares of the errors, weighted by the reciprocal of their 
variances, is 

(9-47) 

Bartlett proposed choosing the estimates C of f to minimize (9-47). The solution (see 
Exercise 7.3) is 

(9-48) 

Motivated by (9-48), we take the estimates L, ~, and jL = i as the true values and 
obtain the factor scores for the jth case as 

(9-49) 

When L and ~ are determined by the maximum likelihood method, these estimates 
must satisfy the uniqueness condition, L'~-JL = ..1, a diagonal matrix. We then 
have the following: 
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Factor Scores Obtained by Weighted Least Squares 
from the Maximum Likelihood Estimates 

cj = (L'~-JL)-JL'~-l(Xj _ jL) 

= ..1-JL'~-l(x,. - i), . 12 ] = , , ... ,n 

or, if the correlation matrix is factored (9-50) 
C· = (L'~-JL )-lL,·r.-J ) z Z z Z T Z Zj 

j = 1,2, ... ,n 

where Zj = n-lj2(Xj - i), as in (8-25), and jJ = LzL~ + ~z. 

The factor scores generated by (9-50) have sample mean vector 0 and zero sample 
covariances. (See Exercise 9.16.) 

If rotated loadings L* = ~T are used in place of the originalloadings in (9-50), 
the subsequent factor scores, f,· are related to C· by C* = T'C. ,. = 1 2 n 

' }} J' " ... , . 

Com~e.nt. If the factor loadings are estimated by the principal component 
method, It IS customary to generate factor scores using an unweighted (ordinary) 
least squares procedure. Implicitly, this amounts to assuming that the I/Ii are equal or 
nearly equal. The factor scores are.then -

or 

Cj = (L~LzrrL~zj 

for standardized data. Since L = [~el i ~ e2 
we have 

For these factor scores, 

(sample mean) 

and 
1 n ~ ~ 

--~f.f'. = I 
n - 1 j=J ' , 

(sample covariance) 

(9-51) 
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Comparing (9-51) with (8-21), we see that the fj are nothing more than the first m 
(scaled) principal components, evaluated at Xj' 

The Regression Method 

Starting again with the original factor model X - 11- = LF + E, we initially treat 
the loadings matrix L and specific variance matrix 'I' as known. When the common ~ 
factors F and the specific factors ( or errors) E are jointly normally distributed with . 
meanS and covariances given by (9-3), the linear combination X - JL = LF + E has 
an Np(O, LV + '1') distribution.·(See Result 4.3.) Moreover, the joint distribution 
of (X - JL) and F is Nm+p(O, I*), where 

(pxp) i (pXm) , II = LV + 'I' iLl 

(m+p~~m+p) = .......... ;~~:;········T;:!:~ (9-52) ~_".".;,..;."--

and 0 is an (m + p) X 1. vector of zeros. Using Result 4.6, we find that the condi
tional distribution of Fix is multivariate normal with 

mean = E(Flx) = L'I-I(x - 11-) = L'(LL' + 'l'fl(X - 11-) (9-53) 

and 

covariance = Cov(Flx) = I - L'I-1L = I - L'(LL' + 'l'r1L (9-54) 

The quantities L'(LL' + 'l'rl in (9-53) are the coefficients in a (multivariate) re
gression of the factors On the variables. Estimates of these coefficients produce 
factor scores that are analogous to the estimates of the conditional mean values in 
multivariate regression analysis. (See Chapter 7.) Consequen!ly, giv~n any vector of 
observations xi' and taking the maximum likelihood estimates L and 'I' as the true val
ues, we see that the jth factor score vector is given by 

fj = i:I-I(xj - x) = L' (Li; + ,J,fl(Xj - x), j = 1,2, ... , n (9-55) 

The calculation of f in (9-55) can be simplified by using the matrix identity (see 
. ) 

Exercise 9.6) 

L' (LL' + ,J,r1 = (I + L' ,p-lifl L' ,p-l 
(mXp) (pXp) (mxm) (mXp) (pxp) 

(9-56) 

This identity allows us to compare the factor scores in (9-55), generated by the re
gression argument, with those generated by the weighted least squares procedure 

, 'LS 
[see (9-50)]. Temporarily, we denote the former by ff and the latter by fj • Then, 
using (9-56), we obtain 

fj-S = (L',J,-ILrl(1 + L',J,-IL)ff = (I + (L',p-lLrl)ff 

For maximum likelihood estimates (L',J,-li)-'l = A-I and if the elements of this 
diagonal matrix are close to zero, the regression and generalized least squares 
methods will give nearly the same factor scores. 
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In an attempt to reduce the effects of a (possibly) incorrect determination of 
the number of factors, practitioners tend to calculate the factor scores in (9-55) by 
using S (the original sample covariance matrix) instead of I = LL' + ,J,. We then 
have the following: 

Factor Scores Obtained by Regression 

f· = L'S-I(X' - x) } J' j = 1,2, ... ,n 

or, if a correlation matrix is factored, (9-58) 

j = 1,2, ... ,n 

where, see (8-25), 

Again, if rotated loadings L* = LT are used in place of the original loadings in 

(9-58), the subsequent factor scores fj are related to fj by 

j = 1,2, ... , n 

A numerical measure of agreement between the factor scores generated from 
two different calculation methods is provided by the sample correlation coefficient 
between scores On the same factor. Of the methods presented, none is recommended 
as uniformly superior. 

Example 9.12 (Computing factor scores) We shall illustrate the computation of fac
tor scores by the least squares and regression methods using the stock-price data 
discussed in Example 9.10. A maximum likelihood solution from R gave the esti
mated rotated loadings and specific variances 

[

.763 .024] [.42 

.821 .227 0 

Li = .669 .104 and,J,z = 0 
.118 .993 0 
.113 .675 0 

The vector of standardized observations, 

o 
.27 
o 
o 
o 

o 
o 

.54 
o 
o 

Z' = [.50, -1.40, -.20, -.70; 1.40] 

yields the following scores On factors 1 and 2: 

o 
o 
o 

.00 
o 1] 
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Weighted least squares (9-50):6 

f = Ci:'w-li*)-li*',j,-l = [-.61J 
z z z z z z -.61 

Regression (9-58): 

.526 
-.063 

.221 
-.026 

-.137· 
1.023 

[ 

.50] 
.011J ~.40 _ 

-.001 .20-
-.70 
1.40 

In this case, the two methods produce very similar results. All of the 
factor scores, obtained using (9-58), are plotted in Figure 9.4. 

Comment. Factor scores with a rather pleasing intuitive property can 
structed very simply. Group the variables with high (say, greater than 
absolute value) loadings on a factor. The scores for factor 1 are then 
summing the (standardized) observed values of the variables in the 
bined according to the sign of the loadings. The factor scores for 
sums of the standardized observations corresponding to variables with 

2 

• • • 

• • • '" B 0 
g 
tI. 

• • -) • 

-2 • • 

-2 -\ 

o 

• • 

• 

o 

•• 

• 

• • 

Factor) 
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•• 

• 

• 

• 

• 

• • • • • 

Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price 
(maximum likelihood estimates of the factor loadings). 

6 In order to calculate the weighted least squares factor scores, .00 in the fourth 
"'. was set to .01 so that this matrix could be inverted. 
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on factor 2, and so forth. Data reduction is accomplished by replacing the stan
dardized data by these simple factor scores. The simple factor scores are frequently 
highly correlated with the factor scores obtained by the more complex least 
squares and regression methods. 

Example 9.13 (Creating simple summary scores from factor analysis groupings) The 
principal component factor analysis of the stock price data in Example 9.4 produced 
the estimated loadings 

[

.732 

.831 
L = .726 

.605 

.563 

-.437] -.280 
-.374 

.694 

.719 
[

.852 

.851 
and L* = LT = .813 

.133 

.084 

.030] .214 

.079 

.911 

.909 

For each factor, take the loadings with largest absolute value in L as equal in magni
tude, and neglect the smaller loadings. Thus, we create the linear combinations 

!I = Xl + X2 + X3 + X4 + Xs 

fz = X4 + Xs - Xl 

as a summary. In practice, we would standardize these new variables. 
If, instead of L, we start with the varimax rotated loadings L*, the simple factor 

scores would be 

il = Xl + X2 + X3 

!2 = X4 + Xs 

The identification of high loadings and negligible loadings is really quite subjective . 
Linear compounds that make subject-matter sense are preferable. _ 

Although multivariate normality is often assumed for the variables in a factor 
analysis, it is very difficult to justify the assumption for a large number of variables . 
As we pointed out in Chapter 4, marginal transformations may help. Similarly, the 
factor scores mayor may not be normally distributed. Bivariate scatter plots of fac
tor scores can produce all sorts of nonelliptical shapes. Plots of factor scores should 
be examined prior to using these scores in other analyses. They can reveal outlying 
values and the extent of the (possible) nonnormality . 

Perspectives and a Strategy for Factor Analysis 
There are many decisions that must be made in any factor analytic study. Probably 
the most important decision is the choice of m, the number of common factors. 
Although a large sample test of the adequacy of a model is available for a given rn, it 
is suitable only for data that are approximately normally distributed. Moreover, the 
test will most assuredly reject the model for small rn if the number of variables and 
observations is large. Yet this is the situation when factor analysis provides a useful 
approximation. Most often, the final choice of m is based on some combination of 
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(1) the proportion of the sample variance explained, (2) subject-matter knowledge, 
and (3) the "reasonableness" of the results. 

The choice of the solution method and type of rotation is a less crucial deci
sion. In fact, the most satisfactory factor analyses are those in which rotations are 
tried with more than one method and all the results substantially confirm the same 

factor structure. 
At the present time, factor analysis still maintains the flavor of an art, and no 

single strategy should yet be "chiseled into stone." We suggest and illustrate one 

reasonable option: 

1. Perform a principal component factor analysis. This method is particularly 
appropriate for a first pass through the data. (It is not required that R or S be 

nonsingular. ) 
(a) Look for suspicious observations by plotting the factor scores. Also, 

calculate standardized scores for each observation and squared distances as 
described in Section 4.6. 

(b) Try a varimax rotation. 

2. Perform a maximum likelihood factor analysis, including a varimax rotation. 

3. Compare the solutions obtained from the two factor analyses. 

(8) Do the loadings group in the same manner? 
(b) Plot factor scores obtained for principal components against scores from 

the maximum likelihood analysis. 

4. Repeat the first three steps for other numbers of common factors m. Do extra fac
tors necessarily contribute to the understanding and interpretation of the data? 

5. For large data sets, split them in half and perform a factor analysis on each part. 
Compare the two results with each other and with that obtained from the com
plete data set to check the stability of the solution. (The data might be divided 
by placing the first half of the cases in one group and the second half of the 
cases in the other group. This would reveal changes over time.) 

Example 9.14 (Factor analysis of chicken-bone data) We present the results of sev
eral factor analyses on bone and skull measurements of white leghorn fowl. The 
original data were taken from Dunn [5]. Factor analysis of Dunn's data was orig
inally considered by Wright [15], who started his analysis from a different corre
lation matrix than the one we use. 

The full data set consists of n = 276 measurements on bone dimensions: 

Head: 

Leg: 

Wing: 

{
Xl = skull length 
X 2 = skull breadth 

{
X3 = femurlength 
X 4 = tibia length 

{
X5 = humerus length 
X6 = ulna length 
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The sample correlation matrix 

1.000 .505 .569 .602 .621 .603 
.505 1.000 .422 .467 .482 .450 

R= 
.569 .422 1.000 .926 .877 . . 878 
.602 .467 .926 1.000 .874 .894 
.621 .482 .877 .874 1.000 .937 
.603 .450 .878 .894 .937 1.000 

was factor analyzed by the principal component and maximum likelihood methods 
for an m = 3 factor model. The results are given in Table 9.10.7 

Table 9.10 Factor Analysis of Chicken-Bone Data 

Principal Component 

Estimated factor loadings Rotated estimated loadings 
Variable Fl F2 F3 F~ Fi F; ~i 

1. Skull length .741 .350 .573 .355 .244 (.902) .00 
2. Skull breadth .604 .720 -.340 ~ (.949) .211 .00 
3. Femur length .929 -.233 -.075 .921 .164 .218 .08 
4. Tibia length .943 -.175 -.067 .904 .212 .252 .08 
5. Humeruslength .948 -.143 -.045 .888 .228 .283 .08 
6. Ulna length .945 -.189 -.047 ~ .192 .264 .07 

Cumulative 
proportion of 
total (standardized) 
sample variance 
explained .743 .873 .950 .576 .763 .950 

Maximum Likelihood 

Estimated factor loadings Rotated estimated loadings 
Variable Fl F2 F3 F~ Fi F; If, 

1. Skull length .602 .214 .286 .467 (-506 ) .128 .51 
2. Skull breadth .467 .177 .652 ~ .792 .050 .33 
3. Femur length .926 .145 -.057 .890 .289 .084 .12 
4. Tibia length 1.000 .000 -.000 .936 .345 -.073 .00 
5. Humerus length .874 .463 -.012 .831 .362 .396 .02 
6. Ulna length .894 .336 -.039 ~ .325 .272 .09 

Cumulative 
proportion of 
total (standardized) 
sample variance 
explained .667 .738 .823 .559 .779 .823 

. 7 Notice the estimated specific variance of .00 for tibia length in the maximum likelihood solution. 
TIlls su.ggests that maximizing the likelihood function may produce a Heywood case. Readers attempting ~ 
to replicate our results should try the Hey(wood) option if SAS or similar software is used. 
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After rotation, the two methods of solution appear to give somewhat different 
results. Focusing our attention on the principal component method and the cumula_ 
tive proportion of the total sample variance explained, we see that a three-factor so
lution appears to be warranted. The third factor explains a "significant" amount of 
additional sample variation. The first factor appears to be a body-size factor domi
nated by wing and leg dimensions. The second and third factors, collectively, repre
sent skull dimensions and might be given the same names as the variables, skull 
breadth and skull length, respectively. 

The rotated maximum likelihood factor loadings are consistent with those gen
erated by the principal component method for the first factor, but not for factors 2 . 
and 3. For the maximum likelihood method, the second factor appears to represent 
head size. The meaning of the third factor is unclear, and it is probably not needed. 

Further support for retaining three or fewer factors is provided by the resid~al 
matrix obtained from the maximum likelihood estimates: 

.000 
-.000 .000 

R-ii:-~ = 
-.003 .001 .000 

z z z .000 .000 .000 .000 
-.001 .000 .000 .000 .000 

.004 -.001 -.001 .000 -.000 .000 

All of the entries in this matrix are very small. We shall pursue the m = 3 factor 
model in this example. An m = 2 factor model is considered in Exercise 9.10. 

Factor scores for factors 1 and 2 produced from (9-58) with the rotated maxi
mum likelihood estimates are plotted in Figure 9.5. Plots of this kind allow us to 
identify observations that, for one reason or another, are not consistent with the 
remaining observations. Potential outliers are circled in the figure. 

It is also of interest to plot pairs of factor scores obtained using the principal 
component and maximum likelihood estimates of factor loadings. For the chicken
bone data, plots of pairs of factor scores are given in Figure 9.6 on pages 524-526. If 
the loadings on a particular factor agree, the pairs of scores should cluster tightly 
about the 45° line through the origin. Sets of loadings that do not agree will produce 
factor scores that deviate from this pattern. If .the latter occurs, it is usually associat
ed with the last factors and may suggest that the number of factors is too large. That 
is, the last factors are not meaningful. This seems to be the case with the third factor 
in the chicken-bone data, as indicated by Plot (c) in Figure 9.6. 

Plots of pairs of factor scores using estimated loadings from two solution 
methods are also good tools for detecting outliers. If the sets of loadings for a factor 
tend to agree, outliers will appear as points in the neighborhood of the 45° line, but 
far from the origin and the cluster of the remaining points. It is clear from Plot (b) in 
Figure 9.6 that one of the 276 observations is not consistent with the others. It has an 
unusually large Fz-score. When this point, [39.1,39.3,75.7,115,73.4,69.1], was 
removed and the analysis repeate{l, the loadings were not altered appreciably. 

When the data set is large, it should be divided into two (roughly) equal sets, 
and a factor analysis should be performed on each half. The results of these analyses 
can be compared with each other and with the analysis for the full data set to 
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Figure 9.S Factor scores for the first two factors of chicken-bone data. 

test .the sta.bility of the solution. If the results are consistent with one another 
confIdence In the solution is increased. ' 

The .chicken-bone data were divided into two sets of nr = 137 and n2 = 139 
observatIOns, respectively. The resulting sample correlation matrices were . 

1.000 

.696 1.000 

Rr= 
.588 .540 1.000 
.639 .575 .901 1.000 
.694 .606 .844 .835 1.000 
.660 .584 .866 .863 .931 1.000 

and 

1.000 

.366 1.000 

R2 = 
.572 .352 1.000 
.587 .406 .950 1.000 
.587 .420 .909 .911 1.000 
.598 .386 .894 .927 .940 1.000 
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Figure 9.6 Pairs of factor scores for the chicken-bone data. (Loadings are 
estimated by principal component and maximum likelihood methods.) 

The rotated estimated loadings, specific variances, and proportion of the total 
(standardized) sample variance explained for a principal component solution of an 
m = 3 factor model are given in Table 9.11 on page 525. 

The results for the two halves of the chicken-bone measurements are very simi
lar. Factors F; and F; interchange with respect to their labels, skull length and skull 
breadth, but they collectively see<m to represent head size. The first factor, F~, again 
appears to be a body-size factor dominated by leg and wing dimensions. These are 
the same interpretations we gave to the results from a principal component factor 
analysis of the entire set of data. The solution is remarkably stable, and we can be 
fairly confident that the large loadings are "real." As we have pointed out however, 
three factors are probably too many. A one- or two-factor model is surely sufficient 
for the chicken-bone data, and you are encouraged to repeat the analyses here with 
fewer factors and alternative solution methods. (See Exercise 9.10.) • 
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(b) Second factor 

Table 9.11 

First set Second set 
(n} = 137 observations) (n2 = 139 observations) 

Rotated estimated factor loadings Rotated estimated factor loadings 

Variable Fi F; F; if,i Fi F; F; t/!i 
1. Skull length .360 .361 (.853 ) .01 .352 (.921 ) .167 .00 
2. Skull breadth .303 (.899) .312 .00 .203 .145 (.968) .00 
3. Femur length .914 .238 .175 .08 .930 .239 .130 .06 
4. Tibia length .877 .270 .242 .10 .925 .248 .187 .05 
5. Humerus length .830 .247 .395 .11 .912 .252 .208 .06 
6. Ulna length .871 .231 .332 . .08 .914 .272 .168 .06 

Cumulative proportion 
of total (standardized) 
sample variance' 
explained .546 .743 .940 .593 .780 .962 
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Figure 9.6 (continued) 

. ., I f the behavioral and social Factor analysis has a tremendous mtUltive appea or . . al sciences In these areas, it is natural to regard multivariate observatlOns. o~, apmmt . . b able "traits ac or and human processes as manifestations of underlymg uno ser~ .'. t ., h b d iability ID behavlOr ID erms analysis provides a way of explammg t e 0 serve var 
of these traits. b' f Our exam Still when all is said and done, factor analysis remains very su Jec IV.e·

h 
h f t -

pies, in dommon with most published sources, consist of situations i~ whlc ~ ~I a~ ~ analysis model provides reasonable explanations in terms of a few mt~rr::e a h e
l 

a -
tors. In practice the vast majority of attempted factor analyses do not Ylel suc ~eru;
cut results. unfortunately, the criterion for judging the quality of any factor an YSIS 
has not been well quantified. Rather, that quality seems to depend on a 

WOW criterion 
. . ' hout "Wow I under-If, while scrutinizing the factor analYSIs, the mvestIgator can s , 

stand these factors," the application is deemed successful. 

SOME COMPUTATIONAL DETAILS 
FOR MAXIMUM LIKELIHOOD 
ESTIMATION 

Although a simple aqalyticaJ expression cannot be obtained for the maximum likelihood estimators L and 'It, they can be shown to satisfy certain equations. Not surprisingly, the conditions are stated in terms of the maximum likelihood estimator n 

S" = (l/n) 2: (Xi - X) (Xi - X)' of an unstructured covariance matrix. Some i=1 
factor analysts employ the usual sample covariance S, but still use the title maximum 
likelihood to refer to resulting estimates. This modification, referenced in Footnote 4 of this chapter, amounts to employing the likelihood obtained from the Wishart 

It 

distribution of 2: (Xi - X) (Xi - X)' and ignoring the minor contribution due to i=1 
the normal density for X. The factor analysis of R is, of course, unaffected by the 
choice of Sn or S, since they both produce the same correlation matrix. 

Result 9A.I. Let x I, Xz, •.. , Xn be a random sample from a normal population. 
The maximum likelihood estimates i and .q, are obtained by maximizing (9-25) 
subject to the uniqueness condition in (9-26). They satisfy 

(9A-1) 

so the jth column of .q,-I/2i is thAe (nonnormalized) eigenvector of .q,-I/2Sn .q,-1/2 
corresponding to eigenvalue 1 + ~i' Here 

n 

Sn = n-1 2: (Xj - i)(xj - i)' = n-t(n - l)S and '&1 ~ '&2 ~ .,. ~ .&m 
j=l 

521' 
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Also, at convergence, 

~i = ithdiagonalelementofSn - LL' (9A-2) 

and 

We avoid the details of the proof. However, it is evident that jL = x and a consideration 
of the log-likelihood leads to the maximization of -(nj2) [1nl ~ I + tr(~-ISn)] over L 
and '1'. Equivalently, since Sn and p are constant with. respect to the maximization, We 
minimize 

(9A-3) 

subject to L'qt-1L = a, a diagonal matrix. • 
Comment. Lawley and Maxwell [10], along with many others who do factor 

analysis, use the unbiased estimate S of the covariance matrix instead of the maxi- _ 
mum likelihood estimate Sn. Now, (n - 1) S has, for normal data, a Wishart distrib
ution. [See (4-21) and (4-23).] If we ignore the contribution to the likelihood in 
(9-25) from the second term involving (IL - x), then maximizing the reduced likeli
hood over L and 'I' is equivalent to maximizing the Wishart likelihood 

Likelihood ex I ~ 1-(n-1)/2e-[(n-1)/2]lr[:£-'S] 

over L and '1'. Equivalently, we can minimize 

1nl ~ I + tr(rIS) 

or, as in (9A-3), 

1nl ~ I + tr(~-lS) - InlSI-p 

Under these conditions, Result (9A -1) holds with S in place of S". Also, for large n, 
S and S are almost identical, and the corresponding maximum likelihood estimates, 
;.. 11", • " A ,.. 

L and '1', would be similar. For testing the factor model [see (9-39)], ILL' + '1'1 
should be compared with I Sn I if the actual likelihood of (9-25) is employed, and 
I ii' + .fl should be compared with I S I if the foregoing Wishart likelihood is used 
to derive i and .f. 

Recommended Computational Scheme 

For m > 1, the condition L'qt-1L = a effectively imposes m(m - 1)j2constraints 
on the elements of Land '1', and the likelihood equations are solved, subject to 
these contraints, in an iterative fashion. One procedure is the following: 

1. Compute initial estimates of the specific variances 1/11,1/12,"" I/Ip. J6reskog [8] 
suggests setting 

.1 •. = (1 _1.. m) (1,) 
'1'1 2 P sI! 

(9A-4) 

where Sii is the ith diagonal element of S-l. 
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2. Given.f, compute the first m distinct eigenvalues, Al > A2 > ... > A > 1, and 
correspon?ing eigenvectors, el, e2, ... ,em, of the "uniqueness-rescal;d" covari
ance matnx 

(9A-5) 

Let ~ = [e1 i ~2 l~'" i e!?'] be the p X m matrix of normalized eigenvectors 

and A = diaglAlo A2'''~' Am] ~e th~ m ::< ~m diagonal matrix of eigenvalues. 
From (9A-1), A = I + a and E = qt-1/2LA-1/2. Thus, we obtain the estimates 

(9A-6) 

3. Substitute i obtained in (9A-6) into the likelihood function (9A-3), and 
minimize the result with re~pe~t to ,'/11:. ,'/12, ... ,,'/1 p' A numerical search routine 
must be used. The values 1/11,1/12, •.. ,1/1 p obtained from this minimization are 
employed at Step (2) to create a new L Steps (2) and (3) are repeated until con
vergence-that is, until the differences between successive values of e

ij 
and ~i 

are negligible. 

. .Comment. It ofte~ happens that the objective funct~on in'(9A-3) has a relative 
~Il1mm~~ correspondmg to negative values for some I/Ii' This solution is clearly 
madm1sslble and is said to b~ improper, or a Heywood case. For most packaged 
computer p~o.grams, negative I/Ii, if they occur on a particular iteration, are changed 
to small pOSltlve numbers before proceeding with the next step. 

Maximum likelihood Estimators of p = l l' + '\{I z z z 
When ~ has the factor analysis structure ~ = LL' + '1', p can be factored as 
p = V-I/2~V-1/2 = (V-1/2L) (V-1/2L), + V-1/2qtV-I/2 = LzL~ + '1' •. The loading 
matrix for the standardized variables is L. = V-1/ 2L, and the corresponding specific 
variance matrix is '1'. = V-1/2qtV-1/2, where V-1/2 is the diagonal matrix with ith 
diagonal element O'i/f2. If R is substituted for S" in the objective function of (9A-3), 
the investigator minimizes 

(
I L.L~ + '1'. I) 

In IRI + tr[(L.L~ + qt.flR) - p (9A-7) 

I · , 1/2 ntrod~cm~ the diagonal matrix V ,whose ith diagonal element is the square 
root of the lth dIagonal element of Sn, we can write the objective function in (9A-7) as 

(
IVI/211L L' + 'I' IIV1/21) 

In ~ • z ~ • + tr [(L L' + 'I' )-lV-I/2V1/2RVI/2V-1/2) _ p 
IVl/211RIIV1/21 '" 

(
I (V1/2L.) (V1/2L )' + VI /2qt V1/21) 

= In • z 
I Sn I 

+ tr[ «VI/2Lz)(Vl/2L.)' + V 112 '1', V1/2)- ISn) _ p 

'(I ii' + i I) ~ ~ ~ 1 
~ln ISnl +tr[(LL'+qtfSn)-p (9A-8) 
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Exercises 

The last inequality follows because the maximum likelihood estimates I. and ~ 
minimize the objective function (9A-3). [Equality holds in (9A-8) for L. = y-I/lL 

and i. = y-l/2iY-I/l.JTherefore,minimizing (9A-7) over L. and '1'. is equivalent 

to obtaining Land i from Sn and estimating L. = V-I/2L by L. = y-I/lL and 
'1'. = V-I/l'l'V-I/l by i. = y-I/2~y-I/l. The rationale for the latter procedure 

comes from the invariance property of maximum likelihood estimators. [See ( 

9.1. Show that the covariance matrix 

[

1.0 

P = .63 
.45 

.63 .45] 
1.0 .35 
.35 1.0 

for the p = 3 standardized random variables 2 1,22, and 23 can be generated by the -::::~.: 
m = 1 factor model 

21 = .9FI + 61 

22 = .7FI + 62 

23 = .5FI + 63 

where Var (Ft) = 1, Cov (e, Ft) = 0, and 

[

.19 0 

'I' = Cov(e) = ~ gl 

That is, write p in the form p = LL' + '1'. 

9.2. Use the information in Exercise 9.1. 
(a) Calculate communalities hT, i = 1,2,3, and interpret these quantities. 
(b) Calculate Corr(2j ,Ft ) for i = 1,2,3. Which variable might carry the greatest 

weight in "naming" the common factor? Why? 
9.3. The eigenvalues and eigenvectors of the correlation matrix p in Exercise 9.1 are 

Al = 1.96, e; = [.625, .593, .507] 

A2 = .68, ez = [-.219,-.491,.843] 

A3 = .36, e3 = [.749, -.638, -.177] 

(a) Assuming an m = 1 factor model, calculate the loading matrix L and matrix of 
specific variances 'I' using the principal component solution method. Compare the 
results with those in Exercise 9.!. 

(b) What proportion of the total population variance is explained by the first common factor? 
9.4. Given p and 'I' in Exercise 9.1 and an m = 1 factor model, calculate the reduced 

correlation matrix p = p - 'I' and the principal factor solution for the loading matrix L. 
Is the result consistent with the information in Exercise 9.1? Should it be? . 

9.S. Establish the inequality (9-19). 
Hint: Since S - i:i> - ~ has zeros on the diagonal, 

(sum of squared entries ofS - i:i> - ~) :s; (sum of squared entries ofS - i:l:') 
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Now, S-i:i:' = Am+lem+te:"+l + ... +Apepe~ = P(2)A(2)P(2), where P(2) = [em+li···i ep] 

and A(2) is the diagonal matrix with elements Am+l>"" Ap. 
Use (sum of squared entries of A) = tr AA' and Ir [P(2)A(2)A(2i(2)] =tr [A (2l A (2)). 

9.6. Verify the following matrix identities. 

(a) (I + L''I'- I LrlL''IrlL = I - (I + L''I'-lLrl 

Hint: Premultiply both sides by (I + L''I'-tL). 

(b) (LL' + 'l'rl = '1'-1·_ 'I'-IL(I + L''I'-lL)-lL''I'-t 

Hint: Postmultiply both sides by (LL' + '1') and use (a). 

(c) L'(LL' + 'l'rt = (I + L''I'-lLr1L''I'-l 

Hint: Postm.!lltiply the result in (b) by L use (a), and take the transpose, noting that 
(LL' + '1') 1, '1'-1, and (I + L''I'-tLrl are symmetric matrices. 

9.7. (The factor model parameterization need not be unique.) Let the factor model with 
p = 2 and m = 1 prevail. Show that 

O"ll = Ctl + 0/1, 0"12 = 0"21 = Cll C2l 

0"22 = cL + 0/2 

and, for given O"ll, 0"22, and 0"12, there is an infinity of choices for L and '1'. 

9.8.· (Unique but improper solution: Heywood case.) 
Consider an m = 1 factor model for the population with covariance matrix 

_ [1 .4 .9] 
l: - .4 1 .7 

.9 .7 1 

Show that there is a unique choice of L and 'I' with l: = LL' + '1', but that 0/3 < 0, so 
the choice is not admissible. 

9.9. In a stU?y of liquor preference in France, Stoetzel [14] collected preference rankings of 
p = 9 lIquor types from n = 1442 individuals. A factor analysis of the 9 x 9 sample 
correlation matrix of rank orderings gave the following estimated loadings: 

Estimated factor loadings 
Variable (Xl) FI F2 F3 

Liquors .64 .02 .16 
Kirsch .50 -.06 -.10 
Mirabelle .46 -.24 -.19 
Rum .17 .74 .97* 
Marc -.29 .66 -.39 
Whiskey -.29 -.08 .09 
Calvados -.49 .20 -.04 
Cognac -.52 -.03 .42 
Armagnac -.60 -.17 .14 

*This figure is too high. It exceeds the maximum value of .64, as a result 
of an approximation method for obtaining the estimated factor loadings 
used by Stoetzel. 
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Given these results, Stoetzel concluded the following: The major principle of liquor pref
erence in France is the distinction between sweet and strong liquors. The second moti
vating element is price, which can be understood by remembering that liquor is both an 
expensive commodity and an item of conspicuous consumption. Except in the case of 
the two most popular and least expensive items (rum and marc), this second factor plays. 
a much smaller role in producing preference judgments. The third factor concerns the 
sociological and primarily the regional, variability of the judgments. (See [14], p.ll.) 
(a) Given what you know about the various liquors involved, does Stoetzel's interpreta

tion seem reasonable? 
(b) Plot the loading pairs for the first two factors. Conduct a graphical orthogonal rota

tion of the factor axes. Generate approximate rotated loadings. Interpret the rotated 
loadings for the first two factors. Does your interpretation agree with Stoetzel's 
interpretation of these factors from the unrotated loadings? Explain. . 

9.10. The correlation matrix for chicken-bone measurements (see Example 9.14) is 

1.000 
.505 1.000 

.569 .422 1.000 

.602 .467 .926 1.000 

.621 .482 .877 .874 1.000 

.603 .450 .878 .894 .937 1.000 

The following estimated factor loadings were extracted by the maximum likelihood 

procedure: 

Varimax 

Estimated rotated estimated 

factor loadings factor loadings 

Variable FI F2 F; F; 

1. Skull length .602 .200 .484 .411 

2. Skull breadth .467 .154 .375 .319 

3. Femur length .926 .143 .603 .717 

4. Tibia length 1.000 .000 519 .855 

5. Humerus length .874 .476 .861 .499 

6. Ulna length .894 .327 .744 .594 

Using the unrotated estimated factor loadings, obtain the maximum likelihood estimates 

of the following. 
(a) The specific variances. 
(b) The communalities. 
(c) The proportion of variance explained by each factor. 

(d) The residual matrix R - izi~ - ~ z· 
9.11. Refer to Exercise 9.10. COlllpute the value of the varimax criterion using both unrotated 

and rotated estimated factor loadings. Comment on the results. 

9.12. The covariance matrix for the logarithms of turtle measurements (see Example 8.4) is . 

[

11.072 ] 
S = 10-3 8.019 6.417 

8.160 6.005 6.773 
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The follo~ing maximum likelihood estimates of the factor loadings for an m = 1 model 
were obtamed: 

Variable 

1. In(length) 
2. In(width) 
3. In(height) 

Estimated factor 
loadings 

FI 

.1022 

.0752 

.0765 

Using the ~stimated factor loadings, obtain the maximum likelihood estimates of each of 
the followmg. 

(a) Specific variances. 

(b) Communalities. 

(c) Proportion of variance explained by the factor. 

(d) The residual matrix Sn - ii: - ,j-. 
Hint: Convert S to Sn. 

9.13. ~e~er ~ EX,ercise 9.1~. Compute the test statistic in (9-39). Indicate why a test of 
?l: - LL + 'I' (WIth m = 1) versus HI: l: unrestricted cannot be carried out for 

thIS example. [See (9-40).] 

9.14. The maximum likelihood factor loading estimates are given in (9A-6) by 

i = ,j-1/2i'& 1/2 

Verify, for this choice, that 

where'& = A - I is a diagonal matrix . 

9.IS. Hirsche! and Wichern [7] investigate the consistency, determinants, and uses of 
accou~tmg and ma~ket-val~e measures of profitability. As part of their study, a factor 
analYSIS of accountmg p~ofIt me~sures and market estiJ?1ates of economic profits was 
conducted. The correlatIOn matnx. of ~~counting historical, accounting replacement, 
and market-value measures of profItabIlIty for a sample of firms operating in 1977 is as 
follows: 

Variable HRA HRE HRS RRA RRE RRS Q REV 

Historical return on assets, HRA 1.000 
Historical return on equity, HRE .738 1.000 
Historical return on sales, HRS .731 .520 1.000 
Replacement return on assets, RRA .828 .688 .652 1.000 
Replacement return on equity, RRE .681 .831 513 B87 1.000 
Replacement return on sales, RRS .712 .543 .826 .867 .692 1.000 
Market Q ratio, Q .625 .322 .579 .639 .419 .608 1.000 
Market relative excess value, REV .604 .303 .617 .563 .352 .610 .937 1.000 
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The following rotated principal component estimates of factor loadings for an m :, 
factor model were obtained: 

Estimated factor loadings 

Variable FI F2 F3 

Historical return on assets .433 .612 .499 
Historical return on equity .125 .892 .234 
Historical return on sales .296 .238 .887 
Replacement return on assets .406 .708 .483 
Replacement return on equity . 198 .895 .283 
Replacement return on sales .331 .414 .789 
Market Q ratio .928 .160 .294-
Market relative excess value .910 .079 .355 

Cumulative proportion 
of total variance explained .287 .628 .908 

(a) Using the estimated factor loadings, determine the specific variances and communalities. 
(b) Determine the residual matrix, R - LzL~ - irz' Given this information and the 

cumulative proportion of total variance explained in the preceding table, does an 
m = 3 factor model appear appropriate for these data? 

(c) Assuming that estimated loadings less than.4 are small, interpret the three factors. 
Does it appear, for example, that market-value measures provide evidence of 
profitability distinct from that provided by accounting measures? Can you sepa
rate accounting historical measures of profitability from accounting replacement 
measures? 

9.16. Verify that factor scores constructed according to (9-50) have sample mean vector 0 
zero sample covariances. 

9.17. Refer to Example 9.12. Using the information in this example, evaluate (i;ir;IL.rl
. 

Note: Set the fourth diagonal element of ir z to .01 so that ir;1 can be determined. 
Will the regression and generalized least squares methods for constructing factors scores 
for standardized stock price observations give nearly the same results? Hint: See equation 
(9-57) and the discussion following it. 

The following exercises require the use of a computer. 

9.18. Refer to Exercise 8.16 concerning the numbers of fish caught. 
(a) Using only the measurements XI - X4, obtain the principal component solution for 

factor models with m = 1 and m = 2. 
(b) Using only the measurements XI - X4, obtain the maximum likelihood solution for .. 

factor models with m = 1 and m = 2. 
(c) Rotate your solutions in Parts (a) and (b). Compare the solutions and comment on 

them. Interpret each factor. 
(d) Perform a factor analysis using the measurements XI - X6' Determine ~ relisonall>lc: 

number of factors m, and compare the principal component and maximum 
hood solutions aft~r rotation. Interpret the factors. 

9.19. A firm is attempting to evaluate the quality of its sales staff and is trying to fin~ an 
amination or series of tests that may reveal the potential for good performance In 
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The firm has selected a random sample of 50 sales people and has evaluated each on 3 
measures of performance: growth of sales, profitability of sales, and new-account sales. 
These measures have been converted to a scale, on which 100 indicates "average" per
formance. Each of the 50 individuals took each of 4 tests, which purported to measure 
creativity, mechanical reasoning, abstract reasoning, and mathematical ability, respec
tively. The n = 50 observations on p = 7 variables are listed in Table 9.12 on page 536. 

(a) Assume an orthQgonal factor model for the standardized variables Zi = 
(Xi - }Li)/VU:;;, i = 1,2, ... ,7. Obtain either the principal component solution or 
the maximum likelihood solution for m = 2 and m = 3 common factors . 

(b) Given your solution in (a), obtain the rotated loadings for m = 2 and m = 3. Com
pare the two sets of rotated loadings. Interpret the m = 2 and m = 3 factor solutions . 

(c) List the estimated communalities, specific variances, and LL' + ir- for the m = 2 
and m = 3 solutions. Compare the results. Which choice of m do you prefer at this 
point? Why? 

(d) Conduct a test of Ho: I = LV + 'I' versus HI: I ;t. LV + 'I' for both m = 2 and 
m = 3 at the Cl' = .01 level. With these results and those in Parts band c, which 
choice of m appears to be the best? 

(e) Suppose a new salesperson, selected at random, obtains the test scores x' = 
[Xi> X2, ... ,X7] = [110,98,105,15,18,12,35]. Calculate the salesperson's factor 
score using the weighted least squares method and the regression method. 

Note: The components of x must be standardized using the sample means and vari
ances calculated from the original data. 

9.20. Using the air-pollution variables Xl> X 2 , X 5 , and X6 given in Table 1.5, generate the 
sample covariance matrix. 

(a) Obtain the principal component solution to a factor model with m = 1 and m = 2. 

(b) Find the maximum likelihood estimates of L and 'I' for m = 1 and m = 2. 

(c) Compare the factorization obtained by the principal component and maximum like
lihood methods. 

9.21. Perform a varimax rotation of both m = 2 solutions in Exercise 9.20. Interpret the re
sults. Are the principal component and maximum likelihood solutions consistent with 
each other? 

9.22. Refer to Exercise 9.20. 

(a) Calculate the factor scores from the m = 2 maximum likelihood estimates by 
(i) weighted least squares in (9-50) and (ii) the regression approach of (9-58). 

(b) Find the factor scores from the principal component solution, using (9-51). 

(c) Compare the three sets of factor scores. 

9.23. Repeat Exercise 9.20, starting from the sample correlation matrix. Interpret the factors 
for the m = 1 and m = 2 solutions. Does it make a difference if R, rather than S, is 
factored? Explain. 

9.24. Perform a factor analysis of the census-tract data in Table 8.5. Start with R and obtain 
both the· maximum likelihood and principal component solutions. Comment on your 
choice of m. Your analysis should include factor rotation and the computation of factor 
scores. 

9.25. Perform a factor analysis of the "stiffness" measurements given in Table 4.3 and dis
cussed in Example 4.14. Compute factor scores, and check for outliers in the data. Use 
the sample covariance matrix S. 
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Table 9.12 Salespeople Data 

Index of: Score on: 

Sales New- Mechanical Abstract 
Sales profit- account Creativity reasoning reasoning 

Salesperson growth ability sales test test test 
(xl) (X2) (X3) (X4) (X5) (X6) 

1 93.0 96.0 97.8 09 12 09 
2 88.8 91.8 96.8 07 10 10 
3 95.0 100.3 99.0 08 . 12 09 
4 101.3 103.8 106.8 13 14 12 
5 102.0 107.8 103.0 10 15 12 
6 95.8 97.5 99.3 10 14 11 
7 95.5 99.5 99.0 09 12 09 
8 110.8 122.0 115.3 18 20 15 
9 102.8 108.3 103.8 10 17 13 

10 106.8 120.5 102.0 14 18 11 
11 103.3 109.8 104.0 12 17 12 
12 99.5 111.8 100.3 10 18 08 
13 103.5 112.5 107.0 16 17 11 

'14 99.5 105.5 102.3 08 10 11 
15 100.0 107.0 102.8 13 10 08 
16 81.5 93.5 95.0 07 09 05 
17 101.3 105.3 102.8 11 12 11 
18 103.3 110.8 103.5 11 14 11 
19 95.3 104.3 103.0 05 14 13 
20 99.5 105.3 106.3 17 17 11 
21 88.5 95.3 95.8 10 12 07 
22 99.3 115.0 104.3 05 11 11 
23 87.5 92.5 95.8 09 09 07 
24 105.3 114.0 105.3 12 15 12 
25 107.0 121.0 109.0 16 19 12 
26 93.3 102.0 97.8 10 15 07 
27 106.8 118.0 107.3 14 16 12 
28 106.8 120.0 104.8 10 16 11 
29 92.3 90.8 99.8 08 10 13 
30 106.3 121.0 104.5 09 17 11 
31 106.0 119.5 110.5 18 15 10 
32 88.3 92.8 96.8 13 11 08 
33 96.0 103.3 100.5 07 15 11 
34 94.3 94.5 99.0 10 12 11 
35 106.5 121.5 110.5 18 17 10 
36 106.5 115.5 107.0 08 13 14 
37 92.0 99.5 103.5 18 ' 16 08 
38 102.0 99.8 103.3 13 12 14 
39 108.3 122.3 108.5 15 19 12 
40 106.8 119.0 106.8 14 20 12 
41 102.5 109.3 103.8 09 17 13 
42 92.5 102.5 99.3 13 15 06 
43 102.8 113.8 106.8 17 20 10 
44 83.3 87.3 96.3 01 05 09 
45 94.8 101.8 99.8 07 16 11 
46 103.5 112.0 110.8 18 13 12 
47 89.5 96.0 97.3 07 15 11 
48 84.3 89.8 94.3 08 08 08 
49 104.3 109.5 106.5 14 12 12 
50 106.0 118.5 105.0 12 16 11 

Mathe-
matics 

test 
(x7) 

20 
15 
26 
29 
32 
21 
25 
51 
31 
39 
32 
31 
34 
34 
34 
16 
32 
35 
30 
27 
15 
42 
16 
37 
39 
23 
39 
49 
17 
44 
43 
10 
27 
19 
42 
47 
18 
28 
41 
37 
32 
23 
32 
15 
24 
37 
14 
09 
36 
39 
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9.26. Consider the mice-weight data in Example 8.6. Start with the sample co variance matrix. 
(See Exercise 8.15 for VS;;.) . 
(a) Obtain the principal component solution to the factor model with m = 1 and 

m = 2. 

(b) Find the maximum likelihood estimates of the loadings and specific variances for 
m = 1 and m = 2. 

(c) Perform a varimax rotation of the solutions in Parts a and b. 

9.27. Repeat Exercise 9.26 by factoring R instead of the sample covariance matrix S. Also, for 
the mouse with standardized weights [.8, -.2, -.6, 1.5], obtain the factor scores using 
the maximum likelihood estimates of the loadings and Equation (9-58). 

9.28. Perform a factor analysis of the national track records for women given in Table 1.9. Use 
the sample covariance matrix S and interpret the factors. Compute factor scores, and 
check for out/iers in the data. Repeat the analysis with the sample correlation matrix R. 
Does it make a difference if R, rather than S, is factored? Explain. 

9.29. Refer to Exercise 9.28. Convert the national track records for women to speeds mea
. sured in meters per second. (See Exercise 8.19.) Perform a factor analysis of the speed 

data. Use the sample covariance matrix S and interpret the factors. Compute factor 
scores, and check for outliers in the data. Repeat the analysis with the sample correlation 
matrix R. Does it make a difference if R, rather than S, is fadored? Explain. Compare 
your results with the results in Exercise 9.28. Which analysis do you prefer? Why? 

9.30. Perform a factor analysis of the national track records for men given in Table 8.6. Repeat 
the steps given in Exercise 9.28. Is the appropriate factor model for the men's data dif
ferent from the one for the women's data? If not, are the interpretations of the factors 
roughly the same? If the models are different, explain the differences. 

9.31. Refer to Exercise 9.30. Convert the national track records for men to speeds measured 
in meters per second. (See Exercise 8.21.) Perform a factor analysis of the speed data. 
Use the sample covariance matrix S and interpret the factors. Compute factor scores, 
and check for outIiers in the data. Repeat the analYSis with the sample correlation matrix 
R. Does it make a difference if R, rather than S, is fadored? Explain. Compare your re
sults with the results in Exercise 9.30. Which analysis do you prefer? Why? 

9.32. Perform a factor analysis of the data on bulIs given in Table 1.10. Use the seven variables 
YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and Sale Wt. Factor the sample covari
ance matrix S and interpret the factors. Compute factor scores, and check for outliers. 
Repeat the analysis with the sample correlation matrix R. Compare the results obtained 
from S with the results from R. Does it make a difference if R, rather than S, is factored? 
Explain. . 

9.33. Perform a factor analysis of the psychological profile data in Table 4.6. Use the sample 
correlation matrix R constructed from measurements on the five variables, Indep, Supp, 
Benev, Conform and Leader. Obtain both the principal component and maximum likeli
hood solutions for m = 2 and m = 3 factors. Can you interpret the factors? Your analy
sis should include factor rotation and the computation of factor scores. 

Note: Be aware that a maximum likelihood solution may result in a Heywood case. 

9.34. The pulp and paper properties data are given in Table 7.7. Perform a factor analysis 
using observations on the four paper property variables, BL, EM, SF, and BS and the 
sample correlation matrix R. Can the information in these data be summarized by a 
single factor? If so, can you interpret the factor? Try both the principal component and 
maximum likelihood solution methods. Repeat this analysis with the sample covariance 
matrix S. Does your interpretation of the factor(s) change if S rather than R is 
factored? 
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9.3S. Repeat Exercise 9.34 using observations on the pulp fiber characteristic var!ables AFL, 
LFF, FFF, and ZST. Can these data be summarized by a single factor? Explam. 

9.36. Factor analyze the Mali family farm data in Tabl~ 8.7. U~e t~e sample c~ITelation matrix 
R. Try both the principal component and maximum hkeh~ood solutlO~ methods for 
m = 3 4 and 5 factors. Can you interpret the factors? Justify your chOice of m. Your 
analysi~ ;hould include factor rotation and the computation of factor scores. Can you 

identify any outliers in these data? 
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CANONICAL CORRELATION 
ANALYSIS 

10.1 Introduction 
Canonical correlation analysis seeks to identify and quantify the associations 
between two sets of variables. H. HoteIling ([5], [6]), who initially developed 
the technique, provided the example of relating arithmetic speed and arithmetic 
power to reading speed and reading power. (See Exercise 10.9.) Other examples 
include relating governmental policy variables with economic goal variables and 
relating college "performance" variables with precollege "achievement" variables. 

Canonical correlation analysis focuses on the correlation between a linear 
combination of the variables in one set and a linear combination of the variables in 
another set. The idea is first to determine the pair of linear combinations having 
the largest correlation. Next, we determine the pair of linear combinations having 
the largest correlation among all pairs uncorrelated with the initially selected pair, 
and so on. The pairs of linear combinations are called the canonical variables, and 
their correlations are called canonical correlations. 

The canonical correlations measure the strength of association between the two 
sets of variables. The maximization aspect of the technique represents an attempt to 
concentrate a high-dimensional relationship between two sets of variables into a 
few pairs of canonical variables. 

10.2 Canonical Variates and Canonical Correlations 
We shall be interested in measures of association between two groups of variables. 
The first group,ofp variables, is represented by the (p X 1) random vector X(l). The 
second group, of q variables, is represented by the (q X 1) random vector X(2). We 
assume, in the theoretical development, that X(l) represents the smaller set, so that 
p :5 q. 

539 
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For the random vectors X(J) and X(2), let 

E(X(1» = p,(J); 

E(X(2» = p,(2); 

Cov (X(1» = 1:11 

Cov(X(2» = 1:22 

Cov (X(1), X(2» = I12 = Ih 

It will be convenient to consider X(J) and X(2) jointly, so, using results (2-38) 
through (2-40) and (10-1), we find that the random vector 

x(1) 

xi1
) 

[
X(1)] X = ......... = 

((p+q)X1) X(2) 

has mean vector 

p, = E(X) = [§'(~~;2J = [.~~~;J 
((p+q)X1) E(X) P, 

and covariance matrix 

r
Ill j I12] (pXp) i (pxq) 

= .......... j ......... . 
I21 i I22 

(qXp) i (qXq) 

(10-2) 

(10-3) 

(10-4) 

The covariances between pairs of variables from different se~s--one v~riable 
from X(l) one variable from X(2)-are contained in 1:12 or, equ1valently, m I 21 .. 
That is, th~ pq elements of I12 measure the association between th~ two.sets. ~he~ 
p and q are relatively large, interpreting the e~em~nts of 1:12.collectlvely 1S ~rdman~ 
ly hopeless. Moreover, it is often linear combmabons of vanabl~s that are mter~st 
ing and useful for predictive or comparative purposes. The mam task of can(o)mcal 

. .. b t th X(1) and X 2 sets correlation analysis is to summanze the assoc1atlOns e ween e 
in terms of a few carefully chosen covariances (or correlations) rather than the pq 
covariances in 1:12 . 
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Linear combinations provide simple summary measures of a set of variables. Set 

V = a'X(l) 

V = b'X(2) (10-5) 

for some pair of coefficient vectors a and b. Then, using (10-5) and (2--45), we obtain 

Var(V) = a' Cov(X(1»a = a'1:
11

a 

Var(V) = b' Cov(X(2»b = b'I
22

b (10-6) 

Cov(V, V) = a' Cov(X(1),X(2»b = a'1:12 b 

We shall seek coefficient vectors a and b such that 

Corr(V, V) = a'1:12b 
Ya ' 1:11 a Yb'I22 b 

(10-7) 

is as large as possible. 
We define the following: 

The first pair of canonical variables, or first canonical variate pair, is the pair of linear 
combinations Vb V1 having unit variances, which maximize the correlation (10-7); 

The second pair of canonical variables, or second canonical variate pair, is the pair 
of linear combinations V2 , V2 having unit variances, which maximize the correla
tion (10-7) among all choices that are uncorrelated with the first pair of canonical 
variables. 

At the kth step, 

The kth pair of canonical variables, or kth canonical variate pair, is the pair of 
linear combinations Vb Vk having unit variances, which maximize the correla
tion (10-7) among all choices uncorrelated with the previous k - 1 canonical 
variable pairs. 

The correlation between the kth pair of canonical variables is called the kth canonical 
correlation. 

The following result gives the necessary details for obtaining the canonical 
variables and their correlations. . 

Result 10.1. Suppose ps q and let the random vectors X(l) and X(2) have 
(pXl) (qX1) 

Cov (X(1» = 1:11 , Cov (X(2) = 1:22 and Cov (X(l), X(2» = 1:12 , where 1: has full 
(pXp) (qXq) (pXq) 

rank. For coefficient vectors a and b , form the linear combinations U = a'X(l) 
(pX1) (qx1) 

and V = b'X(2). Then 

max Corr (V, V) = p;: 
a,b 

attained by the linear combinations (first canonical variate pair) 

V1 = eiI1i12 X(1) and Vi = fiIZ-Y2x(2) 

ai 
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The kth pair of canonical variates, k = 2,3, ... , p, 

Uk = eic:t1flZX(l) Vk = fic:tZ"1/2x(Z) 

maximizes 
Corr(Ub Vk ) = P: 

among those linear combinations uncorrelated with the preceding 1,2, ... , le . 
canonical variables. 

Here p? ~ pz*2 ~ ... ~ p;2 are the eigenvalues of :tlV2I12IZ"!I2III1/2 . 
e e2,' .. , e are the associated (p xl) eigenvect<;>rs. [The quantities p?, P2*2, •• 
a~~ also the; largest eigenvalues of the matrix :tZ"1/2I21 III :t12IZ"1/2 with 
ing (q xl) eigenvectors f l , f2, ... , fp • Each f; is proportional to IZ"1/2:t2III1/2e; 

The canonical variates have the properties 

Var (Uk ) = Var (Vk ) = 1 

Cov(UbUf,) = Corr(UbUc) = 0 k '* e 
Cov (Vb Ve) = Corr (Vk, Ve) = 0 k '* e 
Cov (Ub Vf) = Corr (Uk , Ye) = 0 k '* e 

for k, e. = 1, 2, ... , p. 

Proof. (See website: www.prenhall.com/statistics) 

If the original variables are standardized with Z(I) = [Z\I), Z~I), .. . , Z~I)]' 
Z(2) = [Z(2), Z~2), ... , Z~Z))', from first principleS, the canonical variates are 

Uk = aleZ(I) = eicPII/2Z(1) 

Vk = b"Z(Z) = f"PZ"!/2Z(2) 

Here, Cov(Z(I) = PlI, COV(Z(2) = P2Z, COV(Z(I),Z(2) = P12 = P2b 
and fk are the eigenvectors of Pljl2P12 PZ"! P21PII/2 and PZ"1f2PZIPI! 
respectively. The canonical correlations, p~, satisfy 

Corr(Ub Vk ) = p~, k = 1,2, ... ,p 

where p? ~ p;Z ~ ... ~ p;z are the nonzero ei~envalues of 
Pljl2p12P2iP21PlJl2 (or, equivalently, the largest elgenvalues of 

P12PZ"Y2). 

Comment. Notice that 

a/,(X(I) - ,..,(1) = akl(Xp) - ,..,P) + adX~I) - fL~I) 

+ ... + akp(X~I) - fL~I) 

(XP) - fLP) (X~I) - fL~I) 
= ak! ~ ~ + akZ vo:;; . r=-

all V~Z 

(X~I) - JL~I) 
+ ... + a k va:: v;;:::, 

P pp O'pp 
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where Var(X)1) = au, i = 1,2, ... , p. Therefore, the canonical coefficients for the 
standardized variables, z)1) = (x)1) - ILP)/v'U;;, are simply related to the canon
ical coefficients attached to the original variables x)1) . Specifically, if a" is the coeffi
cient vector for the kth canonicalvariate Uk , then ale vlf is the coefficient vector for 
the kth canonical variate constructed from the standardized variables Z(l). Here vl{2 
is the diagonal matrix with ith diagonal element v'U;;. Similarly, ble V!q is the coeffi
cient vector for the canonical variate constructed from the set of standardized vari
ables Z(2). In this case vg2 is the diagonal matrix with ith diagonal element v'U;; = 

VVar(Xf). The canonical correlations are unchanged by the standardization. 
However, the choice of the coefficient vectors ak, bk will not be unique if p",( = p~+ I, 

The relationship between the canonical coefficients of the standardized vari
ables and the canonical coefficients of the original variables follows from the special 
structure of the matrix [see also (10-11)] 

:tlfl2:t12:t2'!:t21:tlV2 or PIV2p1zP2'iPzI PIVz 

and, in this book, is unique to canonical correlation analysis. For example, in princi
pal component analysis, if ale is the coefficient vector for the kth principal compo
nent obtained from :t, then a,,(X - ,..,) = a" VI/2Z, but we cannot infer that a" VI/2 
is the coefficient vector for the kthprincipal component derived from p. 

Example 10.1 (Calculating canonical variates and canonical correlations for stan
dardized variables) Suppose Z(1) = [ZP), Z~l))' are standardized variables and 
Z(2) = [ZIZ), Z1Z))' are also standardized variables. Let Z = [Z(1), Z(2)], and 

Then 

and 

l1.0 .4 1.5 .6l 

Cnv(Z) ~ [~;;i~J ~+'j!di 
.6 .4:.2 1.0 

-1/2 _ [1.0681 -.2229J 
PI I - - .2229 1.0681 

-I _ [1.0417 -.2083J 
P22 - -.2083 1.0417 

-1/2 -1 -1/2 _ [.4371 .2178J 
P11 P12P22PZIP11 - .2178 .1096 

The eigenvalues, p?, p;Z, of Pll/2 P12PZ"!P21PIF2 are obtained from 

0= /.4371 - A .2178 I = (.4371 - A) (.1096 - A) - (2.178f 
.2178 .1096 - A 

= AZ - .5467A + .0005 
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yielding p? = .5458 and p';! = .0009. The eigenvector el follows from the vector 
equation 

[
.4371 .2178Je = (.5458)e 
.2178 .1096 I I 

Thus,ej = [.8947, .4466) and 

-1/2 [.8561J 
al = PII el = .2776 

From Result 10.1, fl <X P"2P P2IPJ.l/2 el and bl = p~'ffl. Consequently, 

-I _ [.3959 .2292J [.8561J _ [.4026J 
bl <X P22P21a l - .5209 .3542 .2776 - .5443 

We must scale bl so that 

Var(VI) = Var(bjZ(2) = bjP22bl = 1 

The vector [.4026, .5443)' gives 

[
1.0 

[.4026, .5443) .2 .2J [.4026J = .5460 
1.0 .5443 

Using V.5460 = .7389, we take 

1 [.4026J [.5448J 
b l = .7389 .5443 = .7366 

The first pair of canonical variates is 

UI = a;Z(1) = .86Z\1) + .28Z~I) 

VI = b\Z(2) = .54Zi2) + .74Z~2) 

and their canonical correlation is 

p~ = \I'P? = V.5458 = .74 

This is the largest correlation possible between linear combinations of v:ariables 
from the Z(l) and Z(2) sets. 

The second canonical correlation, p; = V.0009 = .03, is very small, and conse
quently, the second pair of canonical variates, although uncorrelated with members of 
the first pair, conveys very little information about the association between sets. (The 
calculation of the second pair of canonical variates is considered in Exercise 10.5.) 

We note that UI and VI, apart from a scale change, are not much different from 

the pair 

~ , I ZI (I) (I) 
[ 

(I)J 
UI = a Z( ) = [3, 1) Z~I) = 3Z1 + Z2 

[
Z(2)J ~ = b'Z(2) = [1, 1) Z~2) = zi2

) + Z~2) 

For these variates, 

and 
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Var(UI) = a'P11 a = 12.4 

Var(Vd = b' P22b = 2.4 

COV(UI'~) = a'PI2b = 4.0 

~ ~ 4.0 
Corr(UI, VI) = • r;-;:;-:;. MA = .73 

v 12.4 v2.4 

The correlatio!!, b~ween the rather simple and, perhaps, easily interpretable linear 
combinations Uj, l'I is almost the maximum value pi = .74. • 

The procedure for obtaining the canonical variates presented in Result 10.1 has 
certain advantages. The symmetric matrices, whose eigenvectors determine the 
canonical coefficients, are readily handled by computer routines. Moreover, writing 
the coefficient vectors as ak = ~11/2ek and bk = ~"2y2fk facilitates analytic descrip
tions and their geometric interpretations. To ease the computational burden, many 
people prefer to get the canonical correlations from the eigenvalue equation 

1~11~12~2~~21 - p*2II = 0 (10-10) 

The coefficient vectors a and b follow directly from the eigenvector equations 

~11~12~2i~2Ia = p*2a 

~"2i~21~11~12b = p*2b (10-11) 

The matrices ~11~12~2i~21 and ~2iI2IIll~12 are, in general, not symmetric. (See 
Exercise 10.4 for more details.) 

10.3 Interpreting the Population Canonical Variables 
Canonical variables are, in general, artificial. That is, they have no physical meaning. 
If the original variables X(I) and X(2) are used, the canonical coefficients a and b 
have units proportional to those of the X(l) and X(2) sets. If the original variables 
are standardized to have zero means and unit variances, the canonical coefficients 
have no units of measurement, and they must be interpreted in terms of the stan
dardized variables. 

Result 10.1 gives the technical definitions of the canonical variables and canon
ical correlations. In this sectiop., we concentrate on interpreting these quantities. 

Identifying the Canonical Variables 

Even though the canonical variables are artificial, they can often be "identified" 
in terms of the subject-matter variables. Many times this identification is aided 
by computing the correlations between the canonical variates and the original 
variables. These correlations, however, must be interpreted with caution. They 
provide only univariate information, in the sense that they do not indicate how the 
original variables contribute jointly to the canonical analyses. (See, for example, [11 }.) 
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For this reason, many investigators prefer to assess the contributions of the original 
variables directly from the standardized coefficients (10-8). 

Let A = [ab a2,"" ap ]' and B = [bb bz,···, bq ]" so that the vectors of 
~x~ ~x~ 

canonical variables are 
U = AX(1) 

(pXI) 
V =BX(2) 

(qXI) 

where we are primarily interested in the first p canonical variables in V. Then 

Cov(U,X{l» = COV(AX(I),X{l» = Al:11 

Because Var(Vi ) = 1, Corr(U;,XiI » is obtained by dividing Cov(O;,xiI » by 

VVar (XiI» = u}(1. Equivalently, Corr (Vb xiI» = Cov (0;, uk}/2 xiI». Int~o
ducing the (p X p) diagonal matrix Vjlf2 with kth diagonal element uklf, 
we have, in matrix terms, 

PU,x(l) = Corr (U, X(l» = Cov (U, Vjfl2x(1» = Cov (AX(I), Vjjl2X(1» 
(pXp) 

Similar calculations for the pairs (U, X(2», (V, X(2» and (V, X{l» yield 

PU,X(l) = Al:ll Vjlf2 PV,X(2) = Bl:22 V2Y2 
(pxp) (qXq) 

PU,x(2) = Al:12V2Y2 PV,x(l) = Bl:2IVjl/2 . 
~x~ ~x~ 

(10-14) 

where V2Y2 is the (q X q) diagonal matrix with ith diagonal element [Var(Xi2»). 
Canonical variables derived from standardized variables are sometimes inter

preted by computing the correlations. Thus, 

Pu.z(l) = Az PI I PV,Z(2) = Bz P22 

(10-15) 

where Az and Bz are the matrices whose rows contain the canonical coefficients 
(pxp) (qxq) 

for the Z(I) and Z(2) sets, respectively. The correlations in the matrices displayed 
in (10--15) have the same numerical values as those appearing in (10--14); that is, 
PU,X(l) = PU,z(l), and so forth. This follows because, for example, PU,X(l) = 
Al:11 Vjlf2 = AVlfVjfl2l:1l VjV2 = A z PI I = PU,z(1l. The correlations are unaf
fected by the standardization. 

Example 10.2 (Computing correlations between canonical variates and their compo
nent variables) Compute the correlations between the first pair of canonical variates 
and their component variables for the situation considered in Example 10.1. 

The variables in Example 10.1 are already standardized, so equation (10--15) is 
applicable. For the standardized variables, 

[
1.0 .4J 

Pll = .4 1.0 [
1.0 .2J 

P22 = .2 1.0 
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and 

With p = 1, 
[.5 .6J 

PI2 = .3 .4 

A z = [.86, .28) Bz = [.54, .74) 

so 

and 

We conclude that, of the two variables in the set Z{l), the first is most closely 
associated with the canonical variate VI' Of the two variables in the set Z(2), 
the second is most closely associated with VI . In this case, the correlations reinforce 
the information supplied by the standardized coefficients Az and Bz. However, the 
correlations elevate the relative importance of Z~l) in the first set and Z~2) in 
the second set because they ignore the contribution of the remaining variable 
in each set. 

From (10-15), we also obtain the correlations 

PU}oZ(2) = A z PI2 = [.86, .28) [:~ :~ ] = [.51, .63) 

and 

PVloz(l) = BzP21 = BzPiz = [.54,.74) [:~ :!J = [.71,.46) 

Later, in our discussion of the sample canonical variates, we shall comment on 
the interpretation of these last correlations. _ 

The correlations PU,x(1) and PV,X(2) can help supply meanings for the canonical 
variates. The spirit is the same as in principal component analysis when the correla
tions between the principal components and their associated variables may provide 
subject-matter interpretations for the components. 

Canonical Correlations as Generalizations 
of Other Correlation Coefficients 

First, the canonical correlation generalizes the correlation between two variables. 
When X(I) and X(2) each consist of a single variable, so that p = q = 1, 

for all a, b ~ 0 
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Therefore, the "canonical variates" UJ = x)1) and VI = X(2) have correlation 
pi = I Corr (XP), X(2»I. When X(I) and X(2) have more components, setting 
a' = [0, ... ,0,1, 0, ... ,0] with 1 in the ith position and b' = [0, ... ,0,1, 0, ... ,0] 
with 1 in the kth position yields 

I Corr (x)I), xi2»1 = ICorr(a'X(l),b'X(Z»1 

s max Corr(a'X(I), b'X(2» = pi 
a,b 

That is, the first canonical correlation is larger than the absolute value of any entry 
in PIZ = vlllz~12v2~/2.· . 

Second, the multiple correlation coefficient PI(X(2) [see (7-48)] is a special case 
of a canonical correlation whenX(I) has the single element XP)(p = 1). Recall that 

for p = 1 

When p > 1, P;: is larger than each of the multiple correlations of x)I) with X(2) or 
the multiple correlations of x)2) with X(I). 

Finally, we note that 

PUk(X(2) = max Corr (Ub b'X(2» = Corr (Ub Vk ) = p~, (10-18) 
b 

k = 1,2, ... , P 

from the proof of Result 10.1 (see website: www.prenhall.comlstatistics). Similarly, 

PVk(x(l) = m:xCorr(a'X(I), Vk ) = Corr(Ub Vk ) = P:, (10-19) 

k = 1,2, ... ,p 

That is, the canonical correlations are also the multiple correlation coefficients of Uk 
with X(2) or the multiple correlation coefficients of Vk with X(1). 

Because of its multiple correlation coefficient interpretation, the kth squared 
canonical correlation p~2 is the proportion of the variance of canonical variate Uk 
"explained" by the set X(2). It is also the proportion of the variance of canonical 
variate Vk "explained" by the set X(!). Therefore, p? is often called the shared vari
ance between the two sets X(!) and X(2). The largest value, p?, is sometimes regard
ed as a measure of set "overlap." 

The First r Canonical Variables as a Summary of Variability 

The change of coordinates from X(I) to U = AX(I) and from X(2) to V = ·BX(Z) is 
chosen to maximize Corr (UI , VI) and, successively, Corr (Ui , Vi), where (Ui , Vi) have 
zero correlation with the previous pairs (UI , Yt), (Uz, Vz),···, (0;-1> Vi-d. Cor
relation between the sets X(!) and X(2) has been isolated in the pairs of canonical 
variables 

By design, the coefficient vectors ai, bi are selected to maximize correlations, 
not necessarily to provide variables that (approximately) account for the subset 
covariances ~ll and ~22' When the first few pairs of canonical variables provide 
poor summaries of the variability in ~II and ~Z2' it is not clear how a high canonical 
correlation should be interpreted. 
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Example 10.3 (Canonical correlation as a poor summary of variability) Consider the 
covariance matrix 

The reader may verify (see Exercise 10.1) that the first pair of canonical variates 
UI = X~I) and VI = xf) has correlation . 

Yet UI = X~I) provides a very poor summary of the variability in the first set. Most 
of the variability in this set is in xjl), which is uncorrelated with UI . The same situ
ation is true for VI = X\Z) in the second set. • 

A Geometrical Interpretation of the Population Canonical 
Correlation Analysis 

A geometrical interpretation of the procedure for selecting canonical variables 
provides some valuable insights into the nature of a canonical correlation analysis. 

The transformation 

U = AX(1) 

from X(I) to U gives 

Cov(U) = A~llA' = I 

From Result 10.1 and (2-22), A = E'~lfl2 = E'PIAlII2Pl where E' is an orthogonal 
matrix with rowel, and ~ll = PIAIPj. Now, P1X(I) is the set of principal compo
nents derived from X(I) alone. The matrix A11/ 2P1X(l) has ith row (1jW;) piX(l), 
which is the ith principal component scaled to have unit variance. That is, 

Cov(A11/2P1X(1» = All/2Pl~llPIAll/2 = All/zP1PIAIP1PIAll/2 

= All/2 AIA1l/2 = I 

Consequently, U = AX(I) = E'P1A1I/2P1X(l) can be interpreted as (1) a 
transformation of X(I) to uncorrelated standardized principal components, fol
lowed by (2) a rigid (orthogonal) rotation PI determined by ~ll and then (3) an
other rotation E' determined from the full covariance matrix ~. A similar 
interpretation applies to V = BX(2). 
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10.4 The Sample Canonical Variates and Sample 
Canonical Correlations 

A random sample of n observations on each of the (p + q) variables X(I), X(2) can 
be assembled into the n x (p + q) data matrix 

X = [X(I) i X(2)] 

l
X~v xW .,. 

= xW xW ." 
(I) (I) 

x 1l 1 X 1I 2 

(I) i (2) 
XIP i X11 

(I): (2) 
X2p i·X:I 

(I) 1 ~2) 
X"P i Xnl 

(2) 
XI2 

(2) Xn 

(2) 
Xn2 

The vector of sample means can be organized as 

(2)] 
Xlq [xli), i x(2)'] (2) I \ I 
X2q _ : i : 

: - (i), i (i), 
(2) xn i xn 

Xnq 

i = ['~~~J where i(l) = 1. ± xjI) 
(p+q)xl x( ) n j=1 

i(2) = 1. ± X)2) 
n j=1 

(lO-21) 

Similarly, the sample covariance matrix can be arranged analogous to the represen
tation (10-4). Thus, 

r 
SI1 i S12] (pXp) i (pxq) 

(p+q)~(p+q) = "·s~·~··t···s;;· 
(qXp) i (qxq) 

where 

Ski = _1_ ± (x(k) - X(k)) (xY) - i(l))', 
n - 1 j=1 J 

The linear combinations 
{; = a'x(l); 

have sample correlation [see (3-36)] 

ru v = . ;;:-;;:;-;;. ~ 
, Va'S11 a Vb'Sn b 

k, 1= 1,2 (10-22) 

(10-23) 

(10-24) 

The first pair of sample canonical variates is the pair of linear combinations 
UI , VI having unit sample variances that maximize th.e ratio ~10-2~). ., 

A !n general, the kth pair of sample canonic~1 v~riates IS ~e pair of hnear combma?ons 
U V. having unit sample variances that maxtmlZe the ratio (10-24) among those lmear 

b k • . 
combinations uncorrelated with the prevjous k -: 1 sample canorucal vanates. . 

The sample correlation between Uk and Vk is called the kth sample canonical 

correlation. 
The sample canonical variates and the sample canonical correlations can be 

obtained from the sample covariance matrices S11, SI2 = Sh, and S22 in a manner 
consistent with the population case described in Result 10.1. 

The Sample Canonical Variates and Sample Canonical Correlations 551 

Result 10.2. Let Pfz:2: ~z :2: ... :2:?; be the p ordered eigenvalues of 
siF2S12Sl"iSzISiI/2 with corresponding eigenvectors el, ez, ... , ep , where the Ski are 
defined in (lO-22) and p:5 q. Let £1' £z, ... , £p be the eigenvectors of SZi/2S21Sil 
S12Sl"i/2, where the first p fS may be obtained from £k= (l/Pf)Sl"Y2SzISiFzeb 
k = 1,2, ... , p. Then the kth sample canonical variate pairl is 

Uk = e"sil/2x(l) Vk = hSl"i/2x(2) 
'--v--' '--v--' 

where x(l) and x(Z) are the values of the variables X(1) and X(2) for a particular 
experimental unit. Also, the first sample canonical variate pair has the maximum 
sample correlation 

rv"v, = pi 
and for the kth pair, 

is the largest possible correlation among linear combinations uncorrelated with the 
preceding k - 1 sample canonical variates. 

The quantities Pr,~, ... ,;;;' are the sample canonical correlations.z 

Proof. The proof of this result follows the proof of Result 10.1, with Ski substituted 
for I kl , k, I = 1,2. • 

The sample canonical variates have unit sample variances 

sv"v. = SVk, Vk = 1 

and their sample correlations are 

rUk,V, = rVk, V, = 0, 

rUk,V, = 0, 

k*C 

k*C 

(10-25) 

(10-26) 

The interpretation of Uk , Vk is often aided by computing the sample correlations be
tween the canonical variates and the variables in the sets X(I) and X(2). We define 
the matrices 

A = [31,32, ... ,3p )' B = [bt>bz, ... ,bq]' (10-27) 
(pXp) (qXq) 

whose rows are the coefficient vectors for the sample canonical variates.3 Analogous 
to (10-12), we have 

iJ = Ax(1) 
(pXI) 

v = Bx(Z) 
(qXI) 

(10-28) 

I When the distribution is normal, the maximum likelihood method can be employed using:I = S. 
in place of S. The sample canonical correlations P: are, therefore, the maximum likelihood estimates of 

p: and Yn/(n - 1) ak> Yn/(n - 1) bkare the maximum likelihood estimates of 8k and bb respectively. 

2 If P > rank(S12) = PI, the nonzero sample canonical correlations are Pf, . .. , pr, . 
3 The vectors bp,+1 = Si"~/2fp'+1,bp,+2 = Si"~/2fp'+2, ... ,bq = Si"~/2rqaredetermin~fromachoiceof 

the last q - PI mutually orthogonal eigenvectors f associated with the zero eigenvalue of Si"PS21 si1 S12S2~/2 . 
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and we can define 

Rv,x(l) = matrix of sample correlations orv with x(1) 

Rv,x(l) = matrix of sample correlations of V with x(2) 

RV,x(l) = matrix of sample correlations ofU with X(2) 

RV,.(I) = matrix of sample correlations of V with x(l) 

Corresponding to (10-19), we have 

RiJ;x(l) = ASllD1lf2 . 
Rv,x(l) = BS22Dzif2 
RiJ X(l) = AS12Dzif2 

Rv X(I) = BS2ID1lf2 
(10-29) 

where Dl}f2 is the (p X p) diagonal matrix with ith diagonal element (sample 
var(xF»rl/2 and DzY2 is the (q X q) diagonal matrix with ith diagonal element 

(sample var(xf»)-1/2 .. 

Comment, If the observations are standardized [see (8-25)], the data matrix 
becomes 

[ 

(I)' i (2)1] ZI : ZI 

Z=[Z(J) i Z(2)]= : i : 
(1)': (2)1 

and the sample canonical variates become 

U = Az z(1) 
(pXI) 

Zn :, Zn 

v = BzZ(2) 
(qXI) 

(10-30) 

where Az = ADlI? and Bz = BD!q, The sample canonical correlations are unaffect
ed by the standardization, The correlations displayed in (10-29) remain unchAanged 
and may be calculated, for standardized observations, by substituting A z for 
A B for Band R for S. Note that Dlfl2 = I and DzY2 = I for standardized 

, z , ( x ) ( xq) 
observations. p P q 

Example 10.4 (Canonical correlation analysis of the chicken-bone data) In Example 
9.14, data consisting of bone and skull measurements of white leghom fowl were 
described. From this example, the chicken-bone measurements for 

{
Xli) = skull length 

Head (X(1»: X~I) = skull breadth 

{ 
X12) = femur length 

Leg (X(2»: X~2) = tibia length 
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have the sample correlation matrix 

A canonical correlation analysis of the head and leg sets of variables 
using R produces the two canonical correlations and corresponding pairs of 
variables 

Pr = .631 

and 

~ = .057 

UI = .781zl1) + .345z~1) 

Vi = .060z12
) + .944z~2) 

U2 = -.856zP) + 1.106Z~I) 

V2 = - 2.648zi2 ) + 2.475zi2 ) 

Here zF) , i = 1,2 and z)2) , i = 1,2 are the standardized data values for sets 1 and 
2, respectively. The preceding results were taken from the SAS statistical software 
output shown in Panel 10.1. In addition, the correlations of the original variables 
with the canonical variables are highlighted in that panel. • 

Example I O.S(Canonical correlation analysis of job satisfaction) As part of a larger 
study of the effects of organizational structure on "job satisfaction," Dunham [4] in
vestigated the extent to which measures of job satisfaction are related to job charac
teristics. Using a survey instrument, Dunham obtained measurements of p = 5 job 
characteristics and q = 7 job satisfaction variables for n = 784 executives from the 
corporate branch of a large retail merchandising corporation. Are measures of job 
satisfaction associated with job characteristics? The answer may have implications 
for job design. 

PANEL 10.1 SAS ANALYSIS FOR EXAMPLE 10.4 USING PROC CANCORR. 

title 'Canonical Correlation Analysis'; 
data skull (type = corr); 
_type_ = 'CORR'; 
input _name_S x1 x2 x3 x4; 
cards; 
x1 1.0 
x2 .505 1.0 
x3 .569 .422 1.0 
x4 .602 .467 .926 1.0 

proc cancorr data" skull vprefix = head wprefix = leg; 
var x1 x2; with x3 x4; 

PROGRAM COMMANDS 

(continues on next page) 
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PANEL 10.1 (continued) 

2 

Canonical Correlation Analysis 
Adjusted Approx 
Canonical Standard 

Correlation 

0.628291 

Error 

0.036286 
0.060108 

Squared 
Canonical 

Correlation 

0.398268 
0.003226 

Raw CanoniCal Coefficient for the ~VAR' Variables 

~ 
~ 

HEAQl 
0.7807924389 
0.3445068301 

HEAD2 
.:0.855973184 
1.1061835145 

Raw Canonical Coefficient forthe 'WITH' Variables 

Q 
~ 

LEGl 
0.0602508775 

0.943948961 

Canonical Structure 

LEG2 
-2.648156338 
2.4749388913 

OUTPUT 

Correlations Between the 'VAR' Variables and Their Canonical Variables 

Xl 
X2 

HEADl 
0.9548 
0.7388 

HEAD2 
.:0.2974 

0.6739 
(see 10-29) 

Correlations Between the 'WITH' Variables and Their Canonical Variables 

X3 
X4 

LEGl 
0.9343 
0.9997 

LEG2 
.:0.3564 
0.0227 

Correlations Between the 'VAR' Variables 
and the Canonical Variables of the 'WITH' Variables 

Xl 
X2 

LEGl 
0.6025 
0.4663 

lEG2 
.:0.0169 

0.0383 

Correlations Between the WITH' Variables 
and the Canonical Variables of the 'VAR' Variables 

X3 
X4 

HEADl 
0.5897 
0.6309 

HEAD2 
.:0.0202 
0.0013 

(see 10-29) 

(see 10-29) 

(see 10-29) 
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The original job characteristic variables, X(1l, and job satisfaction variables, 
X (2) , were respectively defined as 

[
X~I)l [ feedback 1 xii) task significance 

X(1) = X~l) = task variety 

X~I) task identity 
X~I) autonomy 

supervisor satisfaction 
career-future satisfaction 

financial satisfaction 
workload satisfaction 

company identification 
kind-of-work-satisfaction 

general satisfaction 

Responses for variables X(1) and X(2) were recorded on a scale and then stan
dardized. The sample correlation matrix based on 784 responses is 

[Rll ! R12] R = -.. ----.-r-----.. --
R21 !R22 

1.0 .33 .32 .20 .19 .30 .37 .21 
.49 1.0 .30 .21 .16 .08 .27 .35 .20 
.53 .57 1.0 .31 .23 .14 .07 .24 .37 .18 
.49 .46 .48 1.0 .24.22 .12 .19 .21 .29 .16 

:?~._._ ... :?~. ___ ._:?Z .. __ .. :?Z ___ }:Q .. __ L.}.~ ... -.-:}?. ___ ._}_! __ .. __ :~~ ...... }~._._ .. }~ ...... :~? 
.33 .30 .31 .24 .38 i 1.0 
.32 .21 .23 .22 .32 i .43 1.0 
.20 .16 .14 .12 .17 i.27 .33 1.0 
.19 .08 .07 .19 .23 i.24 .26 .25 1.0 
.30 .27 .24 .21 .32 i .34 .54 .46 .28 1.0 
~ ~ ~ ~ ~i~ ~ ~ ~ ~ In 
.21 .20 .18 .16 .27 i.40 .58 .45 .27 .59 .31 1.0 

The min(p, q) = min(5,7) = 5 sample canonical correlations and the sample 
canonical variate coefficient vectors (from Dunham [4]) are displayed in the 
following table: 
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N N N N t- o 
.~ ..... '"""! q 0") ~ ~ For example, the first sample canonical variate pair is N I I 

N 0\ C') 0\ N VI = .42z~I) + .21Z~I) + .17z~l) - .02zil) + .44z~I) 
~'" V] V] -.:t: ~ q 

N I I A (2) (2) (2) (2) (2) (2) (2) 
VI = .42z1 + .22z2 - .03z3 + .01z4 + .29zs + .52z6 - .12z7 

'" N 0\ '1" 0\ '1" \0 with sample canonical correlation Pr = .55. <I) 

:0 ~'" "! '"""! ~ ~ t-: N 

According Ato the coefficients, VI is primarily a feedback and autonomy .~ .... 
'" variable, while VI represents supervisor, career-future, and kind-of-work satisfaction, > M M t- t- M 

"0 ~.,. q ~ q -.:t: !"'! along with company identification. <I) N I I I 
To provide interpretations for [;1 and}'i, the sample correlations between VI ~ .... and its component variables and between Vi and its component variables were com-'" '" "0 N 

C') 00 M N M 
puted. Also, the following table shows the sample correlations bet.ween variables in !:l !:l 

~'" 
q q -.:t: V] -.:t: .g '" '" I I one set and the first sample canonical variate of the other set. These correlations can C;; 

'" be calculated using (10-29). '0 .... 
N N \0 0- <'l .... N 0 "! -.:t: t--; -.:t: ~ 

U 
~N 

N I I I 
Sample Correlations Between Original Variables and Canonical Variables "2 

u 
·S 

N C') 00 C') N Sample Sample 0 
!:l N -.:t: q V] !"'! "1 canonical canonical 
'" 

~N 
I variates variates U 

"0 
!:l 

X(1) variables X(2) variables '" <;&; :'N ..:~ .:~ ,:v-. 
VI VI VI VI '" <"Q <"Q <"Q <"Q 

"E 
1. Feedback .83 .46 1. Supervisor satisfaction .42 .75 .~ 

E V) C') N 00 V) 2. Task significance .74 .41 2. Career-future satisfaction .35 .65 
<I) (*~ V] "! '"""! q q 3. Task variety .75 .42 3. Financial satisfaction .21 .39 0 
U 4. Task identity .62 .34 4. Workload satisfaction .21 .37 <I) 

5. Autonomy .85 .48 5. Company identification .36 .65 ~ ·c ~ 
M V) V) N 

.80 ~ ~'" 
oq 0") !"'! ~ 6. Kind-of-work satisfaction .44 

N I I 
7. General satisfaction .28 .50 C;; 

u 
·S 

N 0\ 0\ '1" \0 0 
'" q "! -.:t: ~ ~ !:l ~.,. 

'" 2 '" I I I .-< All five job charact~ristic variables have roughly the same correlations with the U oD I 
'" first canonical variate VI. From this standpoint, VI might be interpreted as a job .g 
> t- V) 0\ N '1" characteristic "index." This differs from the preferred interpretation, based on 
"0 '"""! oq '"""! ~ q coefficients, where the task variables are not important. <I) 

~'" .-< 
.~ N I The other member of the first canonical variate pair, ~, seems to be represent-"0 .... 

ing, primarily, supervisor satisfaction, career-future satisfacti~n, company identifica-'" "0 
!:l M V) t- \0 ..... tion, and kind-of-work satisfaction. As the variables suggest, VI might be regarded as '" "! \C! -.:t: q q 

C;; ~N a job satisfaction-company identification index. This agrees with the preceding '" I .-< 

interpretation based on the c~nonical coe!ficients of the zi2),s. The sample correla-
N 0 \0 \0 t- tion between the two indices VI and Vi is pi = .55. There appears to be some over-

~N -.:t: "1 "'1 t-: !"'! lap between job characteristics and job satisfaction. We explore this issue further in I I 
Example 10.7. • 

( ... = :N .:~ ,..,. -'" 
Scatter plots of the first (VI, ~) pair may r~e~ atypical observations Xj requir-<e' <"i <= <= 

ing further study. If the canonical correlations pi, pj, ... are also moderately large, 
. 556 

'" 
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scatter plots of the pairs ([;2, V2), ([;3, V3)'" . may also be helpful in this 
Many analysts suggest plotting "significant" canonical variates against . 
nent variables as an aid in subject-matter interpretation. These plots 
correlation coefficients in (10-29). 

If the sample size is large, it is often desirable to split the sample in 
first half of the sample can be used to construct and evaluate the sampl 
cal variates and canonical correlations. The results can then be " 
the remaining observations. The change (if any) in the nature of the 
analysis will provide an indication of the sampling variability and the 
the conclusions. . 

O S Additional Sample Descriptive Measures I . 
If the canonical variates are "good" summaries of their respective sets of 
then the associations between variables can be described in terms of 
variates and their correlations. It is useful to have summary measures of 
to which the canonical variates account for the variation in their respective 
also useful, on occasion, to calculate the proportion of variance in one set 
abies explained by the canonical variates of the other set. 

Matrices of Errors of Approximations 

Gi~en the Il}atrices A a~d B d~fine'!.. in (lP-27), let a;i) an9 b~) denote th: 
of A-I and B-1, respectively. Smce U = Ax(1) and V = Bx( ) we can wnte, 

x(1) = A-I V 
(pXI) (pXp) (pXl) 

x(2J = B-1 V 
(qXl) (qXq) (qXI) 

I C (U' V') - A'S B'I sample Cov(V) = ASI"lA' = Because samp e ov , - 12, 
sample COV (V) = BS22B' = I , 

(qXq) 

'-1 0 Pr .. . 

f

Pf 0 .. . 

S12 = A ~ ~ . 

o 
o 

S1l = (A-I) (A-I)' = 8(I)a(1)I + 8(2)a(2)I + .,. + a(P)8(P)I 

S22 = (B-1) (B-1), = b(1)b(I)I + b(2)b(2) 1 + .,. + b(q)b(q)I 

Since x(1) = A-IV and V has sample covariance I, the first/ ' 
contain the sample covariances of the first r canonical variate~ VI, V2 

their component variables XP) , X~I) , ... , X~) . Similarly, the fIrst r 

contain the sample covariances of ~, V2 , ... , V,. with their component 
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If only the first r canonical pairs are used, so that for instance, 

and (10-33) 

then S12 is approximated by sample Cov(x(l), x(2». 
Continuing, we see that the matrices of errors of approximation are 

Sl1 - (8(1)8(1)1 + a(2)8(2)I + '" + 8(r)a(r)/) = 8(r+1)8(r+I)I + .. , + a(p)a(p)I 

S22 - (b(1)b(1)I + b(2)b(2)' + '" + b(r)b(r)/) = b(r+l)b(r+l). + .. , + b(q)b(q)· 

S12 - (pta(1)b(1)I + ~a(2)b(2). + '" + ,£;;a(r)b(r).) 

= '£;;+la(r+1)b(r+l)I + '" + p;a(p)b(p)I 

(10-34) 

The approximation error matrices (10-34) may be interpreted as descriptive 
summaries of how well the first r sample canonical variates reproduce the sample 
covariance matrices. Patterns of large entries in the rows and/or columns of the ap
proximation error matrices indicate a poor "fit" to the corresponding variable(s). 

Ordinarily, the first r variates do a better job of reproducing the elements of 
S12 = S21 than the elements of SI1 or S22' Mathematically, this occurs because the 
residual matrix in the former case is directly related to the smallest p - r sample 
canonical correlations. These correlations are usually all close to zero. On the other 
hand, the residual matrices associated with the approximations. to the matrices S11 and 
S22 depend only on the last p - rand q - r coefficient vectors. The elements in 
these vectors may be relatively large, and hence, the residual matrices can have "large" 
entries. 

For standardized observations, Rkl replaces Ski and a~k), b~/) replace 8(k) , b(1) 

in (10-34). 

Example 10.6 (Calculating matrices of errors of approximation) In Example 10.4, we 
obtained the canonical correlations between the two head and the two leg variables 
for white leghorn fowl. Starting with the sample correlation matrix 

R " [~;;i~;;J " [1~1i-_li:-fiJ~-:m] l .602 .467: .926 1.0 
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we obtained the two sets of canonical correlations and variables 

Pt = .631 

and 

Pf. = .057 

A (I) (I) 
UI = .781zl + .345z2 

A (2) (2) VI = .060z1 + .944z2 

U2 = -.856zil ) + 1.l06z~l) 
V2 = -2.648zi2) + 2.475z~2) 

where Z(I) i = 1 2 and Z(2) i =·1 2 are the stand~dized data values for sets 1 and-
I' , " , 

2, respectively. 
We fIrst calculate (see Panel 10.1) 

A -I = [.781 .345J-1 = [.9548 -.2974J 
z -.856 1.106 .7388 .6739 

A_I _ [.9343 -.3564J 
B z - .9997 .0227 

Consequently, the matrices of errors of approximation created by using only the 
first canonical pair are 

RJ2 - sampleCov('Z(I),'Z(2» = (.057) [-:~~~:J [-.3564 .0227] 

[ .006 -.OOOJ 
= -.014 .001 

Rll - sample Cov('Z(1» = [-.2974J [-.2974 .6739] 
.6739 

= [ .088 -.200J 
-.200 .454 

R22 - sampleCov('Z(2» = [-:~~~~J [-.3564 .0227] 

= [ .127 -'<~08J 
-.008 .001 

~(1) ~(2)' . d A(I) bA(I) I A(I) b
A

(I) where z , z are gIven by (10-33) WIth r = 1 an 8 z , z rep ace 8, , 

respectively. 
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We see that the first pair of canonical variables effectively summarizes (repro
duces) the intraset correlations in R!2' However, the individual variates are not 
particularly effective summaries of the sampli~g variability in the original z(1) and 
Z(2) sets, respectively. This is especially true for U1 • • 

Proportions of Explained Sample Variance 

When the observations are standardized, the sample covariance matrices Ski are 
correlation matrices R kf • The canonical coefficient vectors are the rows of the 
matrices A z and 8 z and the columns of A;1 and 8;1 are the sample correlations 
between the canonical variates and their component variables. 

and 

so 

Specifically, 

sample Cov(z(1), iJ) = sample Cov(A;IU, U) = A;1 

r
" (I) UI.Z 1 

AA -1 = [A(!) A(2) A(p)] = ru,.t(~) 
z az , 8 z , ... , az . 

rUt ,1.{1) 

TU2,i:1 

rU2'Z(~) 

l
rv,.z'~) rV2.z';) 

8-! = [bAr!) bA(2) bA(q)] = rv"z(;) rv;,z(;) 
Z Z , Z , ••• , t . . . . . . 

rVl>z(~l rV2'Z(~) 

rup,z(:)l 
ru p,i~l 

rup:,Z(~) 

rVq,z'i)l 
rvq,z{;) 

rvq:,z(i) 

(10-35) 

where 'ui,il) and rVi,t(!) are the sample correlation coefficients between the quantities 
with subscripts. 

Using (10-32) with standardized observations, we obtain 

Total (standardized) sample variance in first set 

= tr(Rl1) = tr(a~l)a~l), + a~2)a~2), + ... + a~p)a~p),) = p (lO-36a) 

Total (standardized) sample variance in second set 

= tr(R22) = tr(b~l)b~l), + b~2)b~2), + ... + b~q)b~q),) = q (lO-36b) 

Since the correlations in the first r < p columns of A;1 and 8;1 involve only the 

sample canonical variates UI , U2, ••. , Ur and VI, V2, • .• , V" respectively, we define 
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the contributions of the first r canonical variates to the total (standardized) 
variances as 

and 

The proportions of total (standardized) sample variances "explained by" the 
canonical variates then become 

and 

(

proportion of total standardized) 
R;<I)luJ12, ... ,ii, = sample varian£e iI} first s~t 

explained by UI , U2, ., •• Ur 

tr(a~l)a~I), + ... + a~r)a~r),) 

tr (Rll) 

p 

(

proportion of total standardized) 
R;(2)l1i Jo v2,""v, = sample variance)n ~econd,set 

explained by~, V2, •.. , V; 

tr(b~l)b~I), + ... + b~r)b~r),) 

tr(Rzz) 

r q 

:L :L?y (2) 

i=1 k=l "ZI.: 

q 

Descriptive measures (10-37) provide some indication of how well the 
cal variates represent their respective sets. They provide single-number rip<rn,nticlnS: 

of the matrices of errors. In particular, 

!t [R - '(1),(1), - a'(2)a,(2), - .. , - a'(r)a,(r)'J = 1 - R2(!)lu- u- U r 11 az az z z z z z 1> 2,···· r 
p 

! t [R - b'(I)b'(I), - b'(2)b'(2), - ... - b'(r)b(r)'J = 1 - R2(2)IV" v v r 22 z z Z z z z z 1> 2."·' r 
q 

according to (10-36) and (10-37). 
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Example 10.T (Calculating proportions of sample variance explained by canonical 
variates) Consider the job characteristic-job satisfaction data discussed in 
Example 10.5. Using the table of sample correlation coefficients presented in that 
example, we find that 

1 5 1 
R~(J)lu) = -5 :L r1 (I) = -5 [(.83f + (.74)2 + ... + (.85)2J = .58 

k=l l,oll.: 

1 7 1 
R~(2)lvl = -7 :L r~ (2) = -7 [(.75f + (,65)2 + .. , + (.50fJ = .37 

k=l ItZI; 

The first sample canonical variate UI of the job characteristics set accounts for 58% 
of th~ set's total sample variance. The first sample canonical variate Vi of the job 
satisf~ction set explains 37% of the set's total saIllple variance. We might thus infer 
that UI is a "better" representative of its set than VI is of its set. The interested read
er may wish to see how well U1 and Vi reproduce the correlation matrices RJ1and 
R 22 , respectively. [See (1O-29).J • 

10.6 Large Sample Inferences 
When :I12 = 0, a'X(I) and b'X(2) have covariance a':IJ2b = 0 for all vectors a and 
b. Consequently, all the canonical correlations must be zero, and there is no point in 
pursuing a canonical correlation analysis. The. next result provides a way of testing 
:IJ2 = 0, for large samples. 

Result 10.3. Let 

j=1,2, ... ,n 

be a random sample from an Np+q(p..,:I) population with 

l:Ill i :IJ2 J (pxp) : (pXq) 
:I = ---,--,--+-,,,--,-

:I21 j :I22 
(qXp) i (qXq) 

Then the likelihood ratio test of Ho: :I12 = 0 versus HI: :I12 # 0 rejects Ho for 
large values of (pXq) (pxq) 

-21 A = I (I SI1II S22I) = - I nP (1-~) n n n 1 Sin n ;=1 P, (10-38) 
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where 

is the unbiased estimator of l:. For large n, the test statistic (10-38) is 
distributed as a chi-square random variable with pq dJ. 

Proof. See Kshirsagar [8]. 

The likelihood ratio statistic (10-38) compares the sample generalized 
under Ho, namely, 

with the unrestricted generalized variance r S I· 
Bartlett [3] suggests replacing the mUltiplicative factor n in the 

ratio statistic with the factor n - 1 - ! (p + q + 1) to improve the X2 
mation to the sampling distribution of -2 In A. Thus, for nand n -

large, we 

Reject Ho: l:12 == 0 (p~ = P; == •.. = P~ == 0) at significance level a if 

where x;,q( a) is the upper (100a )th percentile of a chi-square 
pq dJ. 

If the null hYpothesis Ho: IJ2 = 0 (p~ = P; = ... = P; = 0) is rejected, 
ural to examine the "significance" of the individual canonical correlations. 
canonical correlations are ordered from the largest to the smallest, we can .. 
assuming that the first canonical correlation is nonzero and the relmaini!1! 
canonical correlations are zero. If this hypothesis is rejected, we assume 
two canonical correlations are nonzero, but the remaining p - 2 Cal[IUJ.U-';o'" 

tions are zero, and so forth. 
Let the implied sequence of hypotheses be 

H1: P; ~ 0, for some i 2:: k + 1 
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Bartlett [2] has argued that the kth hypothesis in (10-40) ca'u be tested by the likeli
hood ratio criterion. Specifically, 

Reject H~k)at significance level a if 

( 
1 ) P ~ 

- n - 1 - 2 (p + q + 1) In J~t (1 - pT2) > xtP-k)(q-k)(a) (10-41) 

where XfP-k)(q-k)(a) is the upper (100a)th percentile of a chi-square distribution 
with (p - k)(q - k) d.f. We point out that the test statistic in (10-41) involves 

P ~ II (1 - pj2), the "residual" after the first k sample canonical correlations have 
i=k+1 

P .~ 
been removed from the total criterion A2/n == II (1 - pj2). 

i=1 

If the members of the sequence Ho, H&I), H&2), and so forth, are tested one at 
t · ·1 H(k). . a lme untl 0 IS not rejected for some k, the overall significance level is not a 

and, in fact, would be difficult to determine. Another defect of this procedure is the 
tendency it induces to conclude that a null hypothesis is correct simply because it is 
not rejected. 

To summarize, the overall test of significance in Result 10.3 is useful for multi
variate normal data. The sequential tests implied by (10-41) should be interpreted 
with caution and are, perhaps, best regarded as rough guides for selecting the num
ber of important canonical variates. 

Example 10.8 (Testing the significance of the canonical correlations for the job satis
faction data) Test the significance of the canonical correlations exhibited by the job 
characteristics-job satisfaction data introduced in Example 10.5. 

All the test statistics of immediate interest are summarized in the table on 
~ge 566. Fro~ Example 10.5, n = 784, p = 5, q == 7, Pr = .55, P1 = .23, Pf = .12, 
P4 = .08, and Ps = .05. 

Assuming multivariate normal data, we find that the first two canonical correla
tions, p; and p;, appear to be nonzero, although with the very large sample size, 
small deviations from zero will show up as statistically significant. From a practical 
point of view, the second (and subsequent) sample canonical correlations can prob
ably be ignored, since (1) they are reasonably small in magnitude and (2) the corre
sponding canonical variates explain very little of the sample variation in the variable 
setsX(I) andX(2). • 

The distribution theory associated with the sample canonical correlations and 
the sample canonical variate coefficients is extremely complex (apart from the 
p = 1 and q == 1 situations), even in the null case, l:12 = O. The reader interested in 
the distribution theory is referred to Kshirsagar [8]. 
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m :e .V' 
.§ ... 
t:: U U Cl 

10.1. Consider the covariance matrix given in Example 10.3: 
0 <I.l Q) t:: 

U 'ii)' 'ii)' 0 
~ t:t: Cl 

Wi"J) [100 0 ! 0 0J (I): : 
00 00 

Co, fl:: ~ [~~;ti;;] ~-!!5y!,~~ 
.S ~ V") 

t:: l"- N 0 0 It) 

"'" <'l 0.. 0 
.~ 

11 11 11 ;:..eN ~ 
o ~.o ..-.. ..-.. .-.. T""""'I (,j....( ..... ,..... ,..... ...... .... 0 .... ~ q q 

Verify that the first pair of canonical variates are UI = X~l), VI = X~2) with canonical 

<I.l t; 
~ 

~ '-' 0.. :.a V> .... on 

correlation p; = .95. 

0.. N.., NN 

'>< ~ ~ ~ 

"'" V") 10.2. The (2 X 1) random vectors X(I) and X(2) have the joint mean vector and joint covari-
S N ...... 

ance matrix 0 11 "0 
.-.. N 

<I.l It) 

~ ~ t~;~J~HJ 
<I.l c<) ,..... 

<l:: 11 1 "-< 
0 E ~ 2: m 
Q) ..-.. N <I.l It) ,..... .... 

1 
OIl 
(I) 

Cl t:l"< -.::: ~ I:l.. 

I ~ [i;;ji;;] ~ F=~i:ij J 
..-.. 

.-.. ..-.. r<) ..-.. N It) N N (*0: "'" (*Ci: (*Ci: 'C! 
1 ~ 1 1 

1 3 i -2 7 
,..... .E ,..... ...... ~ 

~ u V11=:! ,..... 
V) t:::~ V)t:::~ 

(a) Calculate the canonical correlations p;, pi. 
.~ ..-.. 
t; t:: + . .= 0 .E .E .E 

(b) Determine the canonical variate pairs (UI , Vd and (U2, V2). 

ctI",c I"-.... U 
~ ~ ~ m (I) + 

(c) Let U = [UI , U2J' and V = [VI, V2J'. From first principles, evaluate 

........ ,..... ...... ...... m .... 
<I.l 0 + ~ + + .... u 

"0 .... t:l"< ,.....IN t:l"< t:l"< 

E([¥J) Cov (t¥J) = [~~-~-r-I~~-J 
(I) .... 
;> Q) + 1 + + 

and 
~~ 
m t1:I ~ 

...... -.::: ~ .o~ 
0'-' ,.....IN """IN ...... IN 

1 "'" 1 1 
Compare your results with the properties in Result 10.1. 

00 ...... 
~ ci ...... ~ ...... N ...... 

oci 
LetZ(!) = VjV2(X(!) - 1'(1) andZ(2) = ViY2(X(2) - 1'(2) be two sets of standard-

1 "'" 0 
10.3. c<) \0 ...... 

~ 11 
~ 11 ~ ized variables. If p~, p;, ... , p; are the canonical correlations for the X (I) , X (2) sets and (U;, Vi) = (aiX(I), biX(2), i = 1,2, ... , p, are the associated canonical variates, deter-

1 1 1 

mine the canonical correlations and canonical variates for the Z(1), Z(2) sets. That is, 0 
eX8ress the canonical correlations and canonical variate coefficient vectors for the Z(I), 0 "ff. 0 
Z ) sets in terms ofthose for the X(I), X (2) sets. 

m 
11 ON 11 'r;; 

Cl. 

10.4. (Alternative calculation of canonical correlations and variates.) Show that, if Ai is an 

Q) 

0 .on 
0 

.v> .e 
Cl. Cl. Cl = ..-.. 

eigenvalue of Ijlf2I12Ii~I21Ijfl2 with associated eigenvector ei, then Ai is also an 
11 

0 i\. 11 "ff. 11 ~ ~ 11 
*~ . ~ 

eigenvalue of IjII12Ii~I21 with eigenvector Ij!i2ei . 
'3 .e N 

Cl. Cl. W- * '-m 

3 Cl. 
Eo Hint: 1 Ijlf2I12Ii~I2IIj!i2 - Ail 1 = 0 implies that 

(I) -t:t: ~ ~ ~O z tJ:: ON ~ 0'" .... 
'-' Cl. Cl. m 

~ ~ N t'"i o = 1 Ijlf2 11 Ij!i2I12I2~I21Ij!i2 - Ail 11 IW 1 
566 = 1 IjII12I2~I21 - Ail 1 
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10.5. Use the information in Example 10.1. 

(a) Find the eigenvalues of II1I12I2t.~;21 and verify that these eigenvalues are 
same as the eigenvalues of IIV2I 12IZ-!I21 IiJl2. 

(b) Determine the second pair of canonical variates (U2 , V2 ) and verify, from first 
pies, that their correlation is the second canonical correlation p; = .03. 

10.6. Show that the canonical correlations are invariant under nonsingular linear tr.'n.f,,~,. 
tions of the X(1), X(2) variables ofthe form C X(l) and D X(2). 

(pXp) (pXl) (qXq) (qXl) 

Hint: Consider Cov (['~~'~~!'J) = [.~~J.!.~.~j ... ~~n~: ] Consider any linear 
DX(2) DI21C'i DInD' . 

nation ai(CX(1» = a'X(I) with a' = a;C. Similarly, consider bi(DX(2» = 

with b' = biD. The choices a; = e'IIV2C-1 and bi = f'I2"!f2D-I give the ~.,.;-, .. ...:, 
correlatiori. 

10.7. LetPl2 = [: :J andPII = P22 = [: ~JcorresPOndingtotheeqUalCOrrelation 
structure where X(1) and X(2) each have two components. 

(a) Determine the canonical variates corresponding to the nonzero canonical correlation. 
(b) Generalize the results in Part a to the case where X(1) has p components and X(2) 

has q 2! P components. 

Hint: P12 = pll',wherelisa(p X 1)columnvectorof1'sandl'isa(q X 1) row 

vector of l's. Note that PIll = [1 + (p - l)p]l so PI]l21 = (1 + (p -1)pr1/21. 

10.8. (Correlation for angular measurement.) Some observations, such as wind direction, are in 
the form of angles. An angle 82 can be represented as the pair x (2) = [cos( 82), sin( 82) Y. 
(a) Show that b'X(2) = Vby + b~cos(82 - f3) where bIiYby + b~ = cos(f3) 

b2lVbi + b~ = sin(,8). 
Hint: cos(82 - ,8) = cos(82) cos(f3) + sin(82) sin(f3). 

(b) Let X(I) have a single component XP) . Show that the single canonical correlation is 
p~ = max Corr (x)1), cost 82 - ,8». Selecting the canonical variable VI amounts to 

/3 
selecting a new origin ,8 for the angle 82, (See Iohnson and Wehrly (7].) 

(c) Let x)1) be ozone (in parts per million) and 82 = wind direction measured from the 
north. Nineteen observations made in downtown Milwaukee, Wisconsin, give the 
sample correlation matrix 

R = [~';';"l':;';] 
ozone cos (82) sin (82) 

= ll_:~t~i::~::}] 
Find the sample canonical correlation Pt and the canonical variate VI representing 

the new origin~. 
(d) Suppose X(l) is also angular measurements of the form X(1) = [cos (8d, sin (8d], 

Thena'X(I) = VaT + a~cos(81 - a). Show that 

p~ = maxCorr(cos(81 - a),cos(82 - f3» 
a./3 
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(e) Twenty-one observations on the 6:00 A.M. and noon wind directions give the correla
tionmatrix 

cos(8d sin(8d, cos(82) sin(82) 

R = [ .. ~l~5X~::lii;··li:l 
.372 .243 i .181 1.0 

Find the sample canonical correlation Pt and VI, VI . 
The following exercises may require a comput~r. 

10.9. H. Hotelling [5] reports that n = 140 seventh-grade children received four tests 
on x(1) = reading speed, X~I) = reading power, X\2) = arithmetic speed, and 
X~2) = arithmetic power. The correlations for performance are 

R = [~·!;"l·~·;;J = [li~~~ .. ~:::;!i~~;:~~~ll 
.0586 .0655: .4248 1.0 

(a) Find all the sample canonical correlations and the sample canonical variates. 
(b) Stating any assumptions you make, test the hypotheses 

Ho:I12 = Pl2 = 0 (p; = p; = 0) 
HI:I12 = PI2 *- 0 

at the a = .05 level of significance. If Ho is rejected, test 

HSI):pi *- O,p; = 0 

H\I):p; *- 0 

with a significance level of a = .05. Does reading ability (as measured by the two 
tests) correlate with arithmetic ability (as measured by the two tests)? Discuss. 

(c) Evaluate the matrices of approximation errors for R ll , R 22 , and R12 determined by 
the first sample canonical variate pair VI, VI . 

10.10. In a study of poverty, crime, and deterrence, Parker and Smith [10] report certain sum
mary crime statistics in various states for the years 1970 and 1973. A portion of their 
sample correlation matrix is 

The variables are 

X\I) = 1973 nonprimary homicides 

X~l) = 1973 primary homicides (homicides involving family or acquaintances) 
xF) = 1970 severity of punishment (median months served) 

X~2) = 1970 certainty of punishment (number of admissions to prison divided by 
number of homicides) 
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(a) Find the sample canonical correlations. 

(b) Determine the first canonical pair VI, VI and interpret these quantities. 

10.11. Example 8.5 presents the correlation matrix obtained from n = 103 
weekly rates of return for five stocks. Perform a canonical correlation 
X(I) = [XiI), X}I), X~I)l', the rates of return for the banks, and X(2) = (Xl2 , 

the rates of return for the oil companies. 

10.12. A random sample of n = 70 families will be surveyed to determine the 
between certain "demographic" variables and certain "consumption" variables. 
Let 

Criterion 
set 

Predictor 
set 

{
xP) = annual frequency of dining at a restaurant 
X~l) = annual frequency of attending movies 

{

X(2) = age of head of household 
X~2) = annual family income 

X ~2) = educationallevel of head of household 

Suppose 70 observations on the preceding variables give the sample correlation 

[
R IJ ! R J2 J ____ :?9. ____ ~:g_._.~----.----------.------------

[

1.0 i 1 
R = -R------:-R----- = .26 .33 i 1.0 

21 i 22 .67 .59 i .37 1.0 

.34 .34 1 .21 .35 1.0 

(a) Determine the sample canonical correlations, and test the hypothesis HO:!12 
(or, equivalently, PI2 = 0) at the er = .05 level. If Ho is rejected, test for the 
cance (er = .05) of the first canonical correlation. 

(b) Using standardized variables, construct the canonical variates corresponding to 
"significant" canonical correlation(s). 

(c) Using the results in Parts a and b, prepare a table showing the canonical variate 
efficients (for "significant" canonical correlations) and the sample correlations 
the canonical variates with their component variables. 

(d) Given the information in (c), interpret the canonical variates. 

(e) Do the demographic variables have something to say about the consumption vari
ables? Do the consumption variables provide much information about the 
graphic variables? 

10.13. Waugh [12] provides information about 11 = 138 samples of Canadian hard red 
wheat and the flour made from the samples. The p = 5 wheat measurements (in 
dardized form) were 

zll) = kernel texture 

Z~l) = test weight 

Z~I) = damaged kernels 

Zil) = foreign material 

Z~I) = crude protein in the wheat 

The q = 4 (standardized) flour measurements were 

z(2) = wheat per barrel offlour 

Z~2) = ash in flour 

Z~2) = crude protein in flour 

zi2
) = gluten quality index 

The sample correlation matrix was 

1.0 
.754 1.0 

-.690 - .. 712 1.0 
-.446 -.515 .323· 1.0 
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__ ._:~?~ ___ ._._:~!.~ ____ ::-_:iii ____ ::-.}}i ___ . .1:.o .. ___ .l ... _. __ .. ____ .. _ .. _. _______ . __ .. __ ._._ .. ___ ._ 
-.605 -.722 .737 .527 -.383 i 1.0 
-.479 -.419 .361 .461 -.505 i .251 1.0 

.780 .542 - .546 - .393 .737 i - .490 - .434 1.0 
-.152 -.102 .172 -.019 -.148 j .250 -.079 -.163 1.0 

(a) Find the sample canonical variates corresponding to significant (at the er = .01 
level) canonical correlations. 

(b) Interpret the first sample canonical variates VI, VI. Do they in some sense represent 
the overall quality of the wheat and flour, respectively? 

(c) What proportion qf the total sample variance of the first set Z (I) is explained by the 
canonical variate UI ? What proportion of the total sample variance of the Z(2) set is 

explained by the canonical variate VI? Discuss your answers. 

10.14. Consider the correlation matrix of profitability measures given in Exercise 9.15. Let X (I) 

= (XiI), X~I), ... , X~I)l' be the vector of variables representing accounting measures 

of profitability, and let X(2) = (X\2), X~2)]' be the vector of variables representing the 
two market measures of profitability. Partition the sample correlation matrix accordingly, 
and perform a canonical correlation analysis. Specifically, 

(a) Determine the first sample canonical variates VI' VI and their correlation. Interpret 
these canonical variates. 

(b) Let Z(l) and Z(2) be the sets of standardized variables corresponding to X(1) and X(2), 

respectively. What proportion of the total sample variance of Z(J) is explained by 

the canonical variate VI? What proportion of the total sample variance of Z(2) is 

explained by the canonical variate Vi? Discuss your answers. 

10.IS. Observations on four measures of stiffness are given in Table 4.3 and discussed in Exam
ple 4.14. Use the data in the table to construct the sample covariance matrix S. Let X(1) 

= (XP), X~I)]' be the vector of variables representing the dynamic measures of stiffness 
(shock wave, vibration), and let X(2) = [X(2) , X~2)]' be the vector of variables represent
ing the static measures of stiffness. Perfonn a canonical correlation analysis of these data. 
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10.16. Andrews and Herzberg [1] give data obtained from a study of a comparison of 
betic and diabetic patients. Three primary variables, 

XP) = glucose int~lerance 
X~l) = insulin response to oral glucose 

X~l) = insulin resistance 

and two secondary variables, 

X\2) = relative weight. 

xf) = fasting plasma glucose 

were measured. The data for n = 46 nondiabetic patients yield the covariance 

[

1106.000 396.700 108.400 i .787 26.230 

S = [.~U-HL~J = __ ~_~;_:~~~ ____ ~_~_~_~.:~~~_. __ ~_~_;_~_:~~~_1._3_:~_~_~ ____ ~_~~_:~~~ 
2-1 i 22 .787 -.214 2.189 i .016 .216 

. 26.230 -23.960 -20.840 i .216 70.560 

Determine the sample canonical variates and their correlations. Interpret these . 
Are the first canonical variates good summary measures of their respective sets of 
abIes? Explain. Test for the significance of the canonical relations with a = .05. 

10.17. Data concerning a person's desire to smoke and psychological and physical state 
collected for n = 110 subjects. The data were responses, coded 1 to 5, to each of 
tions (variables). The four standardized measurements related to the desire to smoke 
defined as . 

zP) = smoking 1 (first wording) 

Z~l) = smoking 2 (second wording) 

Z~l) = smoking 3 (third wording) 

Zil) = smoking 4 (fourth wording) 

The eight standardized measurements related to the psychological and physical state 
given by 

z)2) = concentration 

Z~2) = annoyance 

d2
) = sleepiness 

zi2
) = tenseness 

d2
) = alertness 

Z~2) = irritability 

Z~2) = tiredness 

Z~2) = contentedness 

The correlation matrix constructed from the data is 

R = Dt-;--I--i;-;] 
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where 

rL~ .785 _810 775] .785 1.000 .816 .. 813 
Rl1 = .810 .816 1.000 .845 

.775 .813 .845 1.000 

r0
86 .144 .140 .222 .101 .189 .199 239] , .200 .119 .211 .301 .223 .221 .274 .235 

R12 = R21 = .041 .060 .126 .120 .039 .108 .139 .100 
.228 .122 .277 .214 .201 .156 .271 .171 

1.000 .562 .457 .579 .802 .595 .512 .492 
.562 1.000 .360 .705 .578 .796 .413 .739 
.457 .360 1.000 .273 .606 .337 .798 .240 
.579 .705 .273 1.000 .594 .725 .364 .711 

R22 = 
.802 .578 .606 .594 1.000 .605 .698 .605 
.595 .796 .337 .725 .605 1.000 .428 .697 
.512 .413 .798 .364 .698 .428 1.000 .394 
.492 .739 .240 .711 .605 .697 .394 1.000 

Determine the sample canonical variates and their correlations. Interpret these quanti
ties. Are the first canonical variates good summary measures of their respective sets of. 
variables? Explain. 

10.18. The data in Thble 7.7 contain measurements on characteristics of pulp fibers and the 
paper made from them. To correspond with the notation in this chapter, let the paper 
characteristics be 

xF) = breaking length 

x~l) = elastic modulus 

x~l) = stress at failure 

xiI) = burst strength 

and the pulp fiber characteristics be 

x\2) = arithmetic fiber length 

A2) = long fiber fraction 
x~2) = fine fiber fraction 

xi2) = zero span tensile 

Determine the sample canonical variates and their correlations. Are the first canonical 
variates good summary measures of their respective sets of variables? Explain. Test for 
the significance of the canonical relations with a = .05. Interpret the significant canoni
cal variables. 

10.19. Refer to the correlation matrix for the Olympic decathlon results in Example 9.6. Obtain 
the canonical correlations between the results for the running speed events (lOO-meter 
run, 4OO-meter run, long jump) and the arm strength events (discus, javelin, shot put). 
Recall that the signs of standardized running events values were reversed so that large 
scores are best for all events. 
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Chapter 

DISCRIMINATION AND CLASSIFICATION 

Introduction 

Discrimination and classification are multivariate techniques concerned with 
separating distinct sets of objects (or observations) and with allocating new objects 
(observations) to previously defined groups. Discriminant analysis is rather 
exploratory in nature. As a separative procedure, it is often employed on a one-time 
basis in order to investigate observed differences when causal relationships are not 
well understood. Classification procedures are less exploratory in the sense that 
they lead to well-defined rules, which can be used for assigning new objects. Classi
fication ordinarily requires more problem structure than discrimination does. 

Thus, the immediate goals of discrimination and classification, respectively, are 
as follows: 

Goal 1. To describe, either graphically (in three or fewer dimensions) or alge
braically, the differential features of objects (observations) from sever
al known collections (populations). We try to find "discriminants" 
whose numerical values are such that the collections are separated as 
much as possible. 

Goal 2. To sort objects (observations) into two or more labeled classes. The em
phasis is on deriving a rule that can be used to optimally assign new ob
jects to the labeled classes. 

We shall follow convention and use the term discrimination to refer to Goal 1. 
This terminology was introduced by RA. Fisher [10] in the first modern treatment 
of separative problems. A more descriptive term for this goal, however, is separa
tion. We shall refer to the second goal as classification or allocation. 

A function that separates objects may sometimes serve as an allocator, and, 
conversely, a rule that allocates objects may suggest a discriminatory procedure. In 
practice, Goals 1 and 2 frequently overlap, and the distinction between separation 
and allocation becomes blurred. 

575 
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1 1.2 Separation and Classification for Two Populations 
To fix ideas, let us list situations in which one may be interested in (1) separating two 
classes of objects or (2) assigning a new object to one of two classes (or both). It is 
convenient to label the classes 7TJ and 7T2' The objects are ordinarily separated 
classified on the basis of measurements on, for instance, p associated random vari
ables X' = [X!, X 2 , •.• , XpJ. The observed values of X differ to some extent from 
one class to the other.! We can think of the totality of values from the first class -as 
being the population of x values for 7T! and those from the second class as the popu
lation of x values for 7T2' These .two populations can then be described by probabili
ty density functions f! (x) and h( x), and consequently, we can talk of assigning 
observations to populations or objects to classes interchangeably. 

You may recall that some of the examples of the following separation
classification situations were introduced in Chapter 1. 

Populations 7TJ and 7T2 Measured variables X 

1. Solvent and distressed property-liability 
insurance companies. 

Total assets, cost of stocks and bonds, market 
value of stocks and bonds, loss expenses, 
surplus, amount of premiums written. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Nonulcer dyspeptics (those with upset 
stomach problems) and controls 
("normal"). 

Federalist Papers written by James 
Madison and those written by 
Alexander Hamilton. 

Two species of chickweed. 

Purchasers of a new product and 
laggards (those "slow" to purchase). 

Successful or unsuccessful (fail to 
graduate) college students. 
Males and females. 

Good and poor credit risks. 
Alcoholics and nonalcoholics. 

Measures of anxiety, dependence, guilt, 
perfectionism. 

Frequencies of different words and lengths of 
sentences. 

Sepal and petal length, petal cleft depth, bract 
length, scarious tip length, pollen diameter. 
Education, income, family size, amount of 
previous brand switching. 
Entrance examination scores, high school grade
point average, number of high school activities. 

Anthropological measurements, like 
circumference and volume on ancient skulls. 
Income, age, number of credit cards, family size. 

Activity of monoamine oxidase enzyme, activity, 
of adenylate cyclase enzyme. 

We see from item 5, for example, that objects (consumers) are to be separated 
into two labeled classes ("purchasers" and "laggards") on the basis of observed 
values of presumably relevant variables (education, income, and so forth). In the 
terminology of observation and population, we want to identify an observation of 

1 If the values of X were not very different for objects in?TJ and "2, there would be nO problem; 
that is, the classes would be indistinguishable, and new objects could be assigned to either class 
indiscriminately. 
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th~ fo~m x' = [xJ(education), x2(income), x3(familysize), x4(amount of brand 
sWItchIng).] as population 7T!, purchasers, or population 7T2, laggards. . 
. At this point, we shall concentrate on classification for two populatiops, return-
Ing to separation in Section 11.3. 

Allocation or classification rules are usually developed from "learning" sam
ples. Measured characteristics of randomly selected objects known to come from 
eaCh. of the two populations are examined for differences. Essentially, the set of all 
possIble sample outcomes is divided into two regions, RI and R

2
, such that if a new 

observation falls in Rio it is allocated to population 7T!, and if it falls in R2 , we allo
cate it to population 7T2' Thus, one set of observed values favors 7T!, while the other 
set of values favors 7T2' 

You may wonder at this point how it is we know that some observations belong 
to a particular population, but we are unsure about others. (This. of course, is what 
makes classification a problem!) Several conditions can give rise to this apparent 
anomaly (see [20]): 

1. Incomplete knowledge offuture pel!ormance. 

Examples: In the past, extreme values of certain financial variables were ob
served 2 years prior to a firm's subsequent bankruptcy. Classifying another firm 
as sound or distressed on the basis of observed values of these leading indicators 
may allow the officers to take corrective action, if necessary, before it is too late. 

. A medical school applications office might want to classify an applicant as 
likely to become M.D. or unlikely to become M.D. on the basis of test scores and 
other college records. Here the actual determination can be made only at the 
end of several years of training. 

2. "Perfect" information requires destroying the object. 

l!xa~ple: The lifetime of a calculator battery is determined by using it until 
It falls, and the strength of a piece of lumber is obtained by loading it until it 
breaks. Failed products cannot be sold. One would like to classify products as 
good or bad (not meeting specifications) on the basis of certain preliminary 
measurements. 

3. Unavailable or expensive information. 

Examples: It is assumed that certain of the Federalist Papers were written by 
James Madison or Alexander Hamilton because they signed them. Others of the 
Papers, however, were unsigned and it is of interest to determine which of the 
two men wrote the unsigned Papers. Clearly, we cannot ask them. Word fre
quencies and sentence lengths may help classify the disputed Papers. 

Many medical problems can be identified conclusively only by conducting 
~n expensive operation. Usually, one would like to diagnose an illness from eas
r1y ?bserved, yet potentially fallible, external symptoms. This approach helps 
aVOid needless-and expensive-operations. 

~t should be clear from these examples that classification rules cannot usually 
provld~ ~n e~ror-free method of assignment. This is because there may not be a 
clear dJstInctIon between the measured characteristics of the populations; that is, 
th~ groups may ~>verlap. It is then possible, for example, to incorrectly classify a 7T2 
object as belongmg to 7TJ or a 7TJ object as belonging to 7T2. 
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Example 11_1 (Discriminating owners from nonowners of riding mowers) Consider _ 
two groups in a city: 'lT1, riding-mower owners, and '1T2, those without ri~ing m.( Iwe:rs--_< 
that is, nonowners. In order to identify the best sales prospects for an mtenslve sales 
campaign, a riding-mower manufacturer is interested in classifying families 
prospective owners or nonowners on the basis of XI = income and X2 = lot size. -
Random samples of nl = 12 current owners and n2 = 12 current nonowners yield 
the values in Table 11.1. ' 

Table 11.1 

'IT!: Riding-mower owners '1T2: Nonowners 

XI (Income X2 (Lot size XI (Income X2 (Lot size 
in $lOoos) in 1000 ft2) in $1000s) in 1000 ft2) 

90.0 18.4 105.0 19.6 
115.5 16.8 82.8 20.8 

94.8 21.6 94.8 17.2 
91.5 20.8 73.2 20.4 

117.0 23.6 114.0 17.6 
140.1 19.2 79.2 17.6 
138.0 17.6 89.4 16.0 
112.8 22.4 96.0 18.4 

99.0 20.0 77.4 16.4 
123.0 20.8 63.0 18.8 
81.0 22.0 81.0 14.0 

111.0 20.0 93.0 14.8 

These data are plotted in Figure 11.1. We see that riding-mower owners tend to 
have larger incomes and bigger lots than nonowners, although income seems to be a 
better "discriminator" than lot size. On the other hand, there is some overlap be
tween the two groups. If, for example, we were to allocate those values of (Xl> X2) 

that fall into region RI (as determined by the solid line in the figure) to 'lT1, mower 
owners, and those (Xl> X2) values which fall into R2 to 'lT2, nonowners, we. ,:,ould 
make some mistakes. Some riding-mower owners would be incorrectly classIfIed as 
nonowners and, conversely, some nonowners as owners. The idea is to ~reate a rule 
(regions RI and R2 ) that minimizes the chances of making these mIstakes. (See 
Exercise 11.2.) • 

A good classification procedure should result in few misclassifications. In other 
words, the chances, or probabilities, of misclassification should be small. As we shall 
see there are additional features that an "optimal" classification rule should possess. 

, It may be that one class or population has a greater likelihood of occurrence 
than another because one of the two populations is relatively much larger than the 
other. For example, there tend to be more financially sound firms than ba~pt 
firms. As another example, one species of chickweed may be inore preval~~~ t m;
another. An optimal classification rule should take these "prior probabilItif~S 0 

. 1 b 1· h h ( . ) rob ability of a man-occurrence" mto account. If we real y e leve t at t e pnor p h Id 
cially distressed and ultimately bankrupted firm is very small, then one s ou 
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Figure I I_I Income and lot size 
for riding-mower owners and 
nonowners. 

classify a randomly selected firm as nonbankrupt unless the data overwhelmingly 
favors bankruptcy. 

Another aspect of classification is cost. Suppose that classifying a 'lTl object as 
belonging to 'lT2 represents a more serious error than classifying a 'lT2 object as be
longing to 'lTl. Then one should be cautious about making the former assignment. As 
an example, failing to diagnose a potentially fatal illness is substantially more "cost
ly" than concluding that the disease is present when, in fact, it is not. An optimal 
classification procedure should, whenever possible, account for the costs associated 
with misclassification. 

Let fl(x) and fz(x) be the probability density functions associated with the 
p X 1 vector random variable X for the populations 'lTl and 'lT2, respectively. An ob
ject with associated measurements x must be assigned to either 'lTl or 'lT2. Let n be 
the sample space-that is, the collection of all possible observations x. Let RI be that 
set of x values for which we classify objects as 'lTl and R2 = n - RI be the remaining 
x values for which we classify objects as 'lT2. Since every object must be assigned to 
one and only one of the two populations, the sets RI and R2 are mutually exclusive 
and exhaustive. For p = 2, we might have a case like the one pictured in Figure 11.2. 

The conditional probability,P(211), of classifying an object as 'lT2 when, in fact, 
it is from 'lT1 is 

P(211) = P(XER2 1'ITI) = 12=fl_R/I(X)dX (11-1) 

Similarly, the conditional probability, p(112), of classifying an object as ?Tl when it 
is really from 'lT2 is 

(11-2) 
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Figure 11.2 Classification regions 
for two populations. 

The integral sign in (11-1) represents the volume formed by the density function 
f (x) over the region Rz. Similarly, the integral sign in (11-2) represents the volume 
f~rmed by fz(x) over the region RI' This is illustrated in Figure 11.3 for the univari-

ate case, P = l. 
Let PI be the prior probability of 7T1 and P2 be the prior probability of 7T2, 

where PI + pz = 1. Then the overall probabilities of c?rrectly or i~c?rrectly c1~~
sifying objects can be derived as the product of the pnor and conditIonal clasSifi-
cation probabilities: 

P( observation is correctly classified as 7Tt> = P( observation comes from 7TI 
and is correctly classified as 7TI) 

= P(X€RII7TI)P(7Td = P(111)PI 

P( observation is misclassified as 7TI) = P( observation comes from 7T2 
and is misclassified as 7TI) 

= P(XeRII7T2)P(7Tz) = P(112)p2 

P( observation is correctly classified as 7TZ) = P( observation comes from 7T2 
and is correctly classified as 7TZ) 

p(l12) = jh(x)dX 

fl (x) 

= P(XeRzl7Tz)P(7Tz) = P(212)Pz 

p(211) = j fl (x) dx 

R, 

Figure 11.3 Misclassification probabilities for hypothetical classification regions 
whenp = 1. 
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P( observation is misclassified as 7T2) = P( observation comes from7Tl 
and is misclassified as 7T2) 

= P(XeR217Tj)P(7Tj) = P(211)Pl 

(11-3) 

Classification schemes are often evaluated in terms of their misclassification 
probabilities (see Section 11.4), but this ignores misclassification cost. For example, 
even a seemingly small probability such as .06 = P(211) may be too large if the cost 
of making an incorrect assignment to 7TZ is extremely high. A rule that ignores costs 
may cause problems. 

The costs of misclassification can be defined by a cost matrix: 

True population: 

Classify as: 
7TI 7TZ 

o 
c(112) 

c(211) 
o 

(11-4) 

The costs are (1) zero for correct classification, (2) c(112) when an observation from 
7T2 is incorrectly classified as 7T] , and (3) c(211) when a 7TI observation is incorrect
ly classified as 7T2' 

For any rule, the average, or expected cost ofmisclassification (ECM) is provid
ed by multiplying the off-diagonal entries in (11-4) by their probabilities of occur
rence, obtained from (11-3). Consequently, 

ECM = c(211)P(211)PI + c(112)P(112)p2 (11-5) 

A reasonable classification rule should have an ECM as small, or nearly as 
small, as possible. 

Result 11.1. The regions RI and Rz that minimize the ECM are defined by the 
values x for which the following inequalities hold: 

(den~ity) 2::: (co~t) ( rt:!~~lit ) ratio ratIo p . y 
ratio 

(11-6) 

R
2

: flex) < (C(112») (pz) 
fz(x) c(211) PI 

(den~ity) < (co~t) ( rt:!~~lit ) ratIO ratIO p . y 
ratIo 

Proof. See Exercise 11.3. • 
It is clear from (11-6) that the implementation of the minimum ECM rule re

quires (1) the density function ratio evaluated at a new observation XQ, (2) the cost 
ratio, and (3) the prior probability ratio. The appearance of ratios in the definition of 
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the optimal classification regions is significant. Often, it is much easier to specify the 
ratios than their component parts. 

For example, it may be difficult to specify the costs (in appropriate units) of 
classifying a student as college material when, in fact, he or she is not and classifying 
a student as not college material, when, in fact, he or she is. The cost to taxpayers of 
educating a college dropout for 2 years, for instance, can be roughly assessed. The 
cost to the university and society of not educating a capable student is more difficult 
to determine. However, it may be that a realistic number for the ratio of these mis
classification costs can be obtained. Whatever the units of measurement, not admit
ting a prospective college graduate may be five times more costly, over a suitable 
time horizon, than admitting an eventual dropout. In this case, the cost ratio is five. 

It is interesting to consider the classification regions defined in (11-6) for some 
special cases. . 

Special Cases of Minimum Expected Cost Regions 

(a) P2/PI = 1 (equal prior probabilities) 

ft(x) c(1I2) !J(x) c(112) 
Rt= h(x);;:' c(211)R2: hex) < c(211) 

(b) c( 112)/ c(2 /1) = 1 (equal misclassification costs) 

RI: !J(x);;:, P2 R. flex) < P2 
hex) PI 2· hex) PI 

(c) P2/PI = c(112)/c(211) = 10rpz/Pl = 1/(c(112)/c(211» 
(equal prior probabilities and equal misclassification costs) 

(11-7) 

When the prior probabilities are unknQwn, they are often taken to be equal, and 
the minimum ECM rule involves comparing the ratio of the population densities to 
the ratio of the appropriate misclassification costs. If the misclassification cost ratio 
is indeterminate, it is usually taken to be unity, and the population density ratio is 
compared with the ratio of the prior probabilities. (Note that the prior probabilities 
are in the reverse order of the densities.) Finally, when both the prior probabili
ty and misclassification cost ratios are unity, or one ratio is the reciprocal of the 
other, the optimal classification regions are determined simply by comparing the 
values of the density functions. In this case, if Xo is a new observation and 
fl(XO)/f2(XO) ;;:, I-that is,fI(XO) ;;:, h(xo) -we assign Xo to 1TI. On the other hand, 
if fl(xo)/h(xo) < 1, or fJ(xo) < fz(xo), we assign Xo to 1T2· 

It is common practice to arbitrarily use case (c) in (11-7) for classification. This 
is tantamount to assuming equal prior probabilities and equal misclassification costs 
for the minimum ECM rUle.2 

2This is the justification generally provided. It is also equivalent to assuming the prior probability 
ratio to be the reciprocal of the misclassification cost ratio. 
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Example 11.2 (Classifying a new observation into one of the two populations) A re
searcher has enough data available to estimate the density functions fl(x) and hex) 
associated with populations 1TI and 1T2, respectively. Suppose c(211) = 5 units and 
c( 112) = 10 units. In addition, it is known that about 20% of all objects (for which' 
the measurements x can be recorded) belong to 1T2. Thus, the prior probabilities are 
PI = .B and P2 = .2. 

Given the prior probabilities and costs of misclassification, we can use (11-6) to 
derive the classification regions RI and R2 • Specifically, we have 

R: !J(x) < (10) (~) = 
2 hex) 5 .B .5 

Suppose the density functions evaluated at a new observation Xo give fl(xo) = .3 
and h(xo) = .4. Do we classify the new observation as 1Tl or 1T2? To answer the 
question, we form the ratio 

!J(xo) = .2 = 75 
h(xo) .4 . 

and compare it with .5 obtained before. Since 

ft(xo) = .75 > (C(112») (P2) =-.5 
h(xo) c(211) PI 

we find that Xo E RI and classify it as belonging to 7TI • • 
Criteria other than the expected cost of misclassification· can be used to 

derive "optimal" classification procedures. For example, one might ignore the costs 
of misclassification and choose RI and R2 to minimize the total probability of 
misclassification (TPM): 

TPM = P(misclassifying a 1TI observation or misclassifying a 1T2 observation) 

= P( observation comes from 1TI and is misclassified) 

+ P( observation comes from 1T2 and is miscIassified) 

= PI r fJ(x) dx + P2 r hex) dx JR2 JRI 
(l1-B) 

Mathematically, this problem is equivalent to minimizing the expected cost of 
miscIassification when the costs of misclassification are equal. Consequently, the 
optimal regions in this case are given by (b) in (11-7). 
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We could also allocate a new observation Xo to the population with the largest 
"posterior" probability P( 11'i I xo). By Bayes's rule, the posterior probabilities are 

P( 11'1 occurs and we observe xo) 
P(11'l lxo) =~~-------...::.:... 

P( we observe xo) 

P( we observe Xo 111'1)P( 11'1) 

P(we observe xoI11'1)P( 11'd + P(we observe xoI11'2)P( 1T2) 

PI!I(XO) 

Pt!I(XO) + pd2(XO) 
pzfz(xo) 

P(1T2 Ixo) = 1 - P(1Tl lxo) = f ( ) + f: ( ) (11-9) PI I Xo pz 2 Xo 

Classifying an observation Xo as 1TI when P( 1TII xo) > P( 1T21 xo) is equivalent to 
using the (b) rule for total probability of misclassification in (11-7) because the de
nominators in (11-9) are the same. However, computing the probabilities of the pop
ulations 1TI and 11'2 after observing Xo (hence the name posterior probabilities) is 
frequently useful for purposes of identifying the less clear-cut assignments. 

11.3 Classification with Two Multivariat~ Normal Populations 
Classifieation procedures based on normal populations predominate in statistical 
practice because of their simplicity and reasonably high efficiency across a wide va
riety of population models. We now assume that hex) and f2(x) are muItivariate 
normal densities, the first with mean vector ILl and covariance matrix l:1 and the 
second with mean vector IL2 and covariance matrix 12 • 

The special case of equal covariance matrices leads to a particularly simple lin
ear classification statistic. 

Classification of Normal Populations When I I = I2 = I 
Suppose that the joint densities of X' = [Xl, X2 •.••• Xp] for populations 1TI and 11'2 
are given by 

hex) = (21T)P1; I I 11/2 exp [ - ~ (x - ILi)'rl(X - ILJ] for i = 1,2 (11-10) 

Suppose also that the population parameters ILl, IL2, and I are known. Then, after 
cancellation of the terms (21T )P/21 I 11/2 the minimum ECM regions in (11-6) become 

RI: exp [ -~(x - ILI),rl(X - ILl) + ~(X - IL2)'I-I(x - IL2)] 

~ (C(112») (P2) 
c(211) PI 

R2: exp ( -~(x - ILd'rl(x - ILl) + ~(x - IL2)'rl(X - IL2)] 

(
C(112») (Pz) 

< c(211) PI 
(11-11) 
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Given these regions RI and R2 , we can construct the classification rule given in the 
following result. 

Result I 1.2. Let the populations 11'1 and 1T2 be described by muItivariate normal 
densities of the form (11-10). Then the allocation rule that minimizes the ECM is as 
follows: 
Allocate Xo to 1TI if 

(ILl - IL2),l:-lxo - ~ (ILl - IL2)'I-I(ILl + IL2) ~ In [ (:g: ~D (~) ] (11-12) 

Allocate Xo to 1T2 otherwise. 

Proof. Since the quantitiesin (11-11) are nonnegative for all x, we can take their 
natural logarithms and preserve the order of the inequalities. Moreover (see 
Exercise 11.5), 

-~(X - ILl),rl(X - ILt> + ~(x - IL2)'l:-I(x - ILz) 

(11-13) 

and, consequently, 

RI: (ILl - IL2)'I-
1
x - ~(ILl - IL2)'l:-I(ILI +·ILz) ~ In[ (:g:~D (~) ] 

R2: (ILl - IL2),r
I
X - ~(ILI - IL2)'l:-I(ILI + IL2) < In[ (:g:~D (;:) ] 

(11-14) 

The minimum ECM classification rule follows. • 
In most practical situations, the population quantities ILl> IL2, and l: are un

known, so the rule (11-12) must be modified. Wald [31] and Anderson [2] have sug
gested replacing the population parameters by their sample counterparts. 

Suppose, then, that we have nl observations of the multivariate random vari
able X' = [Xl, X 2, ... , Xp] from 1Tl and n2 measurements of this quantity from 1T2, 
with nl + nz - 2 ~ p. Then the respective data matrices are 

(11-15) 

[
Xhl X - xh z - . 

(n2xp) ,: 

x2n2 
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From these data matrices, the sample mean vectors and covariance matrices are 
determined by 

n, 
SI = _1_ L (xlj - Xl) (Xlj - Xl)' 

(pXp) nl - 1 j=1 

n2 

S2 = _1_' - L (X2j - X2) (X2j - X2)' 
(pXp) n2 - 1 j=1 

Since it is assumed that the parent populations have the same covariance matrix l;, 
the sample covariance matrices SI and S2 are com~ined (pooled) to derive a single, 
unbiased estimate of l; as in (6-21). In particular, the weighted average 

- [ n1 - 1 J [ n2 - 1 J S 
Spooled - (nl - 1) + (n2 - 1) SI + (nl - 1) + (n2 - 1) 2 

(11-17) 

is an unbiased estimate of l; if the data matrices Xl and X 2 contain random sam
ples from the populations '7Tl and '7T2, respectively. 

Substituting Xl for ILl, X2 for 1L2, and Spooled for l; in (11-12) gives the "sample" 
classification rule: 

The Estimated Minimum ECM Rule for Two Normal Populations 

Allocate Xo to '7T1 if 

( - - )'S-l 1 (- - )'S-l (- + - ) > I [(C(1I2») (P2)] 
Xl - X2 pooledXO - 2" Xl - X2 pooled Xl X2 - n c(211) PI 

(11-18) 

Allocate Xo to '7Tz otherwise. 

If, in (11-18), 

(C(1I2») (pz) = 1 
c(211) PI 

then In(l) = 0, and the estimated minimum ECM rule for two normal populations 
amounts to comparing the scalar variable 

Y = (Xl - X2)'S;;~oledX = a'x 

evaluated at Xo, with the number 

~ 1 (- - )'S-l (- + - ) m = 2" Xl - X2 pooled Xl X2 

where 

and 

(11-19) 

(11-20) 
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That is, the estimated minimum ECM rule for two normal populations is tanta
mount to creating two univariate populations for the y values by taking an appropri
ate linear combination of the observations from populations '7Tl and '7Tz and then 
assigning a new observation Xo to '7Tl or '7Tz, depending upon whether yo = a'xo falls 
to the right or left of the midpoint m between the two univariate means )11 and )lz· 

Once parameter estiInates are inserted for the corresponding unknown popula
tion quantities, there is no assurance that the resulting rule will minimize the ex
pected cost of misclassification in a particular application. This is because the 
optimal rule in (11-12) was derived assuming that the multivariate normal densities 
flex) and fz(x) were known completely. Expression (11-18) is simply an estimate of 
the optimal rule. However, it seems reasonable to expect that it should perform well 
if the sample sizes are large.3 

To summarize, if the data appear to be multivariate normal4
, the classification 

statistic to the left of the inequality in (11-18) can be calculated for each new obser
vation xo. These observations are classified by comparing the values of the statistic 
with the value of In[ (c(112)jc(211) ) (pzj pd). 

Example 11.3 (Classification with two normal populations-common l; and equal 
costs) This example is adapted from a study [4] concerned with the detection of 
hemophilia A carriers. (See also Exercise 11.32.) 

To construct a procedure for detecting potential hemophilia A carriers, blood 
samples were assayed for two groups of women and measurements on the two 
variables, . 

Xl = 10glO(AHF activity) 

X 2 = 10glO(AHF-like antigen) 

recorded. ("AHF" denotes antihemophilic factor.) The first group of nl = 30 
women were selected from a population of women who did not carry the hemophilia 
gene. This group was called the normal group. The second group of n2 = 22 women 
was selected from known hemophilia A carriers (daughters of hemophiliacs, 
mothers with more than one hemophilic son, and mothers with one hemophilic son 
and other hemophilic relatives). This group was called the obligatory carriers. The 
pairs of observations (XJ,X2) for the two groups are plotted in Figure 11.4. Also 
shown are estimated contours containing 50% and 95% of the probability for 
bivariate normal distributions centered at Xl and X2, respectively. Their common 
covariance matrix was taken as the pooled sample covariance matrix Spooled' In this 
example, bivariate normal distributions seem to fit the data fairly well. 

The investigators (see [4)) provide the information 

- [-.0065J 
Xl = -.0390' [

-.2483J 
X2 = .0262 

3 As the sample sizes increase, XI' x2' and Spooled become, with probability approaching 1, indistin
guishable from "'I' "'2, and I, respectively [see (4-26) and (4-27)]. 

4 At the very least, the marginal frequency distributions of the observations on each variable can be 
checked for normality. This must be done for the samples from both populations. Often, some variables 
must be transformed in order to make them more "normal looking." (See Sections 4.6 and 4.8.) 
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x 2 = log 10 (AHF-like antigen) 

.4 

.3 

.2 

. 1 

o 
-.1 

-.2 

-.3 

-.4 

• Nonnals 
o Obligatory carriers 

Figure 11.4 Scatter plotsof [IOglO(AHF activity),loglO(AHF-Iike antigen)] for the 
normal group and obligatory hemophilia A carriers. 

and 

-1 _ [131.158 -90.423J 
Spooled - -90.423 108.147 

Therefore, the equal costs and equlIl priors discriminant function [see (11-19)] is 

Moreover, 

y = a'x = [Xl - X2rS~o'edX 

[
131.158 

= [.2418 -.0652] -90.423 

= 37.61xI - 28.92x2 

-90.423J [XIJ 
108.147 X2 

[
-.0065J YI = a'xI = [37.61 -28.92] -.0390 = .88 

.Y2 = a'x2 = [37.61 -28.92{ -:~~~~ J = -10.10 

and the midpoint between these means [see (11-20)] is 

m = !CYI + :Y2) = !(.88 - 10.10) = -4.61 

Measurements of AHF activity and AHF-like antigen on a woman who may be 
a hemophilia A carrier give xl = -.210 and X2 = - .044. Should this woman be clas
sified as 1TI (normal) or 1T2 (obligatory carrier)? 

Using (11-18).with equal costs and equal priors so that !n(1) = 0, we obtain 

Allocatexoto1TlifYo = a'xo ~ m = -4.61 

Allocate Xo to 1T2 if.vo = a' Xo < m = -4.61 
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where x'o = [-.210, -.044]. Since 

.vo = a'xo = [37.61 -28.92{ =:~!~J = -6.62 < -4.61 

we classify the woman as·1T2, an obligatory carrier. The new observation is indicated 
by a star in Figure 11.4. We see that it falls within the estimated .50 probability con
tour of population 1T2 and about on the estimated .95 probability contour of popula
tion 1TI' Thus, the classification is not clear cut . 

Suppose now that the prior probabilities of group membership are known. For 
example, suppose the blood yielding the foregoing Xl and X2 measurements is drawn 
from the maternal first cousin of a hemophiliac. Then the genetic chance of being a 
hemophilia A carrier in this case is .25. Consequently, the prior probabilities of 
group membership are PI = .75 and Pz = .25. Assuming, somewhat unrealistically, 
that the costs of misclassification are equal, so that c( 112) = c(211), and using the 
classification statistic . 

W = (Xl - X2)'S~oledXO - !(XI - X2)'S~led(XI + X2) 

or W = a'xo - m with x'o = [-.210, -.044]. m = -4.61, and a'xo· = -6.62, we 
have 

w = -6.62 - (-4.61) = -2.01 

Applying (11-18), we see that 

A [P2J [.25J w = -2.01 < In - = In - = -1.10 
PI .75 

and we classify the woman as 1T2, an obligatory carrier. 

Scaling 

• 

The coefficient vector a = Sp~led (Xl - X2) is unique only up to a multiplicative 
constant, so, for c * 0, any vector ca will also serve as discriminant coefficients. 

The vector a is frequently "scaled" or "normalized" to ease the interpretation of 
its elements.1Wo of the most commonly employed normalizations are 

1. Set 

A a 
a*=--
~ 

(11-21) 

so that a* has unit length. 

2. Set 

(11-22) 

so that the first element of the new coefficient vector a* is 1. 

In both cases, a* is of the form ca. For normalization (1), c = (8'a)-1/2 and 
for (2), c = ail. 
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The magnitudes of a~, a;, ... ,a;, in (11-21) all lie in the interval [-l,lJ. In 
(11-22), a~ = 1 and a;, ... , a; are expressed as multiples of a;:. Constraining the a; 
to the interval [ -1, 1 J usually facilitates a visual comparison of the coefficients. Sim
ilarly, expressing the coefficients as multiples of a;: allows one to readily assess the 
relative importance (vis-a-vis Xl) of variables X 2, ... , Xp as discriminators. 

Normalizing the a;'s is recommended only if the X variables have been stan
dardized. If this is not the case, a great deal of care must be exercised in interpreting 
the results. 

Fisher's Approach to Classification with Two Populations 

Fisher [10J actually arrived at the linear classification statistic (11-19) using an en
tirely different argument. Fisher's idea was to transform the multivariate observa
tions x to univariate observations Y such that the y's derived from population 'lT1 and 
'lTz were separated as much as possible. Fisher suggested taking linear combinations 
of x to create y's because they are simple enough functions of the x to be handled 
easily. Fisher's approach does not assume that the populations are normal. It does, 
however. implicitly assume that the popUlation covariance matrices are equal, be
cause a pooled estimate of the common covariance matrix is used. 

A fixed linear combination of the x's takes the values Yll, Y12, ... , YI1!l for the 
observations from the first population and the values Y21, Y22, ... , Y21!2 for the obser
vations from the second population. The separation of these two sets of univariate 
Y's is assessed in terms of the difference between Yl and Yz. expressed in standard 
deviation units. That is, 

is the pooled estimate of the variance. The objective' is to select the linear combina
tion of the x to achieve maximum separation of the sample means Yl and Yz. 

Result 11.3. The linear combination y = a'x = (Xl - X2)'Sp~oledX maximizes the 
ratio 

(
squared distance ) 

between sample means of Y 

(sample variance of y) 
(jil - Y2)2 

s;' 

(a'xl - a'x2)2 

a'Spooled a 

(a'd)2 

a'Spooled a 
(11-23) 

over all possible coefficient vectors a where d = (Xl - X2)' The maximum of the 
ratio (11-23) is D2 = (Xl - X2)'Sp.;"led(XI - X2). 
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Proof. The maximum of the ratio in (11-23) is given by applying (2-50) directly. 
Thus, setting d = (Xl - X2), we have 

('df a _ d'S-1 d - (- - )'S-l (- -) D2 max "S • - pooled - Xl - X2 pooled Xl - X2 = 
fi a pooleda 

where D2 is the sample squared distance between the two means. _ 

Note that s;' in (11-33) may be calculated as 
nl n2 

L (Ylj - Yll + L (Y2j - Yl)2 
s2 = j=l j=l 

Y nl + n2 - 2 
(11-24) 

with Ylj = a'Xlj and Y2j = a'X2j' 

Example 11.4 (Fisher'S linear discriminant for the hemophilia data) Consider the 
detection of hemophilia A carriers introduced in Example 11.3. Recall that the equal 
costs and equal priors linear discriminant function was 

y = a'x = (Xl - X2)'Sp~oledX = 37.61xl - 28.92x2 

This linear discriminant fUnction is Fisher's linear function, which maximaIly 
separates the two populations, and the maximum separation in the samples is 

D2 = (Xl - X2)'S~led(XI - X2) 

= [.2418, -.0652J [131.158 -90.423J [ .2418J 
-90.423 108.147 -.0652 

= 10.98 -
Fisher's solution to the separation problem can also be used to classify new 

observations. 

An Allocation Rule Based on Fisher's Discriminant Function5 

Allocate Xo to 'lT1 if 

Yo = (Xl - X2)'S~oledXO 

~ m = !(XI - X2)'S~oled(XI + X2) 
or (11-25) 

Allocate Xo to 'lT2 if 

or 

Yo-m<O 

5We must have (nl + n2 - 2) ;;,: p; otherwise Spooled is singular, and the usual inverse. S~ed' does 
not exist. 
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Figure II.S A pictorial representation of Fisher's procedure for two populations 
withp = 2. 

The procedure (11-23) is illustrated, schematically, for P = 2 in Figure 11.5. All 
points in the scatter plots are projected onto a line in the direction a, and this direc
tion is varied until the samples are maximally separated. 

Fisher's linear discriminant function in (11-25) was developed under the as
sumption that the two populations, whatever their form, have a common covariance 
matrix. Consequently, it may not be surprising that Fisher's method corresponds to 
a particular case of the minimum expected-cost-of-misclassification rule. The first 
term, Y = (Xl - xZ)'S~oledX, in the classification rule (11-18) is the linear function 
obtained by Fisher that maximizes the univariate "between" samples variability rel
ative to the "within" samples variability. [See (11-23).] The entire expression 

W = (Xl - Xz)'S~oledX - !(Xl - xZ)'Sp~led(Xl + xz) 

= (Xl - xz)'Sp~oled [x - ! (Xl + XZ) 1 (11-26) 

is frequently called Anderson's classification function (statistic). Once again, if 
[(c(112)/c(211»(Pz/Pl)] = 1, so that In[(c(l/2)/c(211»(pZ/Pl)] = 0, Rule 
(11-18) is comparable to Rule (11-26), based on Fisher's linear discriminant func
tion. Thus, provided that the two normal populations have the same covariance ma
trix, Fisher's classification rule is equivalent to the minimum ECM rule with equal 
prior probabilities and equal costs of misclassification. 

Is Classification a Good Idea? 

For two populations, the maximum relative separation that can be obtained by 
considering linear combinations of the multivariate observations is equal to the 
distance DZ. This is convenient because DZ can be used, in certain situations, to test 
whether the population means ILl and ILz differ significantly. Consequently, a test 
for differences in mean vectors can be viewed as a test for the "significance" of the 
separation that can be achieved. 
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Suppose the populations 7Tl and 7T2 are multivariate normal with a common co
variance matrix l:. Then, as in Section 6.3, a test of Ho: ILl = ILz versus HI: ILl *- ILz 
is accomplished by referring 

( 7n: :2n~ ~ 2~pl) C::2nJDZ 

to an F-distribution with VI = P and Vz = nl + n2 - P - 1 dJ. If Ho is rejected, 
we can conclude that the separation between the two populations 7Tl and 7T2 is 
significant. 

Comment. Significant separation does not necessarily imply good classifica
tion. As we shall see in Section 11.4, the efficacy of a classification procedure can be 
evaluated independently of any test of separation. By contrast, if the separation is 
not significant, the search for a useful classification rule will probably prove 
fruitless. 

Classification of Normal Populations When ~ I =1= ~2 

As might be expected, the classification rules are more complicated when the popu
lation covariance matrices are unequal. 

Consider the multivariate normal densities in (11-10) with l:i, i = 1,2, replac
ing l:. Thus, the covariance matrices, as well as the mean vectors, are different from 
one another for the two populations. As we have seen, the regions of minimum 
ECM and minimum total probability of misclassification (TPM) depend on the 
ratio of the densities, !I(x)/fz(x), or, equivalently, the natural logarithm of the den
sity ratio, In [fI(x)/fz(x)] = In [fl(x)] - In[fz(x)J. When the multivariate normal 
densities have different covariance structures, the terms in the density ratio involv
ing Il:i Il/Z do not cancel as they do when l:l = l:z. Moreover, the quadratic forms in 
the exponents of flex) and fz(x) do not combine to give the rather simple result in 
(11'-13). 

Substituting multivariate normal densities with different covariance matrices 
into (11-6) gives, after taking natural logarithms and simplifying (see Exercise 
11.15), the classification regions 

R( -~X'(l:jl - l:zf)x + (ILil:jl - ILzl:zl)X - k ~ In[ (;g:~~) (;~) ] 
Rz: -~x'(l:jl - l:zl)x + (ILil:11 

- ILzl:z1)X - k < In[(~g:~n (;~) ] 
(11-27) 

where 

1 (1l:11) 1 ,,,-I ,,,-I 
k = iln Il:zl + 2" (ILI"'1 ILl - ILz"'z ILz) (11-28) 

The classification regions are defined by quadratic· functions of x. When l:1 = l:z, 
the quadratic term, -~x'(l:11 - l:zl)x, disappears, and the regions defined by 
(11-27) reduce to those defined by (11-14). 
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The classification rule for general multivariate normal populations fOllows 
directly from (11-27). 

Result 1 1.4. Let the populations 7TI and 7T2 be described by multivariate normal 
densities with mean vectors and covariance matrices JLj,:t1 and JL2, :t2 , respec_ 
tively. The allocation rule that minimizes the expected cost of misclassification is 
given by 

Allocate Xo to 7TI if 

1 , ,<,-1 ,<,-1) ('I-I 'I-I) -'k >- I [(C(112») (P2)] -2" XO("",,1 -"""2 Xo+ JLI I -JL2 2 Xo - n c(211) PI 

Allocate Xo to 7T2 otherwise. 

Here k is set out in (11-28). • 
In practice, the classification rule in Result 11.5 is implemented by substituting 

the sample quantities Xl, X2, SI, and S2 (see (11-16» for JLI' JL2, :tl , and I 2, 

respectively.6 

Quadratic Classification Rule 
(Normal Populations with Unequal Covariance Matrices) 

Allocate Xo to 7TI if 

1 , -I -I) (-' S-I -, S-I) k >- I [(C(112») (P2)] -2" XO(SI - S2 Xo + XI I - X2 2 Xo - - n c(211) PI 

(11-29) 

Allocate Xo to 7T2 otherwise. 

Classification with quadratic functions is rather awkward in more than two di
mensions and can lead to some strange results. This is particularly true when the 
data are not (essentially) multivariate normal. 

Figure l1.6(a) shows the equal costs and equal priors rule based on the ideal
ized case of two normal distributions with different variances. This quadratic rule 
leads to a region RI consisting of two disjoint sets of points. 

In many applications, the lower tail for the 7TI distribution will be smaller 
than that prescribed by a normal distribution. Then, as shown in Figure l1.6(b), 
the lower part of the region RI> produced by the quadratic procedure, does not 
line up well with the population distributions and can lead to large error rates. 
A serious weakness of the quadratic rule is that it is sensitive to departures from 
normality. 

6 The ineq~aIities nl > P and n2 > P must both hold for SII and S2"1 to exist. These quantities are 
used in place of III and I:;I, respectively, in the sample analog (11-29). 
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(a) 

(b) 

Figure 11.6 Quadratic rules for (a) two normal distribution with unequal variances 
and (b) two distributions, one of which is nonnormal-rule not appropriate. 

If the data are not multivariate normal, two options are available. First, the non
normal data can be transformed to data more nearly normal, and a test for the 
equality of covariance matrices can be conducted (see Section 6.6) to see whether 
the linear rule (11-18) or the quadratic rule (11-29) is appropriate. Transformations 
are discussed in Chapter 4. (The usual tests for covariance homogeneity are greatly 
affected by nonnormality. The conversion of nonnormaI data to nonnal data must 
be done before this testing is carried out.) 

Second, we can use a linear (or quadratic) rule without worrying about the form 
of the parent populations and hope that it-will work reasonably well. Studies (see 
[22] and [23]) have shown, however, that there are nonnormal cases where a linear 
classification function performs poorly, even though the population covariance ma
trices are the same. The moral is to always check the performance of any classifica
tion procedure. At the very least, this should be done with the data sets used to build 
the classifier. Ideally, there will be enough data available to provide for "training" 
samples and "validation" samples. The training samples can be used to develop 
the classification function, and the validation samples can be used to evaluate its 
performance. 
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11.4 Evaluating Classification Functions 
One important way of judging the performance of any classification procedure is to 
calculate its "error rates," or misclassification probabilities. When the forms of the 
parent populations are known completely, misclassification probabilities can be cal
culated with relative ease, as we show in Example 11.5. Because parent populations 
are rarely known, we shall concentrate on the error rates associated with the sample 
classification function. Once this classification function is constructed, a measure of 
its performance in future samples is of interest. 

From (11-8), the total probabil~ty of misclassification is 

TPM = PI r flex) dx + pz r hex) dx JR2 JR1 
The smallest value of this quantity, obtained by a judicious choice of RI and Rz, is 
called the optimum error rate (OER). 

Optimum error rate (OER) = PI r fI(X)dx + P2 r fz(x)dx 
JR2 JRJ 

(11-30) 

where RI and Rz are determined by case (b) in (11-7). 

Thus, the OER is the error rate for the minimum TPM classification rule. 

Example II.S (Calculating misclassification probabilities) Let us derive an expres
.sion for the optimum error rate when PI = pz = i and fI(x) and fz(x) are the mul
tivariate normal densities in (l1-lD). 

Now, the minimum ECM and minimum TPM classification rules coincide when 
c(112) = c(211). Because the prior probabilities are also equal, the minimum 
TPM classification regions are defined for normal populations by (11-12), with 

In [ ( ~g : ~ n (~:) ] = O. We find that 

RI: (PI - pz),rlx - i (PI - PzP:-I(ILI + pz) ~ 0 

Rz: (PI - PZ),!,-I x - i(PI - pz),!,-I(ILI + pz) < 0 

These sets can be expressed in terms of Y = (PI - ILz),I-IX = a'x as 

RI(y): y ~ hpI - P2),!,-I(ILI + pz) 

Rz(y): y < ~ (PI - pz) ,!,-I(ILI + pz) 

But Y is a linear combination of normal random variables, so the probability densi
ties of Y, fl(Y) and hey), are univariate normal (see Result 4.2) with means and a 
variance given by 

ILl Y = a' PI = (PI - ILz) '!,-l ILl 

ILzy = a'pz = (PI - PZ),!,-IILz 

a-} = a'!,a = (PI - PZ),!,-I(PI - ILz) = aZ 
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~~--------~~--+-y 

Figure 11.7 The misclassification probabilities based on Y. 

Now, 

TPM = i P [misclassifying a 71'1 observation as 71'zl 

+ ! P [misclassifying a 71'z observation as 71'Il 

But, as shown in Figure 11.7 

P[misclassifying a 71'1 observation as 71'zl = P(211) 

= pry < i(PI - PZ),!,-I(PI + pz)l 

= p(Y - ILIY < !(PI - PZ),!,-I(PI + ILz) - (PI - ILZ)'rlpl) 
O"y a 

= p( z < -~aZ) = ~(-2a) 
where <P (-) is the cumulative distribution function of a standard normal random 
variable. Similarly, 

P[ misclassifying a 71'Z observation as 71'll 

= P(112) = pry ~ t(PI - pz)'rl(PI + pz)l 

= P ( Z ~ ~) = 1 - <p( ~) = <p( ~a ) 
Therefore, the optimum error rate is 

1 (-a) 1 (-a) (-a) OER = minimum TPM = 2" <P 2 + 2" <P 2 = <P 2 (11-31) 

If, for example, aZ = (PI - Pz)'!,-I(PI - pz) = 2.56, then a = V2.56 = 1.6, and, 
using Table 1 in the appendix, we obtain 

M. . p. (-1.6) llllmum T M = <P -2- = <P( -.8) = .2119 

The optimal classification rule here will incorrectly allocate about 21 % of the items 
to one population or the other. _ 

Example 11.5 illustrates how the optimum error rate can be calculated when the 
population density functions are known. If, as is usually the case, certain population 
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parameters. appearing in allocation rules must be estimated from the sample, then 
the evaluatIOn of error rates is not straightforward. 

The performance of sample classification functions can, in principle, be evaluat_ 
ed by calculating the actual error rate (AER), 

AER = PI (Nx) dx + P2 ( hex) dx h2 hi (11-32) 

~ ~ 

where RI apd R2 represent the classification regions determined by samples of size 
nl and n2, respectively. For ~xample, if the classification function in (11-18) is 
employed, the regions RI and R2 are defined by the set of x's for which the following 
inequalities are satisfied. . 

(Xl - X2)'S;;~ledX - -2
1 

(Xl - X2)'S~led(XI + X2) ~ In[(C(112») (Pz)] 
c(211) PI 

( _ - )'S-l 1 (- -, -1 - - [(C(112») (P2)] Xl - X2 pooled x - -2 Xl - X2) SpooIed(XI + X2) < In --- -
c(211). PI-

The AER indicates how the sample classification function will perform in future 
samples. Like the optimal error rate, it cannot, in general, be calculated, because it 
depends on the unknown density functions 11 (x) and fz (x). However, an estimate of 
a quantity related to the actual error rate can be calculated, and this estimate will be 
discussed shortly. 

There is a measure of performance that does not depend on the form of the 
parent PQPulations and that can be calculated for any classification procedure. This 
measure, called the apparent error rate (APER), is defined as the fraction of observa
tions in the training sample that are misclassified by the sample classification function. 

The apparent error rate can be easily calculated from the confusion matrix, 
which shows actual versus predicted group membership. For nl observations from 
7Tl and n2 observations from 7T2, the confusion matrix has the form 

Actual 
membership 

where 

Predicted membership 

7Tl TT2 

nlC = number of TTl items ~orrectly classified as TTI items 

nlM = number of TTl items !!!isclassified as 7T2 items 

n2C = number of 7T2 items ~orrectlydassified 

n2M = number of TT2 items !!!isclassified 

(11-33) 

The apparent error rate is then 

APER = nlM + n2M (11-34) 
nl + n2 

which is recognized as the proportion of items in the training set that are misclassified. 

Actual 
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Example 11.6 (Calculating the apparent error rate) Consider the classification re
gions RI and R2 shown in Figure 11.1 for the riding-mower data. In this case, obser
vations northeast of the solid line are classified as 7Tl, mower owners; observations 
southwest of the solid line are classified as 7T2, nonowners. Notice that some obser
vations are misclassified. The confusion matrix is 

Predicted membership 

7Tl: riding-mower owners TT2: nonowners 

riding-
7Tl: mower nlC = 10 nlM = 2 nl = 12 

owners 
membership 

7T2: nonowners n2M = 2 n2C = 10 n2 = 12 

The apparent error rate, expressed as a percentage, is 

APER = ( 2 + 2 ) 100% = (~) 100% = 16 7% 
12 + 12 24 . • 

The APER is intuitively appealing and easy to calculate. Unfortunately, it tends 
to underestimate the AER, and the problem does not disappear unless the sample 
sizes nl and n2 are very large. Essentially, this optimistic estimate occurs because the 
data used to build the classification function are also used to evaluate it. 

Error-rate estimates can be constructed that are better than the apparent error 
rate, remain relatively easy to calculate, and do not require distributional assump
tions. One procedure is to split the total sample into a training sample and a valida
tion sample. The training sample is used to construct the classification function, and 
the validation sample is used to evaluate it. The error rate is determined by the pro
portion misclassified in the validation sample. Although this method overcomes the 
bias problem by not using the same data to both build and judge the classification 
function, it suffers from two main defects: 

(i) It requires large samples. 

(ii) The function evaluated is not the function of interest. Ultimately, almost all of 
the data must be used to construct the classification function. If not, valuable in
formation may be lost. 

A second approach that seems to work well is called Lachenbruch's "holdout" 
procedure7 (see also Lachenbruch and Mickey [24]): 

1. Start with the 7Tl group of observations. Omit one observation from this 
group, and develop a classification function based on the remaining nl - 1, n2 
observations. 

2. Classify the "holdout" observation, using the function constructed in Step 1. 

7Lachenbruch's holdout procedure is sometimes referred to asjackkniJing or cross-validation. 
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3. Repeat Steps 1 and 2 until all of the 7Tj observations are classified. Let n~1J) be 
the number of holdout (H) observations misclassified in this group. 

4. Repeat Steps 1 through 3 for the 7T2 observations. Let n~fl be the number of 
holdout observations misclassified in this group. 

Estimates P(211) and P(112) of the conditional misclassification probabilities 
in (11-1) and (11-2) are then given by 

(H) 

P(iI1) = njM 
. nj 

. (H) 

P(112) = n2M (11-35) 
n2 

and the total proportion misclassified, (n~fl + nfiJ)/(nj + n2), is, for moderate 
samples, a nearly unbiased estimate of the expected actual error rate, E(AER). 

(H) (H) 
E(AER) = njM + n2M 

nj + n2 
(11-36) 

Lachenbruch's holdout method is computationally feasible when used in con
junction with the linear classification statistics in (11-18) or (11-19). It is offered as 
an option in some readily available discriminant analysis computer programs. 

Example 11.7 Calculating an estimate of the error rate using the hold out procedure) 
We shall illustrate Lachenbruch's hold out procedure and the calculation of error 
rate estimates for the equal costs and equal priors version of (11-18). Consider the 
following data matrices and descriptive statistics. (We shall assume that the 
nl = n2 = 3 bivariate observations were selected randomly from two populations 
7Tj and 7T2 with a common covariance matrix.) 

x, ~ [: 12] 
1~ ; Xj = L~l 2S1 = [ 2 

-2 -~J 

X, ~ [: n X2 = [~], 2S2 = [ -~ -~J 

The pooled covariance matrix is 

1 [ 1 SpooIed = 4" (2S1 + 2S2) = -1 -!J 

Using SpooIed, the rest of the data, and Rule (11-18) with equal costs and equal ~ri
ors, we may classify the sample observations. You may then verify (see ExercIse 
11.19) that the confusion matrix is 

and consequently, 

True population: 
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Classify as: 

7Tl 7T2 

2 
1 

1 
2 

2 
APER( apparent error rate) = 6" = .33 

Holding out the first observation xli = [2,12] from Xl> we calculate 

[4 lOJ X 1H = 3 8; - [3.5J xIH = 9 ; [
.5 1J and lS1H = 1 2 

The new pooled covariance matrix, S H.pooIed, is 

1 1 [2.5 -lJ SH,pooIed = 3"[lS1H + 2S2] = 3" -1 10 

with inverse8 

-1 1 [10 1 J 
SH,pooIed = 8" 1 2.5 

It is computationally quicker to classify the holdout observation XIH on the basis 
of its squared distances from the group means XI Hand x2 . This procedure is equivalent 
to computing the value of the linear function y = 3lixH = (XIH - x2)'SIl,pooIedxH 
and comparing it to the midpoint mH = !(XIH - x2)'sll,pooIed(xIH + X2)' [See 
(11-19) and (11-20).] 

Thus with xli = [2,12] we have 

Squared distance fromxlH = (XH - xIH)'SIl,pooIed(xH - XIH) 

=[2-3.5 12_9].!:.[10 1J[2 -3.5J=4.5 
8 1 2.5 12-9 

Squared distance from x2 = (XH - x2)'SIl,pooIed (XH - X2) 

= [2 - 4 12 - 7] .!:. [10 1 J [2 -4J = 10.3 
8 1 2.5 12-7 

Since the distance from XH to XIH is smaller than the distance from XH to x2, we 
classify XH as a 7Tj observation. In this case, the classification is correct. 

If xli = [4,10] is withheld, XIH and sll,pooIed become 

- [2.5J -1 1 [16 4 J XIH = 10 and SH,pooIed = 8" 4 2.5 

8 A matrix identity due to Bartlett [3] allows for the quick calculation of s1l.pooled directly from Sp&,le~. 
Thus one does not have to recompute the inverse after withholding each observation. (See Exercise 11.20.) 
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We find that 

(XH - xlH)/sll,pooled(xH - XlH) = [4 - 25 10 - 10J~[ 1~ 2~5 J [1~ ~ ~'n 
= 4,5 

(XH - xz)'sll.poo,ed(xH - Xz) = [4 - 4 10 - 7J~[I~ 2~5J L~ = ~J 
= 2.8 

and consequently, we would im;:orrectly assign xli = [4,lOJ to TTZ' Holding out 
xli = [3,8J leads to incorrectly assigning this observation to TTZ as well. Thus, 

nl1fJ = 2. 
Turning to the second group, suppose xli = [5,7J is withheld. Then 

X 2H = [! ~J X2H = [3/J and IS2H = [~~ -~J 
The new pooled covariance matrix is 

1 1 [2.5 
SH.pooled = 3" [2Sl + IS2H] = 3" -4 -4J 

16 

with inverse 

-1 3 [16 4 J 
SH.pooled = 24 4 2.5 

We find that 

(XH - xdsll.poo'ed(xH - Xl) = [5 - 3 7 - 10] ;4 [14
6 2~5 ] [; ~ :0 J 

= 4.8 

(XH - X2H)'Sll.pooled(XH - X2H) = [5 - 3.5 7 - 7];4[1: 2~5J [57-_3~5J 
= 45 

and xli = [5, 7J is correctly assigned to TT2' 

When xli = [3, 9J is withheld, 

(XH - xdsll.poo'ed (XH - Xl) = [3 - 3 9 - 10] ;4 [1~ 2~5 ] [~ = ~O J 

= .3 

(XH - x2H )/sll,poo'ed (XH - X2H) = [3 - 45 9 - 6J ;4 [1~ 2~5 J [~ = :.5 J 

= 4.5 

and xli = [3,9J is incorrectly assigned to TT!. Finally, withholding xli = [4, 5J leads 

to correctly classifying this observation as TT2' Thus, n~1fJ = 1. 
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An estimate of the expected actual error rate is provided by 

(H) + (H) 2 + 1 
E(AER) = nlM . n2M = -- = .5 

nl + n2 3 + 3 

Hence, we see that the apparent error rate APER = .33 is an optimistic measure of 
performance. Of course, in practice, sample sizes are larger than those we have 
considered here, and the difference between APER and E(AER) may not be as 
large. -

If you are interested in pursuing the approaches to estimating classification 
error rates, see [23J. 

The next example illustrates a difficulty that can arise when the variance of the 
discriminant is not the same for both populations. 

Example 11.8 (Classifying Alaskan and Canadian salmon) The salmon fishery is a 
valuable resource for both the United States and Canada. Because it is a limited 
resource, it must be managed efficiently. Moreover, since more than one country is 
involved, problems must be solved equitably. That is,Alaskan commercial fishermen 
cannot catch too many Canadian salmon and vice versa. 

These fish have a remarkable life cycle. They are born in freshwater streams 
and after a year or two swim into the ocean. After a couple of years in saIt water, 
they return to their place of birth to spawn and die. At the time they are about to 
return as mature fish, they are harvested while still in the ocean. To help regulate 
catches, samples of fish taken during the harvest must be identified as coming 
from Alaskan or Canadian waters. The fish carry some information about their 
birthplace in the growth rings on their scales. 'JYpicaIly, the rings associated with 
freshwater growth are smaller for the Alaskan-born than for the Canadian-born 
salmon. Table 11.2 gives the diameters of the growth ring regions, magnified 100 
times, where 

Xl = diameter of rings for the first-year freshwater growth 

(hundredths of an inch) 

X 2 = diameter of rings for the first-year marine growth 

(hundredths of an inch) 

In addition, females are coded as 1 and males are coded as 2. 
Training samples of sizes nl = 50 Alaskan-bom and n2 = 50 Canadian-born 

salmon yield the summary statistics 

- [98.380J 
Xl = 429.660' 

[
137.460J 

X2 = 366.620 ' 

s = [ 260.608 -188.093J 
1 -188.093 1399.086 

s = [326.090 133.505J 
2 133.505 893.261 
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Table 11.2 Salmon Data (Growth-Ring Diameters) 

Alaskan 

Gender Freshwater Marine Gender 

2 108 368 1 
1 131 355 1 
1 105 469 1 
2 86 506 2 
1 99 402 2 
2 87 4~3 2 
1 94 440 1 
2 117 489 2 
2 79 432 1 
1 99 403 2 
1 114 428 2 
2 123 372 1 
1 123 372 1 
2 109 420 2 
2 112 394 1 
1 104 407 1 
2 111 422 1 
2 126 423 2 
2 105 434 2 
1 119 474 1 
1 114 396 2 
2 100 470 1 
2 84 399 1 
2 102 429 2 
2 101 469 2 
2 85 444 2 
1 109 397 1 
2 106 442 2 
1 82 431 1 
2 118 381 2 
1 105 388 1 
1 121 403 Z 
1 85 451 1 
1 83 453 1 
1 53 427 2 
1 95 411 2 
1 76 442 1 
1 95 426 1 
2 87 402 2 
1 70 397 2 
2 84 511 1 
2 91 469 1 
1 74 451 2 
2 101 474 1 
1 80 398 2 

Canadian 

Freshwater Marine 

129 420 
148 371 
179 407 
152 3R1 
166 3'!7 
124 389 
156 4:9 
131 315 
140 3{iZ 
144 345 
149 393 
108 330 
135 355 
170 386 
152 301 
153 397 
152 301 
136 438 
122 306 
148 383 
90 385 

145 337 
123 364 
145 376 
115 354 
134 383 
117 355 
126 345 
118 379 
120 369 
153 403 
150 354 
154 390 
155 349 
109 325 
117 344 
128 400 
144 403 
163 370 
145 355 
133 375 
128 383 
123 349 
144 373 
140 388 

(continues on next page) 
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Table 11.2 (continued) 

Alaskan Canadian 

Gender Freshwater Marine Gender Freshwater Marine 

1 95 433 2 150 339 
2 92 404 2 124 341 
1 99 481 1 125 346 
2 94 491 1 153 352 
1 87 480 1 108 339 

Gender Key: 1 = female; 2 = male. 
Source: Data courtesy of K. A. Jensen and B. Van Alen of the State of Alaska Department of Fish and Game. 

The data appear to satisfy the assumption of bivariate normal distributions (see 
Exercise 11.31), but the covariance matrices may differ. However, to illustrate a point 
concerning rnisclassification probabilities, we will use the linear classification procedure. 

The classification procedure, using equal costs and equal prior probabilities, 
yields the holdout estimated error rates 

Actual 
membership 

7T1: Alaskan 

7T2: Canadian 

Predicted membership 

7T1: Alaskan 7T2: Canadian 

44 6 

1 49 

based on the linear classification function (see (11-19) and (11-20)] 

w = y - rn = -5.54121 -.: .12839xl + .05194x2 

There is some difference in the sample standard deviations of w for the two 
populations: 

Alaskan 
Canadian 

n 

50 
50 

Sample 
Mean 

4.144 
-4.147 

Sample 
Standard Deviation 

3.253 
2.450 

Although the overall error rate (7/100, or 7%) is quite low, there is an unfair
ness here. It is less likely that a Canadian-born salmon will be misclassified as 
Alaskan born, rather than vice versa. Figure 11.8, which shows the two normal 
densities for the linear discriminant y, explains this phenomenon. Use of the 

Figure 11.8 Schematic of normal densities for linear discriminant-salmon data. 
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midpoint between the two sample means does not make the two misclassification 
probabilities ,equal. It clearly penalizes the population with the largest variance. 
Thus, blind adherence to the linear classification procedure can be unwise. _ 

It should be intuitively clear that good classification (low error rates) will de
pend upon the separation of the populations. The farther apart the groups, the mOre 
likely it is that a useful classification rule can be developed. This separative goal, al
luded to in Section 11.1, is explored further in Section 11.6. 

As we shall see, allocation rules appropriate for the case involving equal prior 
probabilities and equal misclassification costs correspond to functions designed to 
maximally separate populations. It is in this situation that we begin to lose the dis
tinction between classification and separation. 

II.S Classification with Several Populations 
In theory, the generalization of classification procedures from 2 to g 2: 2 groups is 
straightforward. However, not much is known about the properties of the corre
sponding sample classification functions, and in particular, their error rates have not 
been fully investigated. 

The "robustness" of the two group linear classification statistics to, for instance, 
unequal covariances or nonnormal distributions can be studied with computer gen
erated sampling experiments.9 For more than two populations, this approach does 
not lead to general conclusions, because the properties depend on where the popu
lations are located, and there are far too many configurations to study conveniently. 

As before, our approach in this section will be to develop the theoretically opti
mal rules and then indicate the modifications required for real-world applications. 

The Minimum Expected Cost of MiscJassification Method 

Let fi(X) be the density associated with popUlation 71'i' i == 1,2, ... , g. [For the most 
part, we shall take hex) to be a multivariate normal density, but this is unnecessary 
for the development of the general theory.] Let 

Pi == the prior probability of population 71'j, i = 1,2, ... , g 

c( k I i) = the cost of allocating an item to 71'k when, in fact, it belongs 
t071'i' fork,i == 1,2, ... ,g 

For k == i, c(i I i) == O. Finally, let Rk be the set of x's classified as 71'k and 

P(kli) == P(classifyingitemas71'kl71'J == r f;(x)dx iRk 
g 

fork,i == 1,2, ... ,gwithP(iIi) == 1 - 2: P(kli). 
k~1 
k .. i 

9Here robustness refers to the deterioration in error rates caused by using a classification procedure 
with data that do not conform to the assumptions on which the procedure was based. 

It is very difficult to study the robustness of classification procedures analytically. However, data 
from a wide variety of distributions with different covariance structures can be easily generated 
on a computer. The performance of various classification fules can then be evaluated using computer
generated "samples" from these distributions. 

Classification with Several Popa ~~ ti( 

~e conditional expected cost of misclassifying an x from 71'1 into 7T2 or 
or 71'g IS 

ECM(l) == P(211)c(211) + P(311)c(311) + ... + P(gll)c(gl ~) 
g 

== 2: P(kll)c(kI1) 
k=Z 

This cond~ti~nal expected cost occurs with prior probability PI , the probat-i~it, 
. In a SimIlar manner, we can obtain the conditional expected costs of I::Jk~~S' 

catIon ECM(2), ... , ECM(g). Multiplying each conditional ECM by its ~ :r:-::IOJ 
ability and summing gives the overall ECM: 

ECM == P1ECM(1) + P2ECM(2) + '" + PgECM(g) 

== PI (~P(kll)C(kll») + P2(~ P(kI2)C(kI2») 

k .. 2 

(
8-

1 
) + ... + Pg ~ P(klg)c(klg) 

~ Pi(k~ P(kli)C(kli») 
k .. j 

(1 

Deter~ing an optimal classification procedure amounts to chOOSing "t:~e 
tually exclUSIve and exhaustive classification regions RI, Rz, ... , R sa c:=.:::h 
(11-37) is a minimum. g 

Result 11.5. The classification regions that minimize the ECM (11-37) are ~ <:1 
by allocating x to that population 71'k, k == 1,2, ... , g, for which 

g 

2: pi/;{x)c(kli) 
i=1 
i .. k 

is smallest. If a tie occurs, x can be assigl!-ed to any of the tied populations. 

Proof. See Anderson (2). 

Suppose ~l the I?~Scl~ssificati~n costs are equal, in which case the minimum eXi=> . 
cost of ':l11sclasslflcatlon rule IS the minimum total probability of misclassifi~~ 
rul~. (WIthout loss of generality, we can set all the misclassification costs equal ~" 
Usmg ~he argument lead!ng to (11-38), we would allocate x to that popu_~ 
71'k> k - 1,2, ... , g, for whIch 

g 

2: Pi/;{X) 
i~1 

i .. k 

(1 1- -
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is smallest. Now, (11-39) will be smallest when the omitted term, Pkfk(x), is largest. 
Consequently, when the misclassification costs are the same, the minimum expected 
cost of misclassification rule has the following rather simple form. 

Minimum ECM Classification Rule 
with Equal Misclassification Costs 

Allocate Xo to Trk if 

or, equivalently, 

Allocate Xo to Trk if 

lnpkfk(x) > lnp;fi(x) foralli *" k 

(11-40) 

(11-41) 

It is interesting to note that the classification rule in (11-40) is identical to the 
one that maximizes the "posterior" probability P(1Tklx) = P (x comes from 1Tk 

given that x was observed), where 

P( I) 
_ Pk!k(X) _ (prior) X (likelihood) 

Trk x - g - for k = 1,2, ... , g 

L pJ;(x) L [(prior) x (likelihood)] 
i;\ 

(11-42) 

Equation (11-42) is the generalization of Equation (11-9) to g 2! 2 groups. 
You should keep in mind that, in general, the minimum ECM rules have three 

components: prior probabilities, misclassification costs, and density functions. These 
components must be specified (or estimated) before the rules can be implemented. 

Example 11.9 (Classifying a new observation into one of three known populations) 
Let us assign an observation Xo to one of the g = 3 populations Tr1 , Tr2, or Tr3, given 
the following hypothetical prior probabilities, misclassification costs, and density 
values: 

True population 
1Tl 1TZ Tr3 

Trl c(lll) = 0 c(112) ==500 c(113) = 100. 

Classify as: Tr2 c(211) =10 c(212) == 0 c(213) = 50 

Tr3 c(311) = 50 c(312) == 200 c(313) = 0 

Prior probabilities: PI = .05 Pz = .60 P3 = .35 

Densities at Xo: h(xo) = .01 !z(xo) = .85 h(xo) = 2 

We shall use the minimum ECM procedures. 
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< 3 

The values of L pi/;{xo)c(k li) [see (11-38)] are 
i;1 
i ... k 

k = 1: PV'2(xo)c(112) + P3h(xo)c(113) 

= (.60)(.85)(500) + (.35)(2)(100) = 325 

k = 2: p1!1(xo)c(211) + P3h(xo)c(213) 

= (.05)(.01)(10) + (.35)(2)(50) = 35.055 

k = 3: p1!l(xo)c(311) + PV'2(xo)c(312) 

= (.05)(.01)(50) + (.60) (.85)(200) = 102<025 
3 

Since :L pi/;{xo)c(k I i) is smallestfor k = 2, we would allocate xo to Trz. 
,;1 
i ... k 

If all costs of misclassification were equal, we would assign xo according to 
(11-40), which requires only the products 

Since 

P1!l(XO) = (.05) COl) = .0005 

PV'2(XO) = (.60) (.85) =.510 

P3h{XO) = (.35) (2) = .700 

P3h{XO) = .700 2! pdi(XO)' i = 1,2 

we should allocate Xo to Tr3' Equivalently, calculating the posterior probabilities [see 
(11-42)], we obtain 

P( I ) - P1!l(XO) 
1Tl Xo - 3 

L pdi(xo) 
i=1 

(05) (.01) .0005 
(.05) (.01) + (.60)(.85) + (.35)(2) = 1.2105 = .0004 

P(Tr Ix ) = Puz(xo) = (.60) (.85) _ .510 _ 
z 0 3 1.2105 - 1.2105 - A21 

L pdi(XO) 
;;1 

(.35) (2) <700 
= 1.2105 = 1.2105 = .578 

We see that Xo is allocated to Tr3, the population with the largest posterior probability. _ 

Classification with Normal Populations 

An important special case occurs when the 

/;(x) = (2Tr)PI;I~dl/2 exp [ -~(x - f.ti)'l:,i1(x - I-t;) J. 
i = 1,2, ... ,g (11-43) 
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are multivariate normal densities with mean vectors ILi and covariance matrices I i. 
If, further, c( i I i) = 0, c( k I i) = 1, k "* i (or, equivalently, the miscll:}ssification costs 
are all equal), then (11-41) becomes 

Allocate x to 7Tk if 

lnpk!k(x) = lnpk - (~)ln(27T) - ~lnlIkl - ~(x - Jl-dI;;I(x - ILk) 

= maxlnpJi(x) (11-44) 
i 

The constant (p/2) In (27T) can be ignored iQ (11-44), since it is the same for all 
populations. We therefore define the quadratic discrimination score for the ith 
population to be 

d~(x) = -~lnII;/ - ~(x - ILi)'Iil(x - ILi) + lnpi 

i = 1,2, ... , g (11-45) 

The quadratic score d~(x) is composed of contributions from the generalized 
variance 1 Ii I, the prior probability Pi, and the square of the distance from x to the 
population mean IL;. Note, however, that a different distance function, with a 
different orientation and size of the constant-distance ellipsoid, must be used for 
each population. 

Using discriminant scores, we find that the classification rule (11-44) becomes 
the following: 

Minimum Total Probability of Misclassification (TPM) Rule 
for Normal Populations-Unequal ~i 

Allocate x to 7Tk if 

the quadratic score df (x) = largest of df(x), df(x), ... , d~(x) 

where d~(x) is given by (11-45). 

(11-46) 

In practice, the ILi and I; are unknown, but a training set of correctly classified 
observations is often available for the construction of estimates. The relevant sam
ple quantities for population 7Tj are 

X; = sample mean vector 

Si = sample covariance matrix 

and 
n; = sample size 

The estimate of the quadratic discrimination score d?(x) is then 

d~(x) = -~InIS;I - ~(x - x;)'Si1(x - Xi) + lnp;, i = 1,2, ... ,g 

and the classification rule based on the sample is as follows: 
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Estimated Minimum (TPM) Rule 
for Several Normal Populations-Unequal ~i 

Allocate x to 7Tk if 

the quadratic score df(x) = largest of df(x), df(x), ... ,d~(x) 
where dp(x) is given by (11-47). 

(11-48) 

A simplification is possible if the popUlation covariance matrices, I
i
, are equal. 

When I j = I, for i = 1,2, ... ,g, the discriminant score in (11-45) becomes 

d~(x) = -~lnIII - ~x'I-lx + ILiI-1x - ~ILiI-IILi + In Pi 

The first two terms are the same for df(x), df(x), ... , d~(x), and, consequently, 
they can be ignored for allocative purposes. The remaining terms consist of a con
stant Ci = In P; - ! ILiI-1 ILj and a linear combination of the components of x. 

Next, define the linear discriminant score 

dlx) = ILj1',-IX - ~IL;I-IIL; + Inp; (11-49) 

for i = 1,2, ... , g 

An. estimate d;(x) of the linear discriminant score d;(x) is based on the pooled 
estImate of!,. 

1 
Spooled = + + + «nl - I)SI + (n2 - 1)S2 + ... + (ng - l)Sg) nl n2 ... ng - g 

and is given by 
(11-50) 

d( ) - -'S-1 I-'S-I - I i X - Xi pooledX - Z-Xi pooledXi + np; (11-51) 
for i = 1,2, ... , g 

Consequently, we have the following: 

Estimated Minimum TPM Rule 
for Equal-Covariance Normal Populations 

Allocate x to 7Tk if 

the linear discriminant score dk(x) = the largestof d1(x), d2 (x), ... , dg(x) 

with d;(x) given by (11-51). 
(11-52) 

Comment. Expression (11-49) is a converrlent linear function of x.An equivalent 
classifier for the equal-covariance case can be obtained from (11-45) by ignoring the 

constant term, -! In 1 1', I· The result, with sample estimates inserted for unknown 
population quantities, can then be interpreted in terms of the squared distances 

DUx) = (x - Xi)'S;~oled (x - Xi) (11-53) 
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from x to the sample mean vector Xi' The allocatory rule is then 

Assign x to the population ?T;for which -! Dlex) + In Pi is largest 

We see that this rule-or, equivalently, (11-52)-assigns x to the "closest" popula
tion. (The distance measure is penalized by In Pi') 

If the prior probabilities are unknown, the usual procedure is to set PI = 
Pg = 1/ g. An observation is then assigned to the closest population. 

Example 11.10 (Calculating sample discriminant scores, assuming a common covari.; 
ance matrix) Let us calculate the linear discriminant scores based on data from g == 
populations assumed to be bivariate normal with a common covariance matrix. 

Random samples from the populationS?Tb ?T2, an~ ?T3, along with the sample· 
mean vectors and covariance matrices, are as follows: 

[-2 5] 
Xl = [-!} andSI = [ -~ -~J Xl = 0 3 , sonl = 3, 

-1 1 

X, ~ [~ n son2 = 3, X2 == [!} [ 1 -IJ andS2 = -1 4 

[ 1 -2] son3 = 3, X3 == [ _~} andS3 = D ~J X3 = 0 0, 
-1 -4 

Given that PI = P2 = .25 and P3 = .50, let us classify the observation 
Xo = [XOI, xd = [-2 -1) according to (11-52). From (11-50), 

so 

Next, 

3 -1 [ 1 -IJ 3 - 1 [ 1 -IJ 3 - 1 [1 41J 
Spooled=9_3 -1 4 +9-3 -1 4 +9-31 

=3.[ 1+1+1 -1-1+1J=[1 -~J 
6 -1 - 1 + 1 4 + 4 + 4 1 

-- 4 
3 

-1 9 4 3 1 36 3 

[ IJ s,..,,,. ~ 35 ~ 1 ~ 35[ 3 9J 

-, -1 ) 1 [36 3J 1 ) XlSpooled = [-1 3 35 3 9 == 35 [-27 24 

and 

so 
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-'S-l - - 1 [ 27 24) [-IJ = 99 Xl pooledXI - 35 - 3 35 

(-n) (M) I(W) = In (.25) + 35 XOI + 35 X02 - 2 35 

Notice the linear form of dl(xo) = constant + (constant) XOI + (constant) Xoz. In a 
similar manner, 

and 

Finally, 

and 

-'S-1 [1 4] 1 [36 3J 1 [ X2 pooled = 35 3 9 = 35 48 39) 

-'S-1 - 1 [48 39) [lJ = 204 
X2 pooled X2 = 35 4 35 

~ (48) (39) 1 (204) d2(xo) = In (.25) + 35 XOl + 35 X02 - 2 35 

X3SpJoled = [0 -2]3~ [3~ ~ J = 3~ [-6 -18] 

-'S-1 - 1 [6 18J[ 0J 36 X3 pooled X3 = 35 - -. -2 = 35 

~ (-6) (-18) 1 (36) d3(xo) = In(.50) + 3s XOl + 35 X02 - 2 35 

Substituting the numerical values XOl = -2 and Xoz = -1 gives 

~ (-n) (M) dl(xo) = -1.386 + 35 (-2) + 35 (-1) ~~ = -1.943 

~ (48) (39) 204 dz(xo) = -1386 + - (-2) + - (-1) - - = -8158 
. 35 35 70' 

~ (-6) (-18) 36 d3(xo) = -693 + - (-2) + - (-1) - - = -350 
. 35 35 70' 

Since d3(xo) = - .350 is the largest discriminant score, we allocate Xo to ?T3' • 
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Example 11.11 (Classifying a potential business-school graduate student) The ad
mission officer of a business school has used an "index" of undergraduate 
grade point average (GPA) and graduate management aptitude test (GMAT), 
scores to help decide which applicants should be admitted to the school's gradu
ate programs. Figure 11.9 shows pairs of Xl == GPA, X2 == GMAT values for 
groups of recent applicants who have been categorized as 'lTl: admit; 'lT2: do not " 
admit; and 1T3: borderline.lo The data pictured are listed in Table 11.6. (See .• 
Exercise 11.29.) These data yield (see the SAS statistical software output in 

Panel 11.1) 

[ 
3.40J 

Xl = 561.23 [ 
2.48J 

X2 = 447.07 [ 
2.99J 

X3 == 446.23 

[ 
2.97J 

x = 488.45 [ 
.0361 -2.0188J 

Spooled = -2.0188 3655.9011 

GMAT 

720 

630 

540 

450 

360 

270 

I 
2.10 

B 

BB 

B 

B 

BB 
B 

B 
B 

B 

I 
2.40 

B BB C 
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I 
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BB 

I 
3.00 
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C 

C 

C 

I 
3.30 

A 
A 

A 

A 
A A 

A 
A A 

A 

C 

A 
A 

A 

A : Admit (711) 

B : Do not admit (7[2) 

C : Borderline (X3) 

I I ~GPA 
3.60 3.90 

Figure 11.9 Scatter plot of (Xl == OPA, X2 == GMAT) for applicants to a graduate 
school of business who have been classified as admit, do not admit, or borderline. 

lOIn this case, the populations are artificial in the sense that they have been created by ~he 
admissions officer. On the other hand, experience has shown that applicants with high GPA and hIgh 
GMAT scores generally do well in a graduate program; those with low readings on these variables 

generally experience difficulty. 
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Suppose a new applicant has an undergraduate GPA of Xl = 3.21 and a GMAT 
sc?re of X2 =. ~~7. Let us classify this applicant using the rule in (1l-54) with equal 
pnor probabilitIes. 

With Xo = [3.21,497), the sample squared distances are 

Dr(xo) = (xo - XI)'S~oled (xo - Xl) 

= [3.21 - 3.40, 497 - 561.23) [28.6096 .0158J [ 3.21 - 3.40 J 
.0158 .0003 497 - 561.23 

= 2.58 

D~(xo) == (xo - i2)'S~oled(XO - X2) == 17.10 

D1(xo) = (xo - X3)'S;Joled (xo - X3) = 2.47 

Si~ce th~ distance from Xo = [3.21,497) to the group mean X3 is smallest, we assign 
thiS applIcant to 'lT3, borderline. -

The lin~~r discriminant scores (11-49) can be compared, two at a time. Using 
these quantities, we see that the condition that dk(x) is the largest linear discrimi
nant score among dl(x), d2(x), ... , dg(x) is equivalent to 

o s; dk(x) - d;(x) 

= (ILk - 1L;)'l;-IX - i (ILk - lLi)'l;-IClLk + ILJ + In (~:) 
for all i = 1,2, ... , g. 

PANEL 11.1 SAS ANALYSIS FOR ADMISSION DATA USING PROC DISCRIM. 

title 'Oiscriminant Analysis'; 
data gpa; 
infile 'T11-6.dat'; 
input gpa gmat admit $; 
proc discrim data = gpa 

PROGRAM COMMANDS 

method = normal pool = yes manova wcov pcov listerr crosslistew 
priors 'admit' = .3333 'notadmit' = .3333 'border' '" .3333' ' 
class admit; var gpa gmat; , 

frequency 
31 
tEi 

, 28 

DISCRIMINANT ANALYSIS 
85 Observations 84 OF Total 

2 Variables 82 DF Within Classes 
3 Classes 2 OF 8etween Classes 

Class level Information 

Weight 
·31.0000 
26.0000 
28.0000 

Proportion 
0.364706 
0.305882 
0.329412 

OUTPUT 

(continues on next pageJ 
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PANEL 11.1 (continued) 

Statistic 
Wilks' lambda 

DISCRIMINANT ANALYSIS WITHIN-CLASS COVARIANCE MATRICES 
. ADMIT = admit OF = 30 

Variable GPA 
GPA 0.043558 
GMAT 0.058097 

ADMIT = border 
Variable GPA 
GPA 0.029692 
GMAT -5.403846 

ADMIT = notadmit 
Variable GPA 
GPA 0.033649 
GMAT -1.192037 

Variable 

GPA 
GMAT 

GPA 

GMAT 
0.058097 

4618.247312 

DF=25 
GMAT 

-5.403846 
2246.904615 

DF=27 
GMAT 

-1.192037 
3891.253968 

GMAT 

Multivariate Statistics and F Approximations 

S = 2 M = -0.5 N = 39.5 
Value F Num OF 

0.12637661 73.4257 4 
Pillai's Trace 
Hotelling-lawley Trace 
Roy's Greatest Root 

1.00963002 41.7973 4 
5.83665601 116.7331 4 
5.64604452 231.4878 2 

Den OF 
162 
164 
160 
82 

NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
NOTE: F Statistic for Wilks' lambda is exact. 

DISCRIMINANT ANALYSIS LINEAR DISCRIMINANT FUNCTION 
Coefficient Vector = COV-' XI Constant = - .5X; COV-' Xj + In PRIORj 

ADMIT 

CONSTANT 
GPA 
GMAT 

admit 
-241.47030 

106.24991 
0.21218 

border 
-178.41437 

92.66953 
0.17323 

notadmit 
-134.99753 

78.08637 
0.16541 

·· •. J\~t~~~~1~R;~~~i{n§~:~~\t~~r~~i~~~~t~~~; 
Generalized Squared Distance Function: 

Df(X) = (X - xS cov-'(X - Xj) 
Posterior Probability of Membership in each ADMIT: 

Pr(jIX) = exp(-.5Df(x))jS~Mexp(-.5D~(X)) 

Pr> F 
0.0001 
0.0001 
0.0001 
0.0001 
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PANEL 11.1 (continued) 

Obs 

2 
3 

24 
31 
58 
59 
66 

From 

Posterior Probability of Membership in ADMIT: 
From Classified 
ADMIT into ADMIT admit border 
admit border 0.1202 0.8778 
admit border * 0.3654 0.6342 
admit border * 0.4766 0.5234 
admit border * 0.2964 0.7032 
notadmit border * 0.0001 0.7550 
notadmit border 0.0001 0.8673 
border admit 0.5336 0.4664 

*Misclassified observation 

C'~5sificatjonSillYlmary forCiilib~atibn Data:WgRK.GPA '. 
.'Cross vali~ai:ion Summary using line~rDiscriniinantfunctiori 

Generalized Squared Distance Function: 

Df(X) = (X - XIX)j)' coV(l)(X - XIX)j) 
Posterior Probability of Membership in each ADMIT: 

Pr( j I X) = exp( - .5Df(X) )/S~M exp( - .5D~(X)) 

Number of Observations and Percent Classified into ADMIT: 

ADMIT 

radmitl 

I border I 

I notadmit I 
Total 
Percent 
Priors 

Rate 
Priors 

I.·admit I I border I I notadmitl 

~ 0 0 
83.87 16.13 0.00 

~ ~ [1J 
3.85 92.31 3.85 

0 0 ~ 
0.00 7.14 92.86 

27 31 27 
31.76 36.47 31.76 

0.3333 0.3333 0.3333 

Error Count Estimates for ADMIT: 
admit border notadmit 

0.1613 0.0769 0.0714 
0.3333 0.3333 0.3333 

notadmit 

Total 

31 

100.00 

26 

100.00 

28 

100.00 
85 

.100.00 

Total 
0.1032 

0.0020 
0.0004 
0.0000 
0.0004 
0.2450 
0.1326 
0.0000 

Adding -In (pk! Pi) = In(p;/ Pk) to both sides of the preceding inequality gives 
the alternative form of the classification rule that minimizes the total probability of 
misclassification. Thus, we 

Allocate x to 1I'k if 

(ILk - lLd/I-Ix - ~ (Pk - ILi)'I-1(Pk + Pi) 2!: In(:J (11-55) 

foraUi = 1,2, ... ,g. 
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Now denote the left-hand side of (11-55) by dki(X). Then the conditions in 
(11-55) define classification regions RI' R2,···, Rg , whi~h are separated by (hyper) 
planes. This follows because ddx) is a linear combinatIOn. of the compo.ne~ts of x. 
For example, when g = 3, the classification region RI consists of all x satIsfymg . 

Rr:dli(X) ~ In(;:) fori = 2,3 

That is, RI consists of those x for which 

d 12(x) = (ILl - IL2)'~-lx ~ ~ (ILl - IL2)'~-I(ILI + IL2) ~ In (~) 

and, simultaneously, 

dJ3(x) = (ILl - IL3),rlx - i (ILl - IL3)'~-I(ILI + IL3) ~ In (~:) 
Assuming that ILl, IL2, and IL3 do not lie along a straight ~ine, the equations d!2(x). = 
In (Pz/ pd and ddx) = In (P3/ Pt> define two intersectmg hyperplanes that dehn
eate RI in the p-dimensional variable space. The t~rm In(Pz/PI) places the pla~e 
closer to IL than IL2 if Pz is greater than PI' The regIOns RI, Rz, and R3 are sho.wn m 
Figure 11.1~ for the case of two variables. The picture is the same for more vanables 
if we graph the plane that cOIltains the three mean vector~. . . 

The sample version of the alternative form in (11-55) IS obtamed by substltutmg 
Xi for ILi and inserting the pooled sample covariance matrix Spooled for ~. When 

± (n{ - 1) ~ P, so that S~led exists, this sample analog becomes 
i=1 

8 

6 

Figure I 1.10 The classification 
regions RI, Rz, and R3 for the 
linear minimum TPM rule 

L __ -fJ-__ ~---:---~--x ( 1 I - 1) 
1 PI = 4' P2 = 2.' P3 - 4 • 
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Allocate x to 17k if 

d
A 

() (- - )'S-I 1 (- - )'S-I (- - ) ki X = Xk - Xi pooled X - 2 Xk - Xi pooled Xk + Xi 

for all i '1' k (11-56) 

Given the fixed training set values Xl and Spooled, dki(X) is a linear function of 
the components of x. Therefore, the classification regions defined by (11-56)-or, 
equivalently, by (11-52)-are also bounded by hyperplanes, as in Figure 11.10. 

As with the sample linear discriminant rule of (11-52), if the prior probabilities 
are difficult to assess, they are frequently all taken to be equal. In this case, 
In (pt! Pk) = 0 for all pairs. 

Because they employ estimates of population parameters, the sample classifi
cation rules (11-48) and (11-52) may no longer be optimal. Their performance, 
however, can be evaluated using Lachenbruch's holdout procedure. If nIZl is the 
number of misclassified holdout observations in the ith group, i = 1,2, ... , g, then 
an estimate of the expected actual error rate, E(AER), is provided by 

±nIZl 
E(AER) = -=-i=--,,~ __ 

2: ni 
i=1 

(11-57) 

Example 11.12 (Effective classification with fewer variables) In his pioneering work 
on discriminant functions, Fisher [9] presented an analysis of data collected by 
Anderson [1] on three species otiris flowers. (See Table 11.5, Exercise 11.27.) 

Let the classes be defined as 

171: Iris setosa; 172: Iris versicolor; 173: Iris virginica 

The following four variables were measured from 50 plants of each species. 

XI = sepal length, Xz = sepal width 

X3 = petal length, X 4 = petal width 

Using all the data in Table 11.5, a linear discriminant analysis produced the confusion 
matrix 

Actual 
membership 

17l:Setosa 

172: Versicolor 

173: Virginica 

171: Setosa 

50 

0 

0 

Predicted membership 

Percent 
172: Versicolor 173: Virginica correct 

0 0 100 

48 2 96 

1 49 98 
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The elements in this matrix were generated using the holdout procedure, 
(see 11-57) 

~ 3 
E(AER) = - = .02 

150 

The error rate, 2 %, is low. 
Often, it is possible to achieve effective c~assification w!th fewer variables. 

ood practice to try all the variables one at a tIme, two at a tune, three at a ~o forth, tQ see how well they classify compared to the discriminant function, 
uses all the variables.· . . . If we adopt the hold out estimate of the expected AER as our cntenon, we 
for the data on irises: 

Single variable Misclassification rate 

Pairs of variables 

X b X 2 
X I ,X3 
X I ,X4 
X2 ,X3 
X 2 ,X4 
X 3 ,X4 

.253 

.480 

.053 

.040 

Misclassification rate 

.207 

.040 

.040 

. 047 

.040 

.040 

We see that the single variable X 4 = petal width.doe~ a v~ry goo~ job ?f dist~~ 'shing the three species of iris. Moreover, very httle IS gamed by mcludmg mo ~~~iables. Box plots of X4 = petal width are shown in Figure 11.11 for the thre~ species of iris. It is clear from the figure that petal width separates the three grouP
e quite well, with, for example, the petal widths for Iris setosa much smaller than th 

petal widths for Iris virginica. . . . d' Darroch and Mosimann [6] have suggested that these specIes of lflS may be IS-
criminated on the basis of "shape" or scale-free information alone. Let YI ~ Xd Xz be the sepal shape and Y

2 = X 3 /X4 ~e the p~tal shape. The use of the vanables 1'1 
and ~ for discrimination is explored m ExerCIse 11.28. . . ~e selection of appropriate variables to use in a discrimi~ant a~alysls :; :~~~ 
difficult. A summary such as the one in this example all~ws .the mvestIgator ce-reasonable and simple choices based on the ultimate cntena of how well the pro 

b· • 
dure classifies its target 0 Jects. 

Our discussion has tended to emphasize the linear discriminant rul.e of or (11-56), and many commercial computer programs are based upon It'
e 
"'r"IIlUU'.U' 

the linear discriminant rule has a simple structure, you ~ust. rememb ali 
was derived under the rather strong assumptions of. J?ul~Ivanate norm ty equal covariances. Before implementing a linear classification rule, these 
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Figure I 1.11 Box plots of petal width for the three species of iris. 

assumptions should be checked in the order multivariate normality and then equality of covariances. If one or both of these assumptions is violated, improved classification may be possible if the data are first suitably transformed . 
The quadratic rules are an alternative to classification with linear discriminant functions. They are appropriate if normality appears to hold, but the assumption of equal covariance matrices is seriously violated. However, the assumption of normality seems to be more critical for quadratic rules than linear rule~. If doubt exists as to the appropriateness of a linear or quadratic rule, both rules can be constructed and their error rates examined using Lachenbruch's holdout procedure. 

11.6 Fisher's Method for Discriminating 
among Several Populations 

Fisher also proposed an extension of his discriminant method, discussed in Section 11.3, to several populations. The motivation behind the Fisher discriminant analysis is the need to obtain a reasonable representation of the populations that in
v~lves only a few linear combinations of the observations, such as 81 x, 8ix, and 83X, HIS approach has several advantages when one is interested in separating several 
populations for (1) visual inspection or (2) graphical descriptive purposes. It allows for the following: 

1. Convenient representations of the g populations that reduce the dimension 
from a very large number of characteristics to a relatively few linear combina
tions. Of course, some information-needed for optimal classification-may be 
lost, unless the population means lie completely in the lower dimensional space 
selected. 
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2. Plotting of the means of the first two or three linear combinations (discfliminarltsf, 
This helps display the relationships and possible groupings of the populations. 

3. Scatter plots of the sample values of the first two discriminants, which can 
cate outliers or other abnormalities in the data. 

The primary purpose of Fisher's discriminant analysis is to separate populations. 
can, however, also be used to classify, and we shall indicate this use. It is not . 
sary to assume that the g populations are multivariate normal. However, 
assume that the p X P population covariance matrices are equal and of full 
That is, li1 = li2 = ... = lig = li, 

Let ji. denote the mean vector of the combined populations and Bp the 
groups sums of cross products, so that 

g 

Bp = L (ILi - ji. )(ILi - ji.)' 
i~l 

We consider the linear combination 

Y =a'X 

which has expected value 

E(Y) = a' E(X I 'lTi) = a' ILi 

and variance 

Var(Y) = a' Cov(X)a = a'lia 

_ 1-l, 
where IL = - ~ ILi 

g i~l 

for population 'IT; 

for all populations 

Consequently, the expected value IL;Y = a' ILi changes as the population from which 
X is selected changes. We first define the overall mean 

ji.y = 1:.. ± ILiY = 1:.. ± a' ILi = a' (1:.. ± IL;) 
g ;;1 g ;;1 g ;;1 

= a'ji. 

and form the ratio 

or 

(
sum of squared distances from ) 

populations to overall mean of Y 

(variance of Y) 

-l, ,_)2 
~ (a'IL; - a I' 
;;1 

at a'lia 

a' (~(IL; - ji.)(l'i - ji.)')a 

g 2 2: (ILiY - ji.y) 
i~l 

a'Bpa 

= a'Ia 

a'lia 

11 If not, we let P = [eh"" eq 1 be the eigenvectors of I corresponding to nonzero 
[AJ,"" A.J. Then we replace X by P'X which has a full rank covariance matrix P'IP. 
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The ratio in (11-59) measures the variability between the groups of Y-values relative 
to the common variability within groups. We can then select a to maximize this ratio. 

Ordinarily, li and the ILi are unavailable, but we have a training set consisting of 
correctly classified observationS. Suppose the training set consists of a random sam
ple of size ni from population 'lTj, i = 1,2, ... , g. Denote the n; X p data set, from 
population 'IT;, by X; and its jth row by Xlj' After first constructing the sample mean 
vectors . 

1 ni 

Xi = - LXii 
n; j;l 

and the covariance matrices Si, i = 1,2, ... , g, we define the "overall average" 
vector 

1 g 
x = - LX; 

g i=1 

which is the p X 1 vector average of the individual sample averages. 
Next, analagous to Bp we define the sample between groups matrix B. Let 

g 

B = 2: (Xi - X)(Xi - X)' (11-60) 
i;} 

Also, an estimate of li is based on the sample within groups matrix 

g g nj 

W = 2: (ni - 1)Si = 2: L (Xij - Xi) (Xij - x;)' (11-61) 
i;l i=1 j=l 

Consequently, W / (n1 + n2 + ... + ng - g) = Spooled is the estimate of li. Be
fore presenting the sample discriminants, we note that W is the constant 
(nl + n2 + ... + ng - g) times Spooled, so the same a that maximizes 
a'Ba/a'Spooleda also maximizes a'Ba/ii'Wa. Moreover, we can present the optimiz
ing a in the more customary form as eigenvectors ei of W-1B, because if 
W-1Be = Ae then Sp~ledBe = A(nl + nz + '" + ng - g)e. 

Fisher's Sample linear Discriminants 

Let A10 A2, ... , As > 0 denote the S $ min (g - 1, p) nonzero eigenvalues of 
W-1B and eJ, ... , es be the corresponding eigenvectors (l!caled so that 
e'SpOOlede = 1). Then the vector of coefficients a that maximizes the ratio 

a'(2:.
g 

(Xi - X) (Xi - X)')a 
a'Ba 1=1 

a'Wa = [g nl ] a' L ~ (Xij - x;) (Xij - x;)' a 
i=1 j=1 

(11-62) 

is given by 81 = e1. The linear combination aix is, called the sample first dis
criminant. The choice a2 = e2 produces the sample second discriminant, aix, and 
continuing, we obtain 8icx = eicx, the sample kth discriminant, k $ s. 
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Exercise 11.21 Dutlines the derivatiDn Df the FISher discriminants. The discriminants 
will nDt have zero cDvariance fDr each randDm sample X;. Rather, the cDnditiDn 

{
I ifi = k :5 S 

a(S It = 
I pooled k 0 Dtherwise 

(11-63) 

will be satisfied. The use Df Spooled is appropriate because we tentatively assumed 
that the g pDpulatiDn cDvariance matrices were equal. 

Example J 1.13 (Calculating Fisher's sample discriminants for three populations) . 
CDnsider the DbservatiDns Dn p ~ 2 variables from g = 3 populations given in 
Example 11.10. Assuming that the pDpulatiDns have a common cDvariance matri~ . 
l;, let us Dbtain the Fisher discriminants. The data are 

7TI (nl = 3) 7T2 (n2 = 3) 'lT3 (n3 = 3) 

x,~U n x,~[~ n [ 1 -2] 
X3 = 0 0 

-1 -4 

In Example 11.10, we fDund that 

so. 

x = [-IJ. x = [lJ. X3 = [ 0J 1 3' 2 4' -2 

3 [2 1J B = ~ (x; - X)(Xi - x)' = 1 62/3 

3 11; 

W = 2: 2: (x;j - Xi) (Xij - X;)' = (nl + nz + n3 - 3) Spooled 
i=1 ;=1 

-2J 
24 

-I __ 1_ [24 2J. 
W - 140 2 6 ' 

-I _ [.3571 .4667J 
W B - :0714 .9000 

To. sDlve fDr the s :5 min(g - l,p) = min(2,2) = 2 nonzero eigenvalues DfW-IB, 

we must sDlve 

I -I I -I [.3571 - ,\ .4667 ] 1 = 0 
W B - AI - .0714 .9000 - ,\ 

Dr 

(.3571 - ,\)(.9000 - ,\) - (.4667)(.0714) = ,\2 - 1.2571,\ + .2881 = 0 

Using the quadratic fDrmula, we find that Al = .9556 and Az = .3015. The nor
malized eigenvectDrs 81 and 8Z are Dbtained by sDlving 

(W-IB - A;I)a; = 0 i = 1,2 
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and scaling the results such that aiSpooledai = 1. FDr example, the sDlutiDn Df 

(W-IB - AlI)al = [.3571 - .9556 .4667 J [~llJ = [OJ 
.0714 .9000 - .9556 al2 0 

is, after the nDrmalizatiDn a1Spooled al = 1, 

81 = [.386 .495 J 

Similarly, 

82 = [.938 -.112J 

The two. discriminants are 

Yl = SIX = [.386 .495J [;J = .386xI + .495xz 

S'2 = 82X = [.938 -.112{;J = .938xl - .112xz • 

Example 11.14 (Fisher's discriminants for the crude-oil data) Gerrild and Lantz [13] 
cDlIected crude-Dil samples from sandstDne in the Elk Hills, CalifDrnia, petrDleum 
reserve. These crude Dils can be assigned to. Dne Df the three stratigraphic units 
(pDpulatiDns) 

7TI: Wilhelm sandstDne 

7TZ: Sub-Mulinia sandstDne 

7T3: Upper sandstDne 

Dn the basis Df their chemistry. FDr illustrative purpDses, we cDnsider Dnly the five 
variables: 

Xl = vanadium (in percent ash) 

X 2 = Viron (in percent ash) 

X3 = Vberyllium (in percent ash) 

X 4 = l/[saturated hydrDcarbDns (in percent area) J 

X5 = arDmatic hydrocarbDns (in percent area) 

The first three variables are trace elements, and the last two. are determined frDm 
a segment Df the curve produced by a gas chrDmatDgraph chemical analysis. Table 
11.7 (see Exercise 11.30) gives the values Df the five Driginal variables (vanadium, 
irDn, beryllium, saturated hydrDcarbDns, and arDmatic hydrDcarbDns) fDr 56 cases 
whDse pDpulatiDn assignment was certain. 

A cDmputer calculatiDn yields the summary statistics 

[ 

3229] 6.587 

XI = .303, 
.150 

11.540 
[

4.445] _ _ 5.667 
Xz - .344, 

.157 
5.484 . 

[

7226] 4.634 

X3 = .598, 
.223 

5.768 
[

6.180] 5.081 

x = .511 
.201 

6.434 
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and 
(nl + nz + n3 - 3)Spooled = (38 + 11 + 7 - 3)Spooled 

[

187.575 
1.957 41.789 

= W = -4.031 2.128 
1.092 -.143 

79.672 -28.243 

3.580 
-.284 
2.559 

.077 1 
- .996 338.023 

There are at most s = min (g - 1, p) = min (2, 5) == 2 posit.ive. ei.genvalues of 
W-1B, and they are 4.354 and .559. The centered Fisher linear dlscnmmants are 

Yl = .312(Xl - 6.180) - .710(x2 - 5.081) + 2.764(X3 - .511) 

+ 11.809(X4 - .201) - .235(xs - 6.434) 
Yz = .169(Xl - 6.180) - .245(X2 - 5.081) - 2.046(X3 - .511) 

- 24.453(X4 - .201) - .378(xs - 6.434) 

The separation of the three group means is fully explained in .th~ .two
dimensional "discriminant space." The group means and the seat:er ~f the mdlVldual 
observations in thediseriminant coordinate system are shown m FIgure 11.12. The 

separation is quite good. • 
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figure I 1.12 Crude-oil samples in discriminant space. 
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Example 11.15 (Plotting sports data in two-dimensional discriminant space) Investi
gators interested in sports psychology administered the Minnesota Multiphasic 
Personality Inventory (MMPI) to 670 letter winners at the University of Wisconsin 
in Madison. The sports involved and the coefficients in the two discriminant 
functions are given in Table 11.3. 

A plot of the group means using the first two discriminant scores is shown in 
Figure 11.13. Here the separation on the basis of the MMPI scores is not good, 
although a test for the equality of means is significant at the 5% level. (This is due to 
the large sample sizes.) 

While the discriminant coefficients suggest that the first discriminant is most 
closely related to the Land Pa scales, and the second discriminant is most closely 
associated_with the D and Pt scales, we will give the interpretation provided by the 
investigators. 

The first discriminant, which accounted for 34.4 % of the common variance, was 
highly correlated with the Mf scale (r = -.78). The second discriminant, which 
accounted for an additional 18.3 % of the variance, was most highly related to scores 
on the Se, F, and D scales (r's = .66, .54, and .50, respectively). The investigators 
suggest that the first discriminant best represents an interest dimension; the second 
discriminant reflects psychological adjustment. 

Ideally, the standardized discriminant function coefficients should be examined 
to assess the importance of a variable in the presence of other variables. (See [29).) 
Correlation coefficients indicate only how each variable by itself distinguishes the 
groups, ignoring the contributions of the other variables. Unfortunately, in this case, 
the standardized discriminant coefficients were unavailable. 

In general, plots should also be made of other pairs of the first few discrimi
nants. In addition, scatter plots of the discriminant scores for pairs of discriminants 
can be made for each sport. Under the assumption of muItivariate normality, the 

Table 11.3 

MMPI First Second 
Sport Sample size Scale discriminant discriminant 

QE .055 -.098 
Football 158 L -.194 .046 
Basketball 42 F -.047 -.099 
Baseball 79 K .053 -.017 
Crew 61 Hs .077 -.076 
Fencing 50 D .049 .183 
Golf 28 Hy -.028 .031 
Gymnastics 26 Pd .001 -.069 
Hockey 28 MC -.074 -.076 
Swimming 51 Pa .189 .088 
Tennis 31 Pt .025 -.188 
Track 52 Sc -.046 .088 
Wrestling 64 Ma -.103 .053 

Si .041 .016 

Source: w. Morgan and R. W. Johnson. 
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Figure 11.13 The discriminant means Y' = [)it, Ji2] for each sport. 

unit ellipse (circle) centered at the discriminant mean vector y should contain 

approximately a proportion 

prey - Py)' (Y - Py) :5 1J = P[x~ :5 1J = .39 

of the points when two discriminants are plotted. • 
Using Fisher's Discriminants to Classify Objects 

Fisher's discriminants were derived for the purpose of obtaining a low-dim~nsional 
representation of the data that separates the population~ as mu~ as 'p~sslble. ~l
though they were derived from considerations of sepa~atIon, the dlsc.nm~nants a s~ 
provide the basis for a classification rule. We first explam the connectIon m terms 0 

the population discriminants ai X. 
Setting 

Yk = akX = kth discriminant, k:5 S 
(11-64) 

we conclude that 

[ll] [J.LiYl ] [a~PiJ 
Y = ~2 has mean vector PiY = = = ,=. 

J.LiYs asp, 
1'. 

. . all ul tions. (See Exercise 1121.) under population 7T'i and covanance matrIX I, for pop a . 
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Because the components of Y have unit variances and zero covariances, the 
appropriate measure of squared distance from Y = y to PiY is 

s 

(y - PiY)'(y - PiY) = L (Yi - J.Liyl 
j=l 

A reasonable classification rule is one that assigns y to population 7T'k if the square 
of the distance from y to PkY is smaller than the square of the distance from y to PiY 
for i # k . 

If only r of the discriminants are used for allocation, the rule is 

Allocate x to 7T'k if 

r r 

L (Yj - J.LkY/ = L [aiCx - Pk)]2 
~l j=l 

:5 ± [aj(x - Pi)J2 
j=l 

foralli#k (11-65) 

Before relating this classification procedure to those of Section 11.5, we look 
more closely at the restriction on the number of discriminants. From Exercise 1121, 

s = numberofdiscriminants = number of non zero eigenvalues of:1;-lB,. 

or of :1;-1/2B,.:1;-1/2 

Now,:1;-lB,. is p X p, so S :5 p. Further, the g vectors 

PI - ji,P2 - ji,··.,Pg - ji (11-66) 

satisfy (PI - ji) + (P2 - ji) + ... + (Pg - ji) = gji - gji = O. That is, the first 
difference PI - ji can be written as a linear combination of the last g - 1 differ
ences. Linear combinations of the g vectors in (11-66) determine a hyperplane of di
mension q :5 g - 1. Taking any vector e perpendicular to every Pi - ji, and hence 
the hyperplane, gives 

g g 

B,.e = L (Pi - ji)(Pi - ji)'e = L (Pi - ji)O = 0 
~t ~1 

so 
:1;-lB,.e = Oe 

There are p - q orthogonal eigenvectors corresponding to the zero eigenvalue. This 
implies that there are q or fewer nonzero eigenvalues. Since it is always true that 
q :5 g - 1, the number of nonzero eigenvalues s must satisfy s :5 min(p, g - 1). 

Thus, there is no loss of information for discrimination by plotting in two 
dimensions if the following conditions hold. 

Number of Number of Maximum number 
variables populations of discriminants 

Anyp g=2 1 
Anyp g=3 2 
p = 2 Anyg 2 
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We now present an important relation between the classification rule (11-65) 
and the "normal theory" discriminant scores [see (11-49)], 

or, equivalently, 

d;(x) - ~X'>;-IX = -~(X - lLi),>;-I(X - IL;) + lnp; 

obtained by adding the same constant - ~x'>;-lx to e!lch d;(x). 

Result 11.6. LetYj = ajx, whereaj = >;-1/2ej and ej is an eigenvector ofI-
1
/
2
B,.I-1/2. 

Then 

p P 2 1 2: (Yj - JL;yl = 2: [aj(x - lLi)] = (x - IL;)'I- (x - lLi) 
j=l J j=l 

= -2di(x) + x,>;-lX + 2lnpi 

P 2 
If Al ;;:, ... ;;:, As > 0 = As+I = .. , = Ap ' 2: (Yj - JLiY) is constant for all popu-

j=s+l s 

lations i = 1,2, ... , g so only the first s discriminants Yj' or 2: (Yj - JLiY/' con
j=l 

tribute to the classification. 

Also, if the prior probabilities are such that PI = P2 = ... = Pg = 1/ g, the rule 
(11-65) with r = s is equivalent to the population version of the minimum TPM 
rule (11-52). 

Proof. The squared distance (x - lLi),>;-I(x - lLi) = (x - IL;)'I-1/
2
>;-1/2(x - lLi) 

= (x - lLy>;-1/2EE'I-1/2(X - lLi), where E = [el, e2"'" e p ] is the orthogonal 
matrix whose columns are eigenvectors of >;-I/2B,.I-I/2. (See Exercise 11.21.) 

Since I-I/2ei = ai or aj = ejI-1/2
, 

and 

Next, each aj = >;-I/2ej' j > s, is an (unsealed) eigenvector Of>;-IB,. with eigen

value zero. As shown in the discussion foIIowing (11-66), aj is perpendicular to every 
lLi - ji and hence to (ILk - ji) - (lLi - ji) = ILk - lLi for i, k = 1,2, ... , g. The 
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condition 0 = aj(lLk - lLi) = JLkY j - JLiY
j 

implies that Yj - JLkYj = Yj - JLiY j so 
p 

.L (Yj - JLiY/ is constant for all i = 1,2, ... ,g. Therefore, only the first s dis
j=s+1 
criminants Yj need to be used for classification. • 

We now state the classification rule based on the first r s; s sample discriminants. 

Fisher's Classification Procedure Based 
on Sample Discriminants 

AIlocate x to TTk if 
r r r 

,,(A _)2 _ ,,[A,( _ )]2 ,,[A' _]2 
.L.J Yj - Ykj -.L.J aj x - Xk S;.L.J aj (x - x;) foraIIi ~ k 
J=I j=1 j=1 

(11-67) 

where aj is defined in (11-62), )ikj = ajxkand r s; s. 

When the prior probabilities are such that PI = P2 = .. , = P = 1/ g and r = s, 
rule (11-67) is equivalent to rule (11-52), which is based on theglargest linear dis
criminant score. In addition, if r < s discriminants are used for classification, there 

p 

is a loss of squared distance, or score, of L [ai(x -Xi)f for each population TTi 
j=r.r+l 

s 

where .L [aj(x - X;)]2 is the part useful for classification. 
j=r+1 

Example 11.16 (Classifying a new observation with Fisher's discriminants) Let us 
use the Fisher discriminants 

YI = al x = .386xI + .495x2 

52 = a2X = .938xI - .112x2 

from Example 11.13 to classify the new observation Xo = [1 3] in accordance with 
(11-67). 

Insertingxo = [XOI,X02] = [1 3],wehave 

YI = .386xoI + .495x02 = .386(1) + .495(3) = 1.87 

52 = .938xoI - .112xo2 = .938(1) - .112(3) = .60 

Moreover,Ykj = ajxb so that (see Example 11.13) 

)i11 = alxl = [.386 .495] [ -! ] = 1.10 

)i12 = azxI = [.938 -.112] [ -! ] = -1.27 
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Similarly, 

.Y21 = al X2 = 2.37 

)in = azxz = .49 

Y31 = a1 x3 = -.99 

YJ2 = az X3 = .22 

Finally, the smallest value of 

for k = 1,2, 3, must be identified. Using the preceding numbers gives 

2 
~ CVj - Ylj)2 = (1.87 - 1.10)2 + (.60 + 1.27)2 = 4.09 
j=l 

2 
~ (Yj - Yzi/ = (1.87 - 2.37f + (.60 - .49)2 = .26 
j=l 

2 
~ (Yj - YJi = (1.87 + .9W + (.60 - .22)2 = 8.32 
j=l 

2 

Since the minimum of ~ (Yj - Ykj)2 occurs when k = 2, we allocate Xo to 
j=l 

popuiation 1TZ' The situation, in terms of the classifiOers Yj, is illustrated schematical-

ly in Figure 11.14. 

2 

2 

-1 

-1 

Smallest distance 
9~-• Y2 

• 

Figure 11.14 
The points y' = LVI, Y2), 
)'1 = [Y11, yd, )'2 = [:Yzt, Yz2), 
and)'3 = [Y3l, yd in the 
classification plane. 
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Comment. When two linear discriminant functions are used for classification, 
observations are assigned to populations based on Euclidean distances in the two
dimensional discriminant space. 

Up to this point, we have not shown why the first few discriminants are more 
important than the last few. Their relative importance becomes apparent from their 
contribution to a numerical measure of spread of the populations. Consider the sep
aratory measure 

where 
1 g 

ji = - ~ IL, 
g 1=1 

(11-68) 

and (ILi - ji ),:I-I(ILi - ji) is the squared statistical distance from the ith 
population mean ILj to the centroid ji. It can be shown (see Exercise 11.22) that 
A~ = Al + A2 + ... + Ap where the Al ~ AZ ~ ... ~ As are the nonzero eigenvalues 

of :I-1B (or :I-1/2B:I-1/2) and As+1>"" Ap are the zero eigenvalues. 

The separation given by A~ can be reproduced in terms of discriminant means. 
The first discriminant, 1-1 = ei:I-1/2X has means lLiY

l 
= ei:I-1/2ILj and the squared 

g 

distance ~ (ILIY! - jiy/ of the lLiY/S from the central value jiYl = ei:I-1/2ji is Al' 
i=1 

(See Exercise 11.22.) Since A~ can also be written as 

A~ = Al + A2 + '" + Ap 

g 

~ (ILiY - jiy)' (ILiY - jiy) 
i=1 

g 2 g 2 g 2 
~ (lLiY, - jiyJ + ~ (lLiYz - jiy,) + ... + ~ (lLiYp - jiyp) 
1=1 i=1 i=1 

it follows that the first discriminant makes the largest single contribution, AI, to the 
separative measure A~. In general, the rth discriminant, Y, = e~:I-l/2X, contributes 
Ar to A~. If the next s - r eigenvalues (recall that A$+1 = A$+2 = '" = Ap = 0) are 
such that Ar+l + Ar+2 + ... + As is small compared to Al + A2 + ... + An then the 
last discriminants Y,+ 1, Y,+2, ... , Ys can be neglected without appreciably decreasing 
the amount of separationY 

Not much is known about the efficacy of the allocation rule (11-67). Some insight 
is provided by computer-generated sampling experiments, and Lachenbruch [23] 
summarizes its performance in particular cases. The development of the population re
sult in (11-65) required a common covariance matrix :I. If this is essentially true and 
the samples are reasonably large, rule (11-67) should perform fairly well. In any event, 
its performance can be checked by computing estimated error rates. Specifically, 
Lachenbruch's estintate of the expected actual error rate given by (11-57) should be 
calculated. 

12See (18] for further optimal dimension-reducing properties. 
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I 1.7 logistic Regression and Classification 

Introduction 

The classification functions already discussed are based on quantitative variables.~~-'~~"~ 
Here we discuss an approach to classification where some or all of the variables are 
qualitative. This approach is called logistic regression. In its simplest setting, ... ~,~ ....... ~ .. 
response variable Y is restricted to two values. For example, Y may be recorded as 
"male" or "female" or "employed" and "not employed." 

Even though the response may be a two outcome qualitative variable, we can. 
always code the two cases as 0 and 1. For instance, we can take male = 0 and 
female = 1. Then the probability p of 1 is a parameter of interest. It represents >ho. __ c;,= 

proportion in the population who are coded 1. The mean of the distribution of O's 
and l's is also p since 

mean = 0 X (1 - p) + 1 X P = P 

The proportion of O's is 1 - p which is sometimes denoted as q, 
The variance of the distribution is 

variance = 02 X (1 - p) + 12 X P - p2 = p(l - p) 

It is clear the variance is not constant. For p = .5, it equals .5 X .5 = ,25 while for 
p = .8, it is .8 X .2 = ,16. The variance approaches 0 as p approaches either 0 or 1. 

Let the response Y be either 0 or 1. If we were to model the probability of 1 with 
a single predictor linear model, we would write 

p = E(Y I z) = 130 + f31Z 

and then add an error term e. But there are serious drawbacks to this model. 

• The predicted values of the response Y could become greater than 1 or less than 
o because the linear expression for its expected value is unbounded. 

• One of the assumptions of a regression analysis is that the variance of Y is con
stant across all values of the predictor variable Z. We have shown this is not the 
case. Of course, weighted least squares might improve the situation. 

We need another approach to introduce predictor variables or covariates Z into 
the model (see [26]). Throughout, if the covariates are not fixed by the investigator, 
the approach is to make the models for p(z) conditional on the observed values 
of the covariates Z = z. 

The logit Model 

Instead of modeling the probability p directly with a linear model, we first consider 
the odds ratio 

odds = -p-
1- P 

which is the ratio of the probability of 1 to the probability of O. Note, unlike proba
bility, the odds ratio can be greater than 1. If a proportion .8 of persons will get 
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through customs without their luggage being checked, then p = .8 but the odds of 
not getting checked is .8/.2 = 4 or 4 to 1 of not being checked. There is a lack of 
symmetry here since the odds of being checked are .21.8 = 114. Taking the natural 
logarithms, we find that In( 4) = 1.386 and In( 114) = -1.386 are exact opposites. 

Consider the natural log function of the odds ratio that is displayed in 
Figure 11.15. When the odds x are 1, so outcomes 0 and 1 are equally likely, the nat
urallog of x is zero. When the odds x are greater than one, the natural log increases 
slowly as x increases. However, when the odds x are less than one, the natural log de
creases rapidly as x decreases toward zero. 

In logistic regression for a binary variable, we model the natural log of the odds 
ratio, which is called logit(p). Thus ' 

logit(p) = In(odds) = lne ~ p) (11-69) 

The logit is a function of the probability p. In the simplest model, we assume that the 
logit graphs as a straight line in the predictor variable Z so 

logit(p) = In(odds) = InC ~ p) = 130 + 131z (11-70) 

In other words, the log odds are linear in the predictor variable. 
Because it is easier for most people to think in terms of probabilities, we can 

convert from the logit or log odds to the probaoility p. By first exponentiating 

In C ~ p) = 130 + 131z 

we obtain 

p(z) 
O(z) = 1 _ p(z) = exp{13o + 131z) 
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where exp = e = 2.718 is the base of the natural logarithm. Next solving for B(z), 
we obtain 

exp(/3o + /31Z) 
p( z) = 1 + exp(/3o + /31Z) 

(11-71) 

which describes a logistic curve. The relation betweenp and the predictor z is not lin
ear but has an S-shaped graph as illustrated in Figure 11.16 for the case /30 = -1 and 
/31 = 2. The value of /30 gives the value exp(/3o)/(l + exp(/3o» for p when z = 0. 

The parameter /31 in the logistic curve determines how quickly p changes with z 
but its interpretation is not as simple asin ordinary linear regression because the re
lation is not linear, either in z or Ih However, we can exploit the l~near relation for 
log odds. 

To summarize, the logistic curve can be written as 

exp(/3o + /31Z) 
p(z) = 1 + exp(/3o + /31Z) 

1 
or p(z) = 1 + exp(-/3o - /31Z) 

logistic Regression Analysis 

Consider the model with several predictor variables. Let (Zjh Zib ... ,Zjr) be the val
ues of the r predictors for the j-th observation. It is customary, as in normal theory 
linear regression, to set the first entry equal to 1 and Zj = [1, Zjb Z}l,' .. , Zjr]" Con
ditional on these values, we assume that the observation lj is Bernoulli with success 
probability p(Zj), depending on the values of the covariates. Then 

for Yj = 0,1 

so 

E(Yj) = p(Zj) and Var(Yj) = p(zj)(l - p(z) 
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It is not the mean that follows a linear model but the natural log of the odds ratio. In 
particular, we assume the model 

In C ~(~Z») = /30 + /31 Z1 + ... + /3rzr = /3'Zj (11-72) 

Maximum Likelihood Estimation. Estimates of the /3's can be obtained by the 
method of maximum likelihood. The likelihood L is given by the joint probability 
distribution evaluated at the observed counts Yj. Hence 

n 

L(bo, bJ, ... , br) = IIpYj(zj)(l - p(Zj»I-Yj 
j=1 

(11-73) 

The values of the parameters that maximize the likelihood cannot be expressed 
in a nice closed form solution as in the normal theory linear models case. Instead 
they must be determined numerically by starting with an initial guess and iterating 
to the maximum of the likelihood function. Technically, this procedure is called an 

. iteratively re-weighted least squares method (see [26]). 
We denote the l1umerically obtained values of the maximum likelihood esti

mates by the vector p. 

Confidence Intervals for Parameters. When the sample size is large, P is approxi
mately normal with mean p, the prevailing values of the parameters and approxi
mate covariance matrix 

(11-74) 

The square roots of the diagonal elements of this matrix are the larg~ sa.fI1ple es~i
mated standard deviations or standard errors (SE) of the estimators /30, /31> ... ,/3r 
respectively. The large sample 95% confidence interval for /3k is 

k = 0,1, ... , r (11-75) 

The confidence intervals can be used to judge the significance of the individual 
terms in the model for the logit. Large sample confidence intervals for the logit and 
for the popUlation proportion p( Zj) can be constructed as well. See [17] for details. 

Likelihood Ratio Tests. For the model with rpredictor variables plus the constant, 
we denote the maximized likelihood by 

Lmax = L(~o, ~l>' .. '~r) 
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If the null hypothesis is Ho: f3k = 0, numerical calculations again give the maximum 
likelihood estimate of the reduced model and, in turn, the maximized value of the 
likelihood 

Lmax.Reduced = L(~o, ~j, ••• , ~k-l' ~k+j, .•. , ~,) 

When doing logistic regression, it is common to test Ho using minus twice the log
likelihood ratio 

_ 2 In ( Lmax. Reduced) 

. Lmax 
(11-76) 

which, in this context, is called the deviance. It is approximately distributed as chi
square with 1 degree of freedom when the reduced model has one fewer predictor 
variables. Ho is rejected for a large value of the deviance. 

An alternative test for the significance of an individual term in the model for the 
logit is due to Wald (see [17]). The Wald test of Ho: f3k = 0 uses the test statistic 
Z = ~k/SE(~k) or its chi-square version Z2 with 1 degree of freedom. The likeli
hood ratio test is preferable to the Wald test as the level of this test is typically clos
er to the nominal a. 

Generally, if the null hypothesis specifies a subset of, say, m parameters are si
multaneously 0, the deviance is constructed for the implied reduced model and re
ferred to a chi-squared distribution with m degrees of freedom. 

When working with individual binary observations Yj, the residuals 

each can assume only two possible values and are not particularly useful. It is better 
if they can be grouped into reasonable sets and a total residual calculated for each 
set. If there are, say, t residuals in each group, sum these residuals and then divide by 
Vt to help keep the variances compatible. 

We give additional details on logistic regression and model checking following 
and application to classification. 

Classification 
Let the response variable Y be 1 if the observational unit belongs to population 1 
and 0 if it belongs to popUlation 2. (The choice of 1 and 0 for response outcomes is 
arbitrary but convenient. In Example 11.17, we use 1 and 2 as outcomes.) Once a 
logistic regression function has been established, and using training sets for each of 
the two populations, we can proceed to classify. Priors and costs are difficult to 
incorporate into the analysis, so the classification rule becomes 

Assign z to population 1 if the estimated odds ratio is greater 
than 1 or 

p(z) ~ ~ ~ 
~( ) = exp(f3o + f3lZl + ... + f3rZ,) > 1 

1-pz 
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Equivalently, we have the simple linear discriminant rule 

Assign z to population 1 if the linear discriminant is greater 
than 0 or 

p(z) 
10 = ~o + [3lZl + ... + ~,z, > 0 

1 - pcz) 
(11-77) 

Exa~ple 11.11 (Logistic regression with the salmon data) We introduced the salmon 
data in Example 11.8 (see Table 11.2). In Example 11.8, we ignored the gender of the 
salmon when considering the problem of classifying salmon as Alaskan or Canadian 
based on growth ring measurements. Perhaps better classification is possible if gen
der is included in the analysis. Panel 11.2 contains the SAS output from a logistic re
gression analysis of the salmon data. Here the response Y is 1 if Alaskan salmon and 
2 if Canadian salmon. The predictor variables (covariates) are gender (1 if female, 2 if 
male), freshwater growth and marine growth. From the SAS output under Testing 
the Global Null Hypothesis, the likelihood ratio test result (see 11-76) with the re
duced model containing only a f30 term) is significant at the < .0001 level. At least 
one covariate is required in the linear model for the logit. Examining the significance 
of individual terms under the heading Analysis of Maximum Likelihood Estimates, 
we see that the Wald test suggests gender is not significant (p-value = .7356). On the 
other hand, freshwater growth and marine are significant covariates. Gender can be 
dropped from the model. It is not a useful variable for classification. The logistic re
gression model can be re-estimated without gender and the resulting function used 
to classify the salmon as Alaskan or Canadian using rule (11-77). 

Thrning to the classification problem, but retaining gender, we assign salmon j 
to population 1, Alaskan, if the linear classifier 

fJ'z = 3.5054 + .2816 gender + .1264 freshwater + .0486 marine ~ 0 

The observations that are misclassified are 

Row Pop Gender Freshwater Marine Linear Classifier 

2 1 1 131 355 3.093 
12 1 2 123 372 1.537 
13 1 1 123 372 1.255 
30 1 2 118 381 0.467 
51 2 1 129 420 -0.319 
68 2 2 136 438 -0.028 
71 2 2 90 385 -3.266 

From these misclassifications, the confusion matrix is 

Predicted membership 

Actual 
'lTl: Alaskan 

'lTl: Canadian 

'lTl: Alaskan 

46 

3 

'lTl: Canadian 

4 

47 
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and the apparent error rate, expressed as a percentage is 

4 + 3 
APER = 50 + 50 X 100 = 7% 

When performing a logistic classification, it would be preferable to have an 
of the rnisclassification probabilities using the jackknife (holdout) approach but 
is not currently available in the major statistical software packages. 

We could have continued the analysis i.n Example 11.17 by dropping gender 
using just the freshwater and marine growth measurements. However, when 
distributions with equal covari~nce matrices prevail,. logistic classification 
quite inefficient compared to the normal theory linear classifier (see [7]). 

Logistic Regression with Binomial Responses 

We now consider a slightly more general case where several runs are made at 
same values of the covariates Zj and there are a total of m different sets where 
predictor variables are constant. When nj independent trials are conducted 
the predictor variables Zj, the response lj is modeled as a binomial rl;<·tr;lh .... ·:~:i·~:: 

with probability p(Zj) = P(Success I Zj). 
Because the 1j are assumed to be independent, the likelihood is the product 

L(f3o, 131> ... ,f3r) = ft (nj)p!(Zj)(l - p(z) )"Oi 
j=l Yj 

where the probabilities p(Zj) follow the logit model (11-72) 

PANEL 11.2 SAS ANALYSIS FOR SALMON DATA USING PROC LOGISTIC. 

title 'Logistic Regression and Discrimination'; 

data salmon; 
infile'T11-2.dat'; 
input country gender freshwater marine; 
proc logistic desc; . 
model country = gender freshwater marine I expb; 

} PROG,AM COMMANDS 

Logistic Regression and Discrimination 

Model 

Ordered 
Value 

1 
2 

The LOGISTIC procedure 

Model Information 

binary logit 

Response Profile 

country 
2 
1 

Total 
Frequency 

50 
50 

OUTPUT 
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PANEL 11.2 (continued) 

Probability mode led is country = 2. 

Criterion 
AIC 

SC 
-2 Log L 

Model Fit Statistics 

Intercept 
Only 

140.629 
143.235 
138.629 

Intercept 
and 

Covariates 
46.674 
57.094 
38.674 

Testing Global Null Hypothesis: 8ETA = 0 

Test Chi-Square DF Pr> ChiSq 

Wald 19.4435 3 0.0002 

The LOGISTIC Procedure 

Analysis of Maximum Likelihood Estimates 

Exp (Est) 

33.293 
1.325 
1.135 
0.953 

The maximum likelihood estimates jJ must be obtained numerically because 
there is no closed form expression for their c~~tation. When the total sample size 
is large, the approximate covariance matrix Cov«(J) is 

(11-79) 

and the i-th diagonal element is an estimate of the variance of ~i+l.It's square root 
is an estimate of the large sample standard error SE (f3i+il. 

It can also be shown that a large sample estimate of the variance of the proba
bility p(Zj) is given by 

Thr(P(Zk» Ri (p(zk)(l - p(Zk)fz/[~njjJ(~j)(l - p(Zj»Zjz/ TIZk 

Consideration of the interval plus and minus two estimated standard deviations 
from p(Zj) may suggest observations that are difficult to classify. 
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Model Checking. Once any model is fit to the data, it is good practice to investigate 
the adequacy of the fit. The following questions must be addressed. 

• Is there any systematic departure from the fitted logistic model? 

• Are there any observations that are unusual in that they don't fit the overall 
pattern of the data (outliers)? 

• Are there any observations that lead to important changes in the statistical 
analysis when they are included or excluded (high influence)? 

If there is no parametric structure to the single. trial probabilities p(z j) == 
P (Success I Zj), each would be estimated using the observed number of successes 
(l's) Yi in ni trials. Under this nonparametric model, or saturated model, the contri
bution to the likelihood for the j-th case is . 

( nj)pYi(Z -)(1 - p(Zj)tni 
Yj' . 

which is maximized by the choices PCZj) = y/nj for j == 1,2, ... , n. Here m == !.nj. 
The resulting value for minus twice the maximized nonparametric (NP) likelihood 
is 

-2 In Lmax.NP = -2i [Yjln (Y') + (nj - Yj)ln(l- Yl)] + 2In(rr(nj
)) 

j=l n, n, ,=1 Y, 

(11-80) 

The last term on the right hand side of (11-80) is common to all models. 
We also define a deviance between the nonparametric model and a fitted model 

having a constant and r-1 predicators as minus twice the log-likelihood ratio or 

m [(Yj) (nj - Yj)] G 2 = 22: Yjln ~ + (nj - Yj)ln ~ 
j=l Y, n, Y, 

(11-81) 

where y. = n· p( Z -) is the fitted number of successes. This is the specific deviance 
quantit~ that' pla~s a role similar to that played by the residual (error) sum of 
squares in the linear models setting. 

For large sample sizes, G2 has approximately a chi square distribution with f 
degrees of freedom equal to the number of observations, m, minus the number of 
parameters f3 estimated. 

Notice the deviance for the full model, G}ulb and the deviance for a reduced 

model, G~educed' lead to a contribution for the extra predictor terms 

2 2 (Lmax.Reduced) 
GReduced - G Full = -2 In L 

max 
(11-82) 

This difference is approximately )( with degrees of freedom df = dfReduced - dfFull' 

A large value for the difference implies the full model is required. 
When m is large, there are too many probabilities to estimate under the non

parametic model and the chi-square approximation cannot be established by exist
ing methods of proof. It is better to rely on likelihood ratio tests of logistic models 
where a few terms are dropped. 
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Residuals and ~oodness.of~Fit Tests. Residuals can be inspected for patterns that 
sug?est lack of ~lt .of the 10glt model form and the choice of predictor variables (co
vana~es). In loglst~c regress!on residuals are not as well defined as in the multiple re
gre~slOn models discussed ID Chapter 7. Three different definitions of residuals are 
avaIlable. 

Deviance residuals (dj): 

dj == ± )2 [Yjln ( .!(j .») + (nj - Yj) In ( nj -~Yj )J 
nIP z, nA1 - p(Zj» 

where the sign of dj is the same as that of Yj - niJ(zj) and, 

if Yj = 0, then dj == - \hnj I In (1 - p(Zj» I 

if Yj = nj, then dj == - Y2nj I In p(Zj» I 

Pearson residuals(rj): 

Standardized Pearson residuals (rsj): rsj= _ ~ 
vI - hjj 

(11-83) 

(11-84) 

(11-85) 

where hjj is the (j,j)th element in the "hat" matrix H given by equation (11-87). 
Values larger than about 2.5 suggest lack of fit at the particular Z j. 

. A~ over~ll test of goodness .of fit-pref.erred especiaIly for smaller sample 
SIZeS-IS prOVided by Pearson's chi square statIstic 

x 2 = ir? = ± (Yj - nJ)(zj»2 
j=l' j=lniJ(zj)(l - p(Zj» (11-86) 

Notice that the chi square .statistic, a single number summary of fit, is the sum of the 
squares of the Pearson reslduals. Inspecting the Pearson residuals themselves allows 
us to examine the quality of fit over the entire pattern of covariates. 

Another goodness~of-fit test due to Hosmer and Lemeshow (17J is only applic
able when t.he prOp?rtlOn of obs.ervations with tied covariate patterns is small and 
all the predictor vanables (covanates) are continuous. 

Leverage PO.ints and I~uentiaJ ?bservations . . The logistic regression equivalent of 
the ~at matrIX H contalDs the estImated probabilities Pk(Z j)' The logistic regression 
versIOn of leverages are the diagonal elements h jj of this hat matrix. 

H = V-1!2 Z(Z'V-1Z)-lZ'V-1!2 (11-87) 

~here V-I is the diagonal matrix with (j,j) element njp(z )(1 - p(z j», V-1!2 is the 
diagona! matrix with (j,j) element Ynjp(zj)(l - p(Zj». 

. BeSides the leverages given in (11-87), other measures are available. We de
s~nbe the m~st common called the delta beta or deletion displacement. It helps iden
tIfy observations that, by themselves, have a strong influence on the regression 
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estimates. This change in regression coefficients, when all observations with the 
same covariate values as the j-th case Z j are deleted, is quantified as 

r;j h jj 
Af3j = 1 _ h. (11-88) 

JJ 

A plot of A f3 j versus j can be inspected for influential cases. 

I 1.8 Final Comments 

Including Qualitative Variables 

Our discussion in this chapter assumes that the discriminatory or classificatory vari
ables, Xl, X 2 , •.. , X p have natural units of measurement. That is, each variable can, 
in principle, assume any real number, and these numbers can be recorded. Often, a 
qualitative or categorical variable may be a useful discriminator (classifier). For ex
ample, the presence or absence of a characteristic such as the color red may be a 
worthwhile classifier. This situation is frequently handled by creating a variable X 
whose numerical value is 1 if the object possesses the characteristic and zero if the 
object does not possess the characteristic. The variable is then treated like the mea
sured variables in the usual discrimination and classification procedures. 

Except for logistic classification, there is very little theory available to handle the 
case in which some variables are continuous and some qualitative. Computer simula
tion experiments (see [22]) indicate that Fisher's linear discriminant function can per
form poorly or satisfactorily, depending upon the correlations betwe~n t~e qUalitative 
and continuous variables. As Krzanowski [22] notes, "A low correlatlOn ill one popu
lation but a high correlation in the other, or a change in the sign of the correlations be
tween the two populations could indicate conditions unfavorable to Fisher's linear 
discriminant function." This is a troublesome area and one that needs further study. 

Classification Trees 

An approach to classification completely different from the methods ?iscussed in 
the previous sections of this chapter has been developed. (See [5].) It IS very com
puter intensive and its implementation is only now becomin? widespread. The ne~ 
approach, called classification and regression trees (CART), IS closely related to dI-
visive clustering techniques. (See Chapter 12.) . 

Initially, all objects are considered as a single group. The group is split into two 
subgroups using, say, high values of a variable for one group and low values f~r the 
other. The two subgroups are then each split using the values of a second vanable. 
The splitting process continues until a suitable stopping point is .reach~d. ~e values 
of the splitting variables can be ordered or unordered categones. It IS thIS feature 
that makes the CART procedure so general. 

For example, suppose subjects are to be classified as 

7Tl: heart-attack prone 
7T2: not heart-attack prone 

on the basis of age, weight, and exercise activity. In this case, the CART procedure 
can be diagrammed as the tree shown in Figure 11.17. The branches of the tree actually 
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It I : Heart-attack prone 
It 2: Not heart-attack prone Figure 11.17 A classification tree. 

correspond to divisions in the sample space. The region RI, defined as being over 45, 
being overweight, and undertaking no regular exercise, could be used to classify a 
subject as 7TI: heart-attack prone. The CART procedure would try splitting on 
different ages, as well as first splitting on weight or on the amount of exercise. 

The classification tree that results from using the CART methodology with the 
Iris data (see Table 11.5), and variables X3 = petal length (PetLength) and 
X 4 = petal width (PetWidth), is shown in Figure 11.18. The binary splitting rules are 
indicated in the figure. For example, the first split occurs at petal length = 2.45. 
Flowers with petal lengths :5 2.45 form one group (left), and those with petal 
lengths> 2.45 form the other group (right). 

Figure 11.18 A classification tree 
for the Iris data. 
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The next split occurs with the right-hand side group (petal length> 2.45) at 
petal width = 1.75. Flowers with petal widths ::s; 1.75 are put in one group (left), 
and those with petal widths> 1.75 form the other group (right). The process con
tinues until there is no gain with additional splitting. In this case, the process stops 
with four terminal nodes (TN). 

The binary splits form terminal node rectangles (regions) in the positive 
quadrant of the X 3 , X 4 sample space as shown in Figure 11.19. For example, TN #2 
contains those flowers with 2.45 < petal lengths ::s; 4.95 and petal widths ::s; 1.75-
essentially the Iris Versicolor group. 

Since the majority of the flowers in, for example, TN #3 are species Virginica, a 
new item in this group would be classified as Virginica. That is, TN #3 and TN #4 are 
both assigned to.the Virginica population. We see that CART has correctly classified 
50 of 50 of the Setosa flowers, 47 of 50 of the Versicolor flowers, and 49 of 50 of the 

Virginica flowers. The APER = 1:0 = .027. This result is comparable to the result 

obtained for the linear discriminant analysis using variables X3 and X 4 discussed in 
Example 11.12. 

The CART methodology is not tied to an underlying popUlation probability 
distribution of characteristics. Nor is it tied to a particular optimality criterion. In 
practice, the procedure requires hundreds of objects and, often, many variables. 
The reSUlting tree is very complicated. Subjective judgments must be used to 
prune the tree so that it ends with groups of several objects rather than all 
single objects. Each terminal group is then assigned to the population holding the ma
jority membership. A new object can then be classified according to its ultimate group. 

Breiman, Friedman, Olshen, and Stone [5] have develQped special-purpose 
software for implementing a CART analysis. Also, Loh (see [21] and [25]) has de
veloped improved classification tree software called QUEST13 and CRUISE.14 

Their programs use several intelligent rules for splitting and usually produces a 
tree that often separates groups well. CART has been very successful in data min
ing applications (see Supplement 12A). 

7 

TN#3 

TN#2 

x x 
rl"x ~ I x 

x 

2 

0.0 0.5 

o 0 

J:'l+-± 

Ul!+o 
** + i + 

+ 

TN# 1 

1.0 1.5 

PetWidth 

~: 8
000 

o 8§ @ 

QB~~ ~gO 

TN#4 

2.0 2.5 

[ITJl Setosa 
+ 2 Versicolar 
o 3 Virginica 

Figure 11.19 Classification tree terminal nodes (regions) in the petal width, petal 
length sample space. 

13 Available for download at www.stat.wisc.edu/-lohlquest.html 

14 Available for download at www.stat.wisc.edul-Ioh/cruise.html 
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Neural Networks 
A neural network (NN) is a computer-intensive, algorithmic procedure for 
transfomiing inputs into desired outputs using highly connected networks of 
relatively simple processing units (neurons or nodes). Neural networks are modeled 
after the neural activity in the human brain. The three essential features, then, of an 
NN are the basic computing units (neurons or nodes), the network architecture 
describing the connections between the computing units, and the training 
algorithm used to find values of the network parameters (weights) for performing a 
particular task. 

The computing units are connected to one another in the sense that the out
put from one unit can serve as part of the input to another unit. Each computing 
unit transforms an input to an output using some prespecified function that is 
typically monotone, but otherwise arbitrary. This function depends on constants 
(parameters) whose values must be determined with a training set of inputs and 
outputs. 

Network architecture is the organization of computing units and the types of 
connections permitted. In statistical applications, the computing units are arranged 
in a series of layers with connections between nodes in different layers, but not be
tween nodes in the same layer. The layer receiving the initial inputs is called the 
input layer. The final layer is called the output layer. Any layers between the input 
and output layers are called hidden layers. A simple schematic representation of a 
multilayer NN is shown in Figure 11.20. 

t t t 
Output 

Middle (hidden) 

Input 

Figure 1 1.20 A neural network with one hidden layer. 
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Neural networks can be used for discrimination and classification. When they 
are so used, the input variables are the measured group characteristics Xl> 
X 2, .•. , Xp, and the output variables are categorical variables indicating group 
membership. Current practical experience indicates that properly constructed neUr
al networks perform about as well as logistic regression and the discriminant func
tions we have discussed in this chapter. Reference [30] contains a good discussion of 
the use of neural networks in applied statistics. 

Selection of Variables 

In some applications of discriminant analysis, data are available on a large number 
of variables. Mucciardi and Gose [27] discuss a discriminant analysis based on 157 
variables. 15 In this case, it would obviously be desirable to select a relatively small 
subset of variables that would contain almost as much information as the original 
collection. This is the objective of step wise discriminant analysis, and several popular 
commercial computer programs have such a capability. 

If a stepwise discriminant analysis (or any variable selection method) is 
employed, the results should be interpreted with caution. (See [28].) There is no· 
guarantee that the subset selected is "best," regardless of the criterion used to make 
the selection. For example, subsets selected on the basis of minimizing the apparent 
error rate or maximizing "discriminatory power" may perform poorly in future 
samples. Problems associated with variable-selection procedures are magnified if 
there are large correlations among the variables or between linear combinations of 
the variables. 

Choosing a subset of variables that seems to be optimal for a given data set is 
especially disturbing if classification is the objective. At the very least, the derived 
classification function should be evaluated with a validation sample. As Murray [28] 
suggests, a better idea might be to split the sample into a number of batches and 
determine the "best" subset for each batch. The number of times a given variable 
appears in the best subsets provides a measure of the worth of that variable for 
future classification. 

Testing for Group Differences 

We have pointed out, in connection with two group classification, that effective allo
cation is probably not possible unless the populations are well separated. The same 
is true for the many group situation. Classification is ordinarily not attempted, un
less the population mean vectors differ significantly from one another. Assuming 
that the data are nearly multivariate normal, with a common covariance matrix, 
MANOVA can be performed to test for differences in the population mean vectors. 
Although apparent significant differences do not automatically imply effective clas
sification, testing is a necessary first step. If no significant differences are found, con
structing classification rules will probably be a waste of time. 

IS Imagine the problems of verifying the assumption of 157-variate normality and simultaneously 
estimating, for exampl~the 12,403 parameters of the 157 x 157 presumed common covariance matrix! 
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Graphics 

Sophisticated computer graphics now allow one visually to examine multivariate 
data in two and three dimensions. Thus, groupings in the variable space for any 
choice of two or three variables can often be discerned by eye. In this way, poten
tially important classifying variables are often identified and outlying, or "atypical," 
observations revealed. Visual displays are important aids in discrimination and clas
sification, and their use is likely to increase as the hardware and associated comput
er programs become readily available. Frequently, as much can be learned from a 
visual examination as by a complex numerical analysis. 

Practical Considerations Regarding Multivariate Normality 

The interplay between the choice of tentative assumptions and the form of the re
sulting classifier is important. Consider Figure 11.21, which shows the kidney
shaped density contours from two very nonnormal densities. In this case, the normal 
theory linear (or even quadratic) classification rule will be inadequate compared to 
another choice. That is, linear discrimination here is inappropriate. 

Often discrimination is attempted with a large number of variables, some of 
which are of the presence-absence, or 0-1, type. In these situations and in others 
with restricted ranges for the variables, multivariate normality may not be a sensible 
assumption. As we have seen, classification based on Fisher's linear discriminants 
can be optimal from a minimum ECM or minimum TPM point of view only when 
multivariate normality holds. How are we to interpret these quantities when nor
mality is clearly not viable? 

In the absence of multivariate normality, Fisher's linear discriminants can be 
viewed as providing an approximation to the total sample information. The values 
of the first few discriminants themselves can be checked for normality and rule 
(11-67) employed. Since the discriminants are linear combinations of a large num
ber of variables, they will often be nearly normal. Of course, one must keep in mind 
that the first few discriminants are an incomplete summary of the original sample in
formation. Classification rules based on this restricted set may perform poorly, while 
optimal rules derived from all of the sample information may perform well. 

"Linear classification" boundary 

j "Good classification" boundary 

\ ~/ 
contourOf\35V

X 

Contour of /1 (x) 
hex) X \ 

\ 

R2 RI 

IX \ \ 
\ 

~----------------------~\------~Xl 

Figure I 1.21 Two nonnoITilal 
populations for which linear 
discrimination is inappropriate. 
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EXERCISES 

I 1.1. Consider the two data sets 

X, ~ [! n .nd X, ~ [! n 
for which 

and 

Spooled = [~ ~] 
(a) Calculate the linear discriminant function in (11-19). 

(b) Classify the observation x& = [2 7) as population 7T1 or population 7(2, using. 
(11-18) with equal priors and equal costs. 

11.2. (a) Develop a linear classification function for the data in Example 11.1 using (11-19) ..... . 

(b) Using the function in (a) and (11-20), construct the "confusion matrix" by classifying 
the given observations. Compare your classification results with those of Figure 11.1, . 
where the classification regions were determined "by eye." (See Example 11.6.) 

(c) Given the results in (b), calculate the apparent error rate (APER). 

(d) State any assumptions you make to justify the use of the method in Parts a and b .. 

11.3. Prove Result 11.1. 
Hint: Substituting the integral expressions for P(211) and P( 112) given by (11-1) 
(11-2), respectively, into (11-5) yields 

ECM= c(211)Pl r fl(x)dx + c(112)p2 r fz(x)dx JR2 JR) 
Noting that n = RI U R2 , so that the total probability 

1 = r fl(x) dx = r fl(x) dx+ r !t(x) dx In JR] JR2 
we can write 

ECM = C(211)PI[1- t/I(X)dX] + C(112)P2 t/2(X)dX 

By the additive property of integrals (volumes), 

ECM = r [c(112)p2f2(x) - c(211)pdl(x»)dx + c(211)Pl JR) 
Now, PI, P2, c(112), and c(211) are nonnegative. In addition'!l(x) and f2(x) are 
negative for all x and are the only quantities in ECM that depend on x. Thus, 
minimized if RI includes those values x for which the integrand 

[c(112)p2fz(x) - c(211)pdl(x»)::;; 0 

and excludes those x for which this quantity is positive. 

Exercises 65 I 

11.4. A researcher wants to determine a procedure for discriminating between two multivari
ate populations. The researcher has enough data available to estimate the density 
functions hex) and f2(x) associated with populations 7T1 and 7T2, respectively. Let 
c(211) = 50 (this is the cost of assigning items as 7T2, given that 7T1 is true) and 
c(112) = 100. 

In addition, it is known that about 20% of all possible items (for which the 
measurements x can be recorded) belong to 7T2. 

(a) Give the minimum ECM rule (in general form) for assigning a new item to one of 
the two populations. 

(b) Measurements recorded on a new item yield the density values flex) = .3 and 
f2(x) = .5. Given the preceding information, assign this item to population 7T1 or 
population 7T2. 

11.5. Show that 

-t(x - 1-'1)'1;-I(X - I-'d + !ex - 1-'2)'1;-I(X - 1-'2) 

= (1-'1 - 1-'2)'1;-lx - t(1-'1 - 1-'2)'1;-1(1-'1 + 1-'2) 

[see Equation (11-13).] 

11.6. Consider the linear function Y = a'X. Let E(X) = 1-'1 and Cov(X) = 1; if X belongs 
to population 7T1. Let E(X) = 1-'2 and Cov (X) = 1; if X belongs to population 7T2. Let 
m = !(JL1Y + JL2Y) = !(a'l-'l + a'1-'2)· Given that a' = (1-'1 - JL2)'1;-I, show each 
of the following. 

(a) E(a'XI7TI) - m = a'l-'l - m > 0 

(b) E(a'XI7T2) - m = a'1-'2 - m < 0 
Hint: Recall that 1; is of full rank and is positive definite, so 1;-1 exists and is positive 
definite. 

11.7. Leth(x) = (1 -I x I) for Ixl :s 1 andfz(x) = (1 - I x - .51) for -.5 :s x:S 1.5. 

(a) Sketch the two densities. 

(b) Identify the classification regions when PI = P2 and c(1I2) = c(211). 

(c) Identify the classification regions when PI = .2 and c(112) = c(211). 

11.8. Refer to Exercise 11.7. Let fl(x) be the same as in that exercise, but take 
f2(x) = ~(2 - I x - .51) for -1.5 ::;; x :s 2.5. 

(a) Sketch the two densities. 

(b) Determine the classification regions when PI = P2 and c(112) = c(211). 

11.9. For g = 2 groups, show that the ratio in (11-59) is proportional to the ratio 

(
squared distance ) 

betweenmeansofY _ (JL1Y - JL2y)2 (a'l-'l - a'1-'2)2 

(variance ofY) - u} a'1;a 

a'(1-'1 - 1-'2)(1-'1 - 1-'2)'a = (a'8)2 
a'1;a a'1;a 

where 8 = (1-'1 - 1-'2) is the difference in mean vectors. This ratio is the population 
counterpart of (11-23). Show that the ratio is maximized by the linear combination 

a = c1;-18 = c1;-I(1-'1 - 1-'2) 

for any c ~ O. 
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Hint: Note that (IL; - ji)(ILj - ji)' = t(IL] - ILz)(ILI - ILz)' for i = 1,2, where 

ji = ~ (P;I + ILl). 

11.10. Suppose that nl = 11 and nz = 12 observations are made on two random variables X 
and Xz, where Xl and X z are assumed to have a bivariate normal distribution with! 
common covariance matrix:t, but possibly different mean vectors ILl and ILz for the two 

"mpl" Th' "mpl, m= ><eto:, :t?:l" ,o':~rf' '" 
[ 

7.3 -1.1J 
Spooled = -1.1 4.8 

(a) Test for the difference in population mean vectors using Hotelling's two-sample 
TZ-statistic. Let IX = .10. 

(b) Construct Fisher's (sample) linear discriminant function. [See (11-19) and (11-25).] 

(c) Assign the observation Xo = [0 1] to either population 1TI or 1TZ' Assume equal 
costs and equal prior probabilities. 

I 1.1 I. Suppose a univariate random variable X has a normal distribution with variance 4. If X 
is from population 1T] , its mean is 10; if it is from population 1T2, its mean is 14. Assume 
equal prior probabilities for the events Al = X is from population 1T1 and A2 = X is 
from population 1TZ, and assume that the misclassification costs c(211) and c(112) are 
equal (for instance, $10). We decide that we shall allocate (classify) X to popUlation 1TI if 
X :s; c, for some c to be determined, and to population 1TZ if X > c. Let Bl be the 
event X is classified into population 7TI and B2 be the event X is classified into popula
tion 7TZ' Make a table showing the following: P(BIIA2), P(B2IA1), peAl and B2), 
P(A2 and Bl); P(misclassification), and expected cost for various values of c. For what 
choice of c is expected cost minimized? The table should take the following form: 

c P(B1IA2) P(B2IAl) P(A1andB2) P(A2and Bl) P(error) 

10 

14 

What is the value of the minimum expected cost? 

Expected 
cost 

11.12. Repeat Exercise 11.11 if the prior probabilities of Al and A2 are equal, but 
c(211) = $5 and c(112) = $15. 

11.13. Repeat Exercise 11.11 if the prior probabilities of Al and A2 are P(A1) = .25 and 
P(A2) = .75 and the misclassification costs are as in Exercise 11.12. 

11.14. Consider the discriminant functions derived in Example 11.3. Normalize a using (11-21) 
and (11-22). Compute the two midpoints m7 and m; corresponding to the two choices of 
normalized vectors, say, a~ and a;. Classify Xo = [-.210, -.044] with the function 
Yo = a*' Xo for the two cases. Are the results consistent with the classification obtained 
for the case of equal prior probabilities in Example 11.3? Should they be? 

II.IS. Derive the expressions in (11-27) from (11-6) when fl(x) and fz(x) are multivariate 
normal densities with means ILl, ILz and covariances II, :tz, respectively. 

I 1.16. Suppose x comes from one of two populations: 

7T1: Normal with mean IL] and covariance matrix:t] 

7TZ: Normal with mean ILz and covariance matrix :t2 
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If the respective density functions are denoted by I1 (x) and fz(x), find the expression 
for the quadratic discriminator 

Q ~ In[;:~:U 
If:tl = :tz = :t, for instance, verify that Q becomes 

(IL] - IL2)':t-I
X - ~(p;l - JL.Z),rl(p;, + ILz) 

11.17. Suppose populations 7Tl and 7TZ are as follows: 

Population 
1T] 1T2 

Distribution Normal Normal 

Mean JL [10,15]' [10,25]' 

Covariance :t [18 12 ] [ 20 -;] 
12 32 -7 

Assume equal prior probabilities and misclassifications costs of c(211) = $10 and 
c( 112) = $73.89. Find the posterior probabilities of populations 7TI and 7Tl, P( 7TI I x) 
and PC 7T21 x), the value of the quadratic discriminator Q in Exercise 11.16, and the 
classification for each value of x in the following table: 

x 

[10,15]' 
[12,.17]' 

[30,35]' 

P(1T] Ix) P( 1Tl l x) Q 

(Note: Use an increment of 2 in each coordinate-ll points in all.) 

Show each of the following on a graph of the x] , X2 plane. 

(a) The mean of each population 

Classification 

(b) The ellipse of minimal area with probability .95 of containing x for each population 

(c) The region RI (for popUlation 7T1) and the region !l-R] = Rz (for popUlation 7TZ) 

(d) The 11 points classified in the table 

11.18. If B is defined as C(IL] - ILz) (ILl - ILz)' for some constant c, verify that 
. e = C:t:-I(ILI - p;z) is in fact ,an (unsealed) eigenvector of :t-IB, where:t is a covari

ance matrix. 

I J.J 9. (a) Using the original data sets XI and Xl given in Example 11.7, calculate X;, S;, 
i = 1,2, and Spooled, verifying the results provided for these quantities in the 
example. 



654 Chapter 11 Discrimination and Classification 

(b) Using the calculations in Part a, compute Fisher's linear discriminant fUnction, and 
use it to classify the sample observations according to Rule (11-25). Verify that . 
confusion matrix given in Example 11.7 is correct. 

(c) Classify the sample observations on the basis of smallest squared distance D7(x) 
the observations from the group means XI and X2· [See (11-54).] Compare the 
sults with those in Part b. Comment. 

11.20. The matrix identity (see Bartlett [3]) 

-I _ n - 3 (S-I + Ck 

SH.pooled - n.- 2 pooled 1 - Ck(XH - Xk)'Sj;';"led (XH - Xk) 

S-I ( - ) ( - )'S-1 . pooled XH - Xk XH - Xk pooled 

where 

Ck = (nk -l)(n -2) 

allows the calculation of sll.pooled from Sp~oled. Verify this identity using the data from 
Example 11.7. Specifically, set n = nl + n2, k = 1, and xlf = [2,12]. Calculate 
sll.pooled using the full data Sp~oled and XI, and compare the result with s,l.pooled in 
Example 11.7. 

11.21. Let Al ;;,: A2 ;;,: ... ;;,: As > 0 denote the s s; min(g - 1, p) nonzero eigenvalues of 
I-IB/< and Cl, C2, ... , Cs the corresponding eigenvectors (scaled so that c'Ic = 1), 
Show that the vector of coefficients a that maximizes the ratio . 

_a'_B_/<_a = a'[~ (/Li - ji)(JLj - ji)']a 

a'Ia a'Ia 

is given by al = Cl. The linear combination a;X is called the first discriminant. ~how 
that the value a2 = C2 maximizes the ratio subject to Cov (aIX, azX) =.0. '!h~ Imear 
combination azX is called the second discriminant. Continuing, ak = Ck maXimIzes the 
ratio subject to 0 = Cov(a"X,a;X), i < k, and a"X is called the kth discriminant. 
Also, Var (a;X) = 1, i = 1, ... ,so [See (11-62) for the sample equivalent.] 
Hint: We first convert the maximization problem to one already solved. By the spe~t:al 
decomposition in (2-20), I = P' AP where A. is ~ diagonal matrix with pOSItive 
elements Ai. Let A 1/2 denote the diagonal matrIX With elements v'X;. By (2-22), .the 
symmetric square-root matrix II/2 = P' A 1/2p and its inverse I-I/2 = P' A -1/2p sallsfy 
II/2II/2 = I, II/2I-I/2 = I = I-I/zII/2 and I-If2r lf2 = I-I. Next, set 

u = Il/2a 

so u'u = a'II/2I If2a = a'Ia and u'I-I/2B/<I-I/2u =a'II/2I-I/2B/<I-I/2II/2a = a'B,.a. 
Consequently, the problem reduces to maximizing 

U'I-I/2B/<I-I/2U 

u'u 

over u. From (2-51), the maximum of this ratio is AI, the largest eigenvalue 
I-1/ 2B/<I-I/2. This maximum occurs when u = Cl, the normalized 
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associated with AI. Because Cl = U = II/2al , or al = I-I/2cl , Var(a;X) = aiIal = 
ciI-I/zII-I/2Cl = ciI-I/2II/2II/2I-l/2CI = eicl = 1. By (2-52), u 1. el maximizes the 
preceding ratio when u = C2, the normalized eigenvector corresponding to A2. For this 
choice, az = I-I/2C2 , and Cov(azX,aiX) = azIal = cZI-l/2II-I/2cl = CZCI = 0, 
since Cz 1. Cl· Similarly, Var(azX)= aZIa2 = czcz = 1. Continue in this fashion for 
the remaining discriminants. Note that if A and e are an eigenvalue-eigenvector pair 
of I-I/2B/<I-I/2, then 

I-If2B/<I-1/2C = AC 

and multiplication on the left by I-I/2 gives 

Thus, I-I B/< has the same eigenvalues as I-I/2B/<I-I/2, but the corresponding eigenvec
tor is proportional to I-If2e = a, as asserted. 

11.22. Show that .i~ = Al + A2 + ... + Ap = Al + Az + ... + As> where AI, Az, ... , As are the 

nonzero eigenvalues of I-I B/< (or I-I/2B/<I-I/2) and .i~ is given by (11-68).Also, show 
that Al + Az + ... + Ar is the resulting separation when only the first r discriminants, 
YI , Y2 , ... , Yr are used. 

Hint: Let P be the orthogonal matrix whose ith row Cl is the eigenvector of I-I/2B/<I-l/2 
corresponding to the ith largest eigenvalue, i = 1,2, ... , p. Consider 

[

YI] [CiI-I/2X]. 

Y = ~s = c;I~1/2X = prl/2x 
(pXI): : 

. . 
Yp c~I-I/2X 

Now, J.LiY = £(Y l17j) = PI-I/2/Li and jiy = PI-I/2ji, so 

(/LiY - jiy)' (/LiY - jiy) = (/Li - ji )'rl/2p'PI-I/Z(/Lj - ji) 

= (/Li - ji ),rl(/Li - ji) 

g 

Therefore,.i~ = L: (/LiY - jiy)' (J.LiY - jiy). Using Yl , we have 
i=1 

g g 

~ (J.LjY, - jiy/ = L: cjI-I/2(/Lj - ji)(/Lj - ji)'I-I/2CI 
;=1 ;=1 

because Cl has eigenvalue Al. Similarly, Y2 produces 

g 

L: (J.LjY2 - jiYl)2 = czI-I/2B/<I-l/2e2 = A2 
;=1 

and Yp produces 
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Thus, 
g 

A~ = 2: (ILiY - jiY)'(ILiY - jiy) 
;=1 

g g g 

= 2: (lLiYI - fi,y/ + 2: (lLiY 2 - fi,y/ + ... + 2: (lLiY p - fi,y/ 
;=1 ;=1 ;=1 

= AI + A2 + ... + Ap = AI + A2 + ... + As 

since As+1 = ... = Ap = O. If only the first r discriminants are used, their contribution to 

A~ is AI + A2 + ... + A,. 

The following exercises require the use of a computer. 

11.23. Consider the data given in Exercise 1.14. 
(a) Check the marginal distributions of the x;'s in both the multiple-sclerosis (MS) 

group and non-multiple-sclerosis (NMS) group for normality by graphing the 
corresponding observations as normal probability plots. Suggest appropriate data 
transformations if the normality assumption is suspect. 

(b) Assume that :tl = :t2 = :t. Construct Fisher's linear discriminant function. Do all 
the variables in the discriminant function appear to be important? Discuss your 
answer. Develop a classification rule assuming equal prior probabilities and equal 
costs of misclassification. 

(c) Using the results in (b), calculate the apparent error rate. If computing resources 
allow, calculate an estimate of the expected actual error rate using Lachenbruch's 
holdout procedure. Compare the two error rates. 

I 1.24. Annual financial data are collected for bankrupt firms approximately 2 years prior to their 
bankruptcy and for financially sound firms at about the same time. The data on four vari
ables, XI = CF/TD = (cash flow)/(total debt), X 2 = NI/TA = (net income)/(total as
sets),X

3 
= CA/CL = (current assets)/(current liabilities), and X 4 = CA/NS = (current 

assets)/(net sales), are given in Table 11.4. 
(a) Using a different symbol for each group, plot the data for the pairs of observations 

(X"X2), (X"X3) and (XI,X4). Does it appear as if the data are approximately 
bivariate normal for any of these pairs of variables? 

(b) Using the nl = 21 pairs of observations (Xl ,X2) for bankrupt firms and the n2 = 25 
pairs of observations (Xl, X2) for nonbankrupt firms, calculate the sample mean vec
tors XI and X2 and the sample covariance matrices SI and S2· 

(c) Using the results in (b) and assuming that both random samples are from bivariate 
normal populations, construct the classification rule (11-29) with PI = P2 and 
c(112) = c(211). 

(d) Evaluate the performance of the classification rule developed in (c) by computing 
the apparept error rate (APER) from (11-34) and the estimated expected actual 
error rate E (AER) from (11-36). 

(e) Repeat Parts c and d, assuming that PI = .05, P2 = .95, and c(112) = c(211). Is 
this choice of prior probabilities reasonable? Explain. 

(f) Using the results in (b), form the pooled covariance matrix Spooled' and construct 
Fisher's sample linear discriminant function in (11-19). Use this function to classify 
the sample observations and evaluate the APER. Is Fisher's linear discriminant 
function a sensible choice for a classifier in this case? Explain. 

(g) Repeat Parts b-e using the observation pairs (XI,X3) and (XI,X4)· Do some vari
ables appear to be better classifiers than others? Explain. 

(h) Repeat Parts b-e using observations on all four variables (X, , X 2 , X 3 , X 4 )· 
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Table 11.4 Bankruptcy Data 

Row 
CF NI CA CA Population 

x, = TD X2 = TA X3 = CL X4 = NS 7T;,i = 1,2 

1 -.45 -.41 1.09 .45 0 
2 -.56 -.31 1.51 .16 0 
3 .06 .02 1.01 .40 0 
4 -.07 -.09 1.45 .26 0 
5 -.10 -.09 1.56 .67 0 
6 -.14 -.07 .71 .28 0 
7 .04 .01 1.50 .71 0 
8 -.06 -.06 1.37 AD 0 
9 .07 -.01 1.37 .34 0 

10 -.13 -.14 1.42 044 0 
11 -.23 -.30 .33 .18 0 
12 .07 .02 1.31 .25 0 
13 .01 .00 2.15 .70 0 
14 -.28 -.23 1.19 .66 0 
15 .15 .05 1.88 .27 0 
16 .37 .11 1.99 .38 0 
17 -.08 -.08 1.51 .42 0 
18 .05 .03 1.68 .95 0 
19 .01 -.00 1.26 .60 0 
20 .12 .11 1.14 .17 0 
21 -.28 -.27 1.27 .51 0 

1 .51 .10 2049 .54 1 
2 .08 .02 2.01 .53 1 
3 .38 .11 3.27 .35 1 
4 .19 .05 2.25 .33 1 
5 .32 .07 4.24 .63 1 
6 .31 .05 4.45 .69 1 
7 .12 .05 2.52 .69 1 
8 -.02 .02 2.05 .35 1 
9 .22 .08 2.35 AD 1 

10 .17 .Q7 1.80 .52 1 
11 .15 .05 2.17 .55 1 
12 -.10 -.01 2.50 .58 1 
13 .14 -.03 046 .26 1 
14 .14 .07 2.61 .52 1 
15 .15 .06 2.23 .56 1 
16 .16 .05 2.31 .20 1 
17 .29 .06 1.84 .38 1 
18 .54 .11 2.33 048 1 
19 -.33 -.09 3.01 .47 1 
20 .48 .09 1.24 .18 1 
21 .56 .11 4.29 AS 1 
22 .20 .08 1.99 .30 1 
23 .47 .14 2.92 AS 1 
24 .17 .04 2.45 .14 1 
25 .58 .04 5.06 .13 1 

Legend: 17, = 0: bankrupt firms; 172 = 1: nonbankrupt firms. 
Source: 1968,1969,1970,1971,1972 Moody's Industrial Manuals. 
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11.25. The annual financial data listed in Table 11.4 have been analyzed by lohnson [19] with a 
view toward detecting influential observations in a discriminant analysis. Consider vari
ables Xl = CF/TD and X3 = CA/CL. 
(a) Using the data on variables XI and X 3 , construct Fisher's linear discriminant func

tion. Use this function to classify the sample observations and evaluate the APER. 
[See (11-25) and (11-34).] Plot the data and_the discriminant line in the (Xl, X3) co
ordinate system. 

(b) Johnson [19] has argued that the multivariate observations in rows 16 for bankrupt 
firms and 13 for sound firms are influential. Using the XI, X3 data, calculate Fisher's 
linear discriminant function with only data point 16 for bankrupt firms deleted. Re
peat this procedure with only data point 13 for sound firms.deleted. Plo~ the ~espec
tive discriminant lines on the scatter in part a, and calculate the APERs, Ignonng the 
deleted point in each case. Does deleting either of these multivariate observations 
make a difference? (Note that neither of the potentially influential data points is 
particularly "distant" from the center of its respective scatter.) 

11.26. Using the data in Table 11.4, define a binary response variable Z that assumes the value 
o if a firm is bankrupt and 1 if a firm is not bankrupt. Let X = CA/ CL, and consider the 
straight-line regression of Z on X. 
(a) Although a binary response variable does not meet the standard regression assump

tions, consider using least squares to determine the fitted straight line for the X, Z 
data. Plot the fitted values for bankrupt firms as a dot diagram on the interval [0, 1]. 
Repeat this procedure for nonbankrupt firms and overlay the two dot diagrams. A 
reasonable discrimination rule is to predict that a firm will go bankrupt if its fitted 
value is closer to 0 than to 1. That is, the fitted value is less than .5. Similarly, a firm is 
predicted to be sound if its fitted value is greater than .5. Use this decision rule to 
classify the sample firms. Calculate the APER. 

(b) Repeat the analysis in Part a using all four variables, Xl, ... ,X4 • Is there any ch~nge 
in the APER? Do data points 16 for bankrupt firms and 13 for nonbankrupt firms 
stand out as influential? 

(c) Perform a logistic regression using all four variables. 

11.27. The data in Table 11.5 contain observations on X 2 = sepal width and X 4 = petal width 
for samples from three species of iris. There are n I = n2 = n3 = 50 observations in each 
sample. 
(a) Plot the data in the (X2, X4) variable space. Do the observations for the three groups 

appear to be bivariate normal? 

Table 11.5 Data on Irises 

1T I: I,ris setosa 1T2: Iris versicolor 7T3: Iris virginica 

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal 

length width length width length width length width length width length width 

Xl X2 X3 X4 Xl X2 X3 X4 Xl X2 X3 X4 

5.1 3.5 1.4 0.2 7.0 3.2 4.7 1.4 6.3 3.3 6.0 2.5 

4.9 3.0 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9 

4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3.0 5.9 2.1 

4.6 3.1 1.5 0.2 5.5" 2.3 4.0 1.3 6.3 2.9 5.6 1.8 

5.0 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3.0 5.8 22 

5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3.0 6.6 2.1 

(continues on next page) 
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Table 11.5 (continued) 

1TI: Iris setosa 1T2: Iris versicolor 1T3: Iris virginica 

Sepal Sepal Petal Petal Sepal Sepal Petal Petal Sepal Sepal Petal Petal 
length width length width length width length width length width length width 

Xl Xz X3 X4 Xl X2 X3 X4 Xl X2 X3 X4 

4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7 
5.0 3.4 1.5 0.2 4.9 2.4 3.3 1.0 7.3 2.9 6.3 1.8 
4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8 
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5 
5.4 3.7 1.5 0.2 5.0 2.0 3.5 1.0 6.5 3.2 5.1 2.0 
4.8 3.4 1.6 0.2 5.9 3.0 4.2 1.5 6.4 2.7 5.3 1.9 
4.8 3.0 1.4 0.1 6.0 2.2 4.0 1.0 6.8 3.0 5.5 2.1 
4.3 3.0 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5.0 2.0 
5.8 4.0 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4 
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 23 
5.4 3.9 1.3 0.4 5.6 3.0 4.5 1.5 6.5 3.0 5.5 1.8 
5.1 3.5 1.4 03 5.8 2.7 4.1 1.0 7.7 3.8 6.7 2.2 
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3 
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6.0 2.2 5.0 1.5 
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3 
5.1 3.7 1.5 0.4 6.1 2.8 4.0 1.3 5.6 2.8 4.9 2.0 
4.6 3.6 1.0 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2.0 
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8 
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1 
5.0 3.0 1.6 0.2 6.6 3.0 4.4 1.4 7.2 3.2 6.0 1.8 
5.0 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8 
5.2 3.5 1.5 0.2 6.7 3.0 5.0 1.7 6.1 3.0 4.9 1.8 
5.2 3.4 1.4 0.2 6.0 2.9 4.5 1.5 6.4 2.8 5.6 2.1 
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1.0 7.2 3.0 5.8 1.6 
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9 
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1.0 7.9 3.8 6.4 2.0 
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2 
5.5 4.2 1.4 0.2 6.0 2.7 5.1 1.6 6.3 2.8 5.1 1.5 
4.9 3.1 1.5 0.2 5.4 3.0 4.5 1.5 6.1 2.6 5.6 1.4 
5.0 3.2 1.2 0.2 6.0 3.4 4.5 1.6 7.7 3.0 6.1 2.3 
5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4 
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8 
4.4 3.0 1.3 0.2 5.6 3.0 4.1 1.3 6.0 3.0 4.8 1.8 
5.1 3.4 1.5 0.2 5.5 2.5 4.0 1.3 6.9 3.1 5.4 2.1 
5.0 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4 
4.5 2.3 1.3 0.3 6.1 3.0 4.6 1.4 6.9 3.1 5.1 2.3 
4.4 3.2 1.3 0.2 5.8 2.6 4.0 1.2 5.8 2.7 5.1 1.9 
5.0 3.5 1.6 0.6 5.0 2.3 3.3 1.0 6.8 3.2 5.9 2.3 
5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5 
4.8 3.0 1.4 0.3 5.7 3.0 4.2 1.2 6.7 3.0 5.2 2.3 
5.1 3.8 1.6 0.2 5.7 2.9 4.2 13 6.3 2.5 5.0 1.9 
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3.0 5.2 2.0 
5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 6.2 3.4 5.4 2.3 
5.0 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3.0 5.1 1.8 

Source: Anderson [1]. 
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(b) Assume that the samples are from bivariate normal populations with a common 
covariance matrix. Test the hypothesis Ho: P-I = P-z = P-3 versus HI: at least one P-; 
is different from the others at the a = .05 significance level. Is the assumption of a 
common covariance matrix reasonable in this case? Explain. 

(c) Assuming that the populations are bivariate normal, construct the quadratic 
discriminate scores dP(x) given by (11-47) with PI = P2 = P3 = ~. Using Rule 
(11-48), classify the new observation Xo = [3.5 1.75] into population 71"1, 71"z, or 

71"3' 
(d) Assume that the covariance matrices I; are the samt;. for all three bivariate normal 

populations. Construct the linear discriminate score d;(x) given by (11-51), and use 
it to assign Xo = [3.5 1.75] to one of the populations 71";, i = 1,2,3 according to 
(11-52). Take PI = pz = P3 = ~. Compare the results in Parts c and d. Which 
approach do you prefer? Explain. 

(e) Assuming equal covariance matrices and bivariate normal populations, an~ suppos
ing that PI = P2 = P3 = ~, allocate x? = [3.5 1.7.5] to 71"1> 71"2, o~ .71"3 .usmg ~ule 
(11-56). Compare the result with that m Part d. Delmeate the classificatIOn regions 
IJI> R

2
, and R3 on your graph from Part a determined by the linear functions 

ddxo) in (11-56). 
(f) Using the linear discrimin,ilnt scores from Part d, classify the sample observations. 

Calculate the APER and E(AER). (To calculate the latter, you should use Lachen
bruch's holdout procedure. [See (11-57).]) 

11.28. Darroch and Mosimann [6] have argued that the three species of iris indicated in 
Table 11.5 can be discriminated on the basis of "shape" or scale-free information alone. 
Let YI = Xd X 2 be sepal shape and Y2 = X3/ X 4 be petal shape. 
(a) Plot the data in the (log YI , log Y2) variable space. Do the observations for the three 

groups appear to be bivariate normal? 
(b) Assuming equal covariance matrices and bivariate normal populations" and 

supposing that PI = P2 = P3 = !, construct the linear discriminant scores d;(x) 
given by (I 1-51 ) using both variables log YI , log Y2 and each variable individually. 
Calculate the APERs. 

(c) Using the linear discriminant functions from Part b, calculate the holdout estimates 
of the expected AERs, and fill in the following summary table: 

Variable(s) 

10gYJ 

logY2 

log YJ , log Y2 

Misdassification rate 

Compare the preceding misclassification rates with those in the summary t~bles .in 
Example] 1.12. Does it appear as if information on shape alone is an effective diS
criminator for these species of iris? 

(d) Compare the corresponding error rates in Parts band c. Given the scatter plot in 
Part a, would you expect these rates to differ much? Explain. 

11.29. The GPA and GMAT data alluded to in Example 11.11 are listed in Table 11.6. 
(a) Using these data, calculate XI, X2, X3, X, and Spooled and thus verify the results for 

these quantities given in Example 11.11. 
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Table I 1.6 Admission Data for Graduate School of Business 

71"1: Admit 71"2: Do not admit 71"3: Borderline 

Applicant GPA GMAT Applicant GPA GMAT Applicant GPA GMAT 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

(xd (X2) no. (XI) (X2) no. (xd (X2) 

2.96 596 32 2.54 446 60 2.86 494 
3.14 473 33 2.43 425 61 2.85 496 
3.22 482 34 2.20 474 62 3.14 419 
3.29 527 35 2.36 531 63 3.28 371 
3.69 505 36 2.57 542 64 2.89 447 
3.46 693 37 2.35 406 65 3.15 313 
3.03 626 38 2.51 412 66 3.50 402 
3.19 663 39 2.51 458 67 2.89 485 
3.63 447 40 2.36 399 68 2.80 444 
3.59 588 41 2.36. 482 69 3.13 416 
3.30 563 42 2.66 420 70 3.01 471 
3.40 553 43 2.68 414 71 2.79 490 
3.50 572 44 2.48 533 72 2.89 431 
3.78 591 45 2.46 509 73 2.91 446 
3.44 692 46 2.63 504 74 2.75 546 
3.48 528 47 2.44 336 75 2.73 467 
3.47 552 48 2.13 408 76 3.12 463 
3.35 520 49 2.41 469 77 3.08 440 
3.39 543 50 2.55 538 78 3.03 419 
3.28 523 51 2.31 505 79 3.00 509 
3.21 530 52 2.41 489 80 3.03 438 
3.58 564 53 2.19 411 81 3.05 399 
3.33 565 54 2.35 321 82 2.85 483 
3.40 431 55 2.60 394 83 3.01 453 
3.38 605 56 2.55 528 84 3.03 414 
3.26 664 57 2.72 399, 85 3.04 446 
3.60 609 58 2.85 381 
3.37 559 59 2.90 384 
3.80 521 
3.76 646 
3.24 467 

(b) Calculate W-1 and B and the eigenvalues and eigenvectors of W- I B. Use the linear 
discriminants derived from these eigenvectors to classify the new observation 
Xo = [3.21 497] into one of the populations 71"1: admit; 71"2: not admit; and 71"3: bor
derline. Does the classification agree with that in Example I1.11? Should it? Explain. 

I 1.30. Gerrild and Lantz [13] chemically analyzed crude-oil samples from three zones of sandstone: 

71" J: Wilhelm 
71"2: Sub-Mulinia 
71"3: Upper 

The values of the trace elements 

XI = vanadium (in percent ash) 
X 2 = iron (in percent ash) 
X3 == beryllium (in percent ash) 
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and two measures of hydrocarbons, 

X 4 = saturated hydrocarbons (in percent area) 

X5 = aromatic hydrocarbons (in percent area) 

are presented for 56 cases in Table 11.7. The last two measurements are determined 
areas under a gas-liquid chromatography curve. 

(a) Obtain the estimated minimum TPM rule, assuming normality. Comment 011 
adequacy of the assumption of normality. 

(b) Determine the estimate of E(AER) using Lachenbruch's holdout procedure. 
give the confusion matrix. . 

(c) Consider various transformations of the data to normality (see Example 11 
repeat Parts a and b. 

Table I I. 7 Crude-Oil Data 

XI X2 X3 x4 Xs 

7T1 3.9 51.0 0.20 7.06 12.19 
2.7 49.0 0.07 7.14 12.23 
2.8 36.0 0.30 7.00 11.30 
3.1 45.0 0.08 7.20 13.01 
3.5 46.0 0.10 7.81 12.63 
3.9 43.0 0.07 6.25 10.42 
2.7 35.0 0.00 5.11 9.00 

7T2 5.0 47.0 0.07 7.06 6.10 
3.4 32.0 0.20 5.82 4.69 
1.2 12.0 0.00 5.54 3.15 
8.4 17.0 0.07 6.31 4.55 
4.2 36.0 0.50 9.25 4.95 
4.2 35.0 0.50 5.69 2.22 
3.9 41.0 0.10 5.63 2.94 
3.9 36.0 0.07 6.19 2.27 
7.3 32.0 0.30 8.02 12.92 
4.4 46.0 0.07 7.54 5.76 
3.0 30.0 0.00 5.12 10.77 

6.3 13.0 0.50 4.24 8.27 
1.7 5.6 1.00 5.69 4.64 
7.3 24.0 0.00 4.34 2.99 
7.8 18.0 0.50 3.92 6.09 
7.8 25.0 0.70 5.39 6.20 
7.8 26.0 1.00 5.02 2.50 
95 17.0 0.05 3.52 5.71 
7.7 14.0 0.30 4.65 8.63 

11.0 20.0 0.50 4.27 8.40 
8.0 14.0 0.30 4.32 7.87 
8.4 18.0 0.20 4.38 7.98 

(continues on next page) 
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Table 11.7 (continued) 

Xl X2 X3 X4 Xs 

10.0 18.0 0.10 3.06 7.67 
7.3 15.0 0.05 3.76 6.84 
9.5 22.0 0.30 3.98 5.02 
8.4 15.0 0.20 5.02 10.12 
8.4 17.0 0.20 4.42 8.25 
9.5 25.0 0.50 4.44 5.95 
7.2 22.0 1.00 4.70 3.49 
4.0 12.0 0.50 5.71 6.32 
6.7 52.0 0.50 4.80 3.20 
9.0 27.0 0.30 3.69 3.30 
7.8 29.0 1.50 6.72 5.75 
4.5 41.0 0.50 3.33 2.27 
6.2 34.0 0.70 7.56 6.93 
5.6 20.0 0.50 5.07 6.70 
9.0 17.0 0.20 4.39 8.33 
8.4 20.0 0.10 3.74 3.77 
9.5 19.0 0.50 3.72 7.37 
9.0 20.0 0.50 5.97 11.17 
6.2 16.0 0.05 4.23 4.18 
7.3 20.0 0.50 4.39 350 
3.6 15.0 0.70 7.00 4.82 
6.2 34.0 0.07 4.84 2.37 
7.3 22.0 0.00 4.13 2.70 
4.1 29.0 0.70 5.78 7.76 
5.4 29.0 0.20 4.64 2.65 
5.0 34.0 0.70 4.21 6.50 
6.2 27.0 0.30 3.97 2.97 

I 1.31. Refer to the data on·salmon in Table 11.2. 

(a) Plot the bivariate data for the two groups of salmon. Are the sizes and orientation of 
the scatters roughly the same? Do bivariate normal distributions with a common co
variance matrix appear to be viable population models for the Alaskan and Canadi
an salmon? 

(b) Using a linear discriminant function for two normal populations with equal priors 
and equal costs [see (11-19)J, construct dot diagrams ofthe discriminant scores for 
the two groups. Does it appear as if the growth ring diameters separate for the two 
groups reasonably well? Explain. 

(c) Repeat the analysis in Example 11.8 for the male and female salmon separately. Is it 
easier to discriminate Alaskan male salmon from Canadian male salmon than it is to 
discriminate the females in the two groups? Is gender (male or female) likely to be a 
useful discriminatory variable? 

11.32. Data on hemophilia A carriers, similar to those used in Example 11.3, are listed in 
Table 11.8 on page 664. (See [15J.) Using these data, 

(a) Investigate the assumption of bivariate normality for the two groups. 



664 Chapter 11 Discrimination and Classification 

Table I 1.8 Hemophilia Data 

Noncarriers (1TI) Obligatory carriers (1TZ) 

IOglO IOglO IOglO IOglO 

Group (AHF activity) (AHF antigen) Group (AHF activity) (AHF antigen) 

1 -.0056 -.1657 2 .3478 .1151 
1 -.1698 -.1585 2 -.3618 -.2008 
1 -.3469 -.1879 2 -.4986 -.0860 
1 -.0894 .0064 2 -.5015 -.2984 
1 -.1679 .0713 2 . -.1326 .0097 
1 -.0836 .0106 2 -.6911 -.3390 
1 -.1979 -.0005 2 -.3608 .1237 
1 -.0762 .0392 2 -.4535 -.1682 
1 -.1913 -.2123 2 -.3479 -.1721 
1 -.1092 -.1190 2 -.3539 .0722 
1 -.5268 -.4773 2 -.4719 -.1079 
1 -.0842 .0248 2 -.3610 -.0399 
1 -.0225 -.0580 2 -.3226 .1670 
1 .0084 .0782 2 -.4319 -.0687 
1 -.1827 -.1138 2 -.2734 -.0020 

1 .1237 .2140 2 -.5573 .0548 
1 -.4702 -.3099 2 -.3755 -.1865 
1 -.1519 -.0686 2 -.4950 -.oI53 
1 .0006 -.1153 2 -.5107 -.2483 
1 -.2015 -.0498 2 -.1652 .2132 
1 -.1932 -.2293 2 -.2447 -.0407 
1 .1507 .0933 2 -.4232 -W98 
1 -.1259 -.0669 2 -.2375 .2876 
1 -.1551 -.1232 2 -.2205 .0046 
1 -.1952 -.1007 2 -.2154 -.0219 

1 .0291 .0442 2 -.3447 .0097 
1 -.2228 -.1710 2 -.2540 -.0573 
1 -.0997 -.0733 2 -.3778 -.2682 

1 -.1972 -.0607 2 -.4046 -.1162 
1 -.0867 -.0560 2 -.0639 . 1569 

2 -.3351 -.1368 
2 -.0149 .1539 
2 -.0312 .1400 
2 -.1740 -.0776 
2 -.1416 .1642 
2 -.1508 .1137 
2 -.0964 . 0531 
2 -.2642 .0867 
2 -.0234 .0804 
2 -.3352 . 0875 
2 -.1878 .2510 
2 -.1744 .1892 
2 -.4055 -.2418 
2 -.2444 .1614 
2 -.4784 .0282 

Source: See [15]. 
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(b) Obtain the sample linear discriminant function, assuming equal prior probabilities, 
and estimate the error rate using the holdout procedure. . 

(c) Classify the following 10 new cases using the discriminant function in Part b. 

(d) Repeat Parts a--c, assuming that the prior probability of obligatory carriers (group 2) 
is ~ and that of noncarriers (group 1) is ~. 

New Cases Requiring Classification 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

10glO(AHF activity) 

-.112 
-.059 

.064 
-.043 
-.050 
-.094 
-.123 
-.Oll 
-.210 
-.126 

11.33. Consider the data on bulls in Table 1.10. 

10g!O(AHF antigen) 

-.279 
-.068 

.012 
-.052 
-.098 
-.113 
-.143 
-.037 
-.090 
-.019 

(a) Using the variables YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt, 
calculate Fisher's linear discriminants, and classify the bulls as Angus, Hereford, 
or Simental. Calculate an estimate of E(AER) using the holdout procedure. 
Classify a bull with characteristics YrHgt = 50, FtFrBody = 1000, PrctFFB = 73, 
Frame = 7, BkFat = .17, SaleHt = 54, and SaleWt = 1525 as one of the three 
breeds. Plot the discriminant scores for the bulls in the two-dimensional discriminant 
space using different plotting symbols to identify the three groups. 

(b) Is there a subset of the original seven variables that is almost as good for discrimi
nating among the three breeds? Explore this possibility by computing the estimated 
E(AER) for various subsets. 

11.34. Table 11.9 on pages 666-667 contains data on breakfast cereals produced by three 
different American manufacturers: General Mills (G), Kellogg (K), and Quaker (Q) . 
Assuming multivariate normal data with a common covariance matrix, equal costs, and 
equal priors, classify the cereal brands according to manufacturer. Compute the estimat
ed E(AER) using the holdout procedure. Interpret the coefficients of the discriminant 
functions. Does it appear as if some manufacturers are associated with more "nutritional" 
cereals (high protein, low fat, high fib er, low sugar, and so forth) than others? Plot the 
cereals in the two-dimensional discriminant space, using different plotting symbols to 
identify the three manufacturers . 

11.3S. Table 11.10 on page 668 contains measurements on the gender, age, tail length (mm), and 
snout to vent length (mm) for Concho Water Snakes . 

Define the variables 

Xl = Gender 

X 2 = Age 

X3 = TailLength 

X 4 = SntoVnLength 



'" '" '" 

'" '" ...... 

Table 11.9 Data on Brands of Cereal 

Brand Manufacturer 

1 Apple_Cinnamon_Cheerios G 

2 Cheerios G 

3 Cocoa_Puffs G 

4 CounCChocula G 

5 Golden_ Grahams G 

6 Honey_NuCCheerios G 

7 Kix G 

8 Lucky_Charms G 

9 Multi_Grain_Cheerios G 

10 Oatmeal_Raisin_Crisp G 

11 Raisin_Nut_Bran G 

12 TotaCCorn_Flakes G 
13 TotaCRaisin_Bran G 

14 Total_Whole_Grain G 

15 Trix G 

16 Wheaties G 
17 Wheaties_Honey_Gold G 

18 All_Bran K 
19 Apple_Jacks K 

20 Corn_Flakes K 

21 Corn_Pops K 

22 CrackIin'_Oat_Bran K 
23 Crispix K 

. 24 Froot_Loops K 
25 Frosted_Flakes K 
26 Frosted_MinL Wheats K 
27 Fruitful_Bran K 
28 JusCRight_Crunchy_Nuggets K 
29 Mueslix_Crispy_Blend K 
30 Nut&Honey_Crunch K 
31 Nutri-grain_Almond-Raisin K 
32 Nutri-grain_ Wheat K 
33 Product_19 K 
34 Raisin Bran K 
35 Rice_Krispies K 
36 Smacks K 
37 SpeciaCK K 
38 Cap'n'Crunch Q 
39 Honey_Graham_Ohs Q 
40 Life Q 
41 Puffed_Rice Q 
42 Puffed_Wheat Q 
43 QuakecOatmeal Q 

Source: Data courtesy of Chad Dacus. 

Calories Protein Fat 

110 2 2 

110 6 2 

110 1 1 

110 1 1 

110 1 1 

110 3 1 

110 2 1 

110 2 1 
100 2 1 

130 3 2 

100 3 2 
110 2 1 
140 3 1 
100 3 1 
110 1 1 
100 3 1 
110 2 1 
70 4 1 

110 2 0 
100 2 0 
110 1 0 

110 3 3 
110 2 0 
110 2 1 
110 1 0 
100 3 0 
120 3 0 
110 2 1 
160 3 2 
120 2 1 
140 3 2 
90 3 0 

100 3 0 
120 3 1 
110 2 0 
110 2 1 
110 6 0 
120 1 2 
120 1 2 
100 4 2 

50 1 0 
50 2 0 

100 5 2 

Sodium Fiber Carbohydrates Sugar Potassium Group 

180 1.5 10.5 10 70 1 

290 2.0 17.0 1 105 1 

180 0.0 12.0 13 55 1 

180 0.0 12.0 13 65 1 

280 0.0 15.0 9 45 1 

250 1.5 11.5 10 90 1 

260 0.0 21.0 3 40 1 

180 0.0 12.0 12 55 1 

220 2.0 15.0 6 90 1 

170 1.5 13.5 10 120 1 

140 2.5 10.5 8 140 1 

200 0.0 21.0 3 35 1 

190 4.0 15.0 14 230 1 

200 3.0 16.0 3 110 1 

140 0.0 13.0 . 12 25 1 

200 3.0 17.0 3 110 1 

200 1.0 16.0 8 60 1 

260 9.0 7.0 5 320 2 

125 1.0 11.0 14 30 2 

290 1.0 21.0 2 35 2 

90 1.0 13.0 12 20 2 

continued 

140 4.0 10.0 7 160 2 
220 1.0 21.0 3 30 2 
125 1.0 11.0 13 30 2 
200 1.0 14.0 11 25 2 

0 3.0 14.0 7 100 2 
240 5.0 14.0 12 190 2 
170 1.0 17.0 6 60 2 
150 3.0 17.0 13 160 2 
190 0.0 15.0 9 40 2 
220 3.0 21.0 7 130 2 
170 3.0 18.0 2 90 2 
320 1.0 20.0 3 45 2 
210 5.0 14.0 12 240 2 
290 0.0 22.0 3 35 2 
70 1.0 9.0 15 40 2 

230 1.0 16.0 3 55 2 
220 0.0 12.0 12 35 3 
220 1.0 12.0 11 45 3 
150 2.0 12.0 6 95 3 

0 0.0 13.0 0 15 3 
0 1.0 10.0 0 50 3 
0 2.7 1.0 1 110 3 
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Table I 1.10 Concho Water Snake Data 

Gender Age TailLength Snto Gender Age TailLength Snto 
VnLength VnLength 

1 Female 2 127 441 1 Male 2 126 457 
2 Female 2 171 455 2 Male 2 128 466 
3 Female 2 171 462 3 Male 2 151 466 
4 Female 2 164 446 4 Male 2 115 361 
5 Female 2 165 463 5 Male 2 138 473 
6 Female 2 127 393 6 Male 2 145 477 
7 Female 2 162 451 7 Male 3 145 507 
8 Female 2 133 376 8 Male 3 145 493 
9 Female 2 173 475 9 Male 3 158 558 

10 Female 2 145 398 10 Male 3 152 495 
11 Female 2 154 435 11 Male 3 159 521 
12 Female 3 165 491 12 Male 3 138 487 
13 Female 3 178 485 13 Male 3 166 565 
14 Female 3 169 477 14 Male 3 168 585 
15 Female 3 186 530 15 Male 3 160 550 
16 Female 3 170 478 16 Male 4 181 652 
17 Female 3 182 511 17 Male 4 185 587 
18 Female 3 172 475 18 Male 4 172 606 
19 Female 3 182 487 19 Male 4 180 591 
20 Female 3 172 454 20 Male 4 205 683 
21 Female 3 183 502 21 Male 4 175 625 
22 Female 3 170 483 22 Male 4 182 612 
23 Female 3 171 477 23 Male 4 185 618 
24 Female 3 181 493 24 Male 4 181 613 
25 Female 3 167 490 25 Male 4 167 600 
26 Female 3 175 493 26 Male 4 167 602 
27 Female 3 139 477 27 Male 4 160 596 
28 Female 3 183 501 28 Male 4 165 611 
29 Female 4 198 537 29 Male 4 173 603 
30 Female 4 190 566 
31 Female 4 192 569 
32 Female 4 211 574 
33 Female 4 206 570 
34 Female 4 206 573 
35 Female 4 165 531 
36 Female 4 189 528 
37 Female 4 195 536 

Source: Data courtesy of Raymond J. Carroll. 

(a) Plot the data as a scatter plot with tail length (X3) as the ?orizontal axis and sno~t to 
vent length (X4) as the vertical axis. Use different plottmg .symbols for. fe~ale and 
male snakes, and different symbols for different ages. Does It appear as If tallleng~ 
and snout to vent length might usefully discriminate the genders of snakes? The dIf
ferent ages of snakes? 

(b) Assuming multivariate normal data with a common cova~iance matrix, equal priors, 
and equal costs, classify the Concho Water Snakes accordmg to gender. Compute the 
estimated E(AER) using the holdout procedure. 
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(c) Repeat part (b) using age as the groups rather than gender. 

(d) Repeat part (b) using only snout to vent length to classify the snakes according to 
age. Compare the results with those in part (c). Can effective classification be 
achieved with only a single variable in this case? Explain. 

11.36. Refer to Example 11.17. Using logistic regression, refit the salmon data in Table 11.2 
with only the covariates freshwater growth and marine growth. Check for the signifi
cance of the model and the significance of each individual covariate. Set Cl = .05. Use 
the fitted function to classify each of the observations in Table 11.2 as Alaskan salmon or 
Canadian salmon using rule (11-77). Compute the apparent error rate, APER, and com
pare this error rate with the error rate from the linear classification function discussed in 
Example 11.8. 
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CLUSTERING, DISTANCE METHODS, 

AND ORDINATION 

12.1 Introduction 
Rudimentary, exploratory procedures are often quite helpful in understanding 
the complex nature of multivariate relationships. For example, throughout 
this book, we have emphasized the value of data plots. In this chapter, we shall dis
cuss some additional displays based on certain measures of distance and suggested 
step-by-step rules (algorithms) for grouping objects (variables or items). Searching 
the data for a structure of "natural" groupings is an important exploratory 
technique. Groupings can provide an informal means for assessing dimensionality, 
identifying outliers, and suggesting interesting hypotheses concerning relationships. 

Grouping, or clustering, is distinct from the classification methods discussed in 
the previous chapter. Classification pertains to a known number of groups, and the 
operational objective is to assign new observations to one of these groups. Cluster 
analysis is a more primitive technique in that no assumptions are made concerning 
the number of groups or the group structure. Grouping is done on the basis of simi
larities or distances (dissimilarities). The inputs required are similarity measures or 
data from which similarities can be computed. 

To illustrate the nature of the difficulty in defining a natural grouping, consider 
sorting the 16 face cards in an ordinary deck of playing cards into clusters of similar 
objects. Some groupings are illustrated in Figure 12.1. It is immediately clear that 
meaningful partitions depend on the definition of similar. 

In most practical applications of cluster analysis, the investigator knows enough 
about the problem to distinguish "good" groupings from "bad" groupings. Why not 
enumerate all possible groupings and select the "best" ones for further study? 

671 
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•••• AODDD 
KDDDD 
QDDDD 
JDDDD 

Ca) Individual cards 

•••• 
;00 

(c) Black and red suits 

Ce) Hearts plus queen ~f spades 
and other suits (hearts) 

•••• 
~DDDD 

(b) Individual suits 

(d) Major and minor suits (bridge) 

•• •• AI I 
K/ I 
QI I 
J I I 

Ct) Like face cards 

Figure 12.1 Grouping face cards. 

For the playing-card example, there is one way to form a single group of 
16 face cards, there are 32,767 ways to partition the face cards into two groups (of 
varying sizes), there are 7,141,686 ways to sort the face cards into three groups 
(of varying sizes), and so on.! Obviously, time constraints make it impossible to 
determine the best groupings of similar objects from a list of all possible struc
tures. Even fast computers are easily overwhelmed by the typically large number 
of cases, so one must settle for algorithms that search for good, but not necessarily 
the best, groupings. 

To summarize, the basic objective in cluster analysis is to discover natural 
groupings of the items (or variables). In turn, we must first develop a quantitative 
scale on which to measure the association (similarity) between objects. Section 12.2 
is devoted to a discussion of similarity measures. After that section, we describe a 
few of the more common algorithms for sorting objects into groups. 

1 The number of ways of sorting n objects into k nonempty groups is a Stirling number of the second 

kind given by (Ilk!) ± (_I)k-i(k)r. (See [1].) Adding these numbers for k = 1,2, ... , n groups, we 
j-O ] 

obtain the total number of possible ways to sort n objects into groups. 
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Even without the precise notion of a natural grouping, we are often able to 
group objects in two- or three-dimensional plots by eye. Stars and Chernoff faces, 
discussed in Section 1.4, have been used for this purpose. (See Examples 1.11 and 
1.12.) Additional procedures for depicting high-dimensional observations in two di
mensions such that similar objects are, in some sense, close to one another are con
sidered in Sections 12.5-12.7. 

12.2 Similarity Measures 
Most efforts to produce a rather simple group structure from a complex data set re
quire a measure of "closeness," or "similarity." There is often a great deal of subjec
tivity involved in the choice of a similarity measure. Important considerations 
include the nature of the variables (discrete, continuous, binary), scales of measure
ment (nominal, ordinal, interval, ratio), and subject matter knowledge. 

When items (units or cases) are clustered, proximity is usually indicated by 
some sort of distance. By contrast, variables are usually grouped on the basis of 
correlation coefficients or like measures of association. 

Distances and Similarity Coefficients for Pairs of Items 

We discussed the notion of distance in Chapter 1, Section 1.5. Recall that the 
Euclidean (straight-line) distance between two p-dimensional observations (items) 
x' = [Xl> Xz, ... , xp] and y' = [Yl>)Iz, ... , Yp] is, from (1-12), 

d(x,y) = V(x! - Yl)2 + (X2 - )Iz)2 + ... + (xp _ Yp)2 

= V(x - y)'(x - y) (12-1) 

The statistical distance between the same two observations is of the form [see (1-23)] 

d(x,y) = V(x - y)'A(x - y) (12-2) 

Ordinarily, A = S-J, where S contains the sample variances and covariances. 
However, without prior knowledge of the distinct groups, these sample quantities 
cannot be computed. For this reason, Euclidean distance is often preferred for 
clustering. 

Another distance measure is the Minkowski metric 

[ 

p ]!Im 
d(x,y) = ~ I Xi - Yil m (12-3) 

For m = 1, d(x,y) measures the "city-block" distance between two points in p 
dimensions. For m = 2, d(x, y) becomes the Euclidean distance. In general, varying 
m changes the weight given to larger and smaller differences. 
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Two additional popular measures of "distance" or dissimilarity are given by the 
Canberra metric and the Czekanowski coefficient. Both of these measures are 
defined for nonnegative variables only. We have 

Canberra metric: 

Czekanowski coefficient: 

d(x,y) = ± I Xi - y;j 
i=1 (Xi + y;) 

p 

2 ~ min(xi, Yi) 
i=I d(x, y) = 1 - -!.::p:'!-, ---

~ (Xi + Yi) 
i=1 

(12-4) 

(12-5) 

Whenever possible, it is advisable to use "true" distances-that is, distances satisfy
ing the distance properties of (1-25)-for clustering objects. On the other hand, 
most clustering algorithms will accept subjectively assigned distance numbers that 
may not satisfy, for example, the triangle inequality. 

When items cannot be represented by meaningful p-dimensional measure
ments, pairs of items are often compared on the basis of the presence or absence of 
certain characteristics. Similar items have more characteristics in common than do 
dissimilar items. The presence or absence of a characteristic can be described 
mathematically by introducing a binary variable, which assumes the value 1 if the 
characteristic is present and the value 0 if the characteristic is absent. For p = 5 
binary variables, for instance, the "scores" for two items i and k might be arranged as 
follows: 

Itemi 
Itemk 

1 

1 
1 

Variables 
2 3 4 

o 
1 

o 
o 

1 
1 

5 

1 
o 

In this case, there are two 1-1 matches, one 0-0 match, and two mismatches. 
Let Xij be the score (1 or 0) ofthe jth binary variable on the ith item and Xkj be the 

score (again, 1 or 0) of the jth variable on the kth item,} = 1,2, .. " p. Consequently, 

2 {o if Xij = Xkj = 1 or Xij = Xkj = 0 
(Xij - Xkj) = 1 if x .. *- Xk' 

I) ) 

(12-6) 

p 

and the squared Euc1idean distance, 2: (Xij - Xkj)2, provides a count of the number 
j=1 

of mismatches. A large distance corresponds to many mismatches-that is, dissimi-
lar items. From the preceding display, the square of the distance between items i and 
k would be 

5 2: (Xij - Xkj)2 = (1 - 1)2 + (0 - 1)2 + (0 - 0)2 + (1 - If + (1 - 0)2 
j=l 

=2 
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Although a distance based on (12-6) might be used to measure similarity, it suf
fers from weighting the 1-1 and 0-0 matches equally. In some cases, a 1-1 match is a 
strong~r indication of similarity than a 0-0 match. For instance, in grouping people, 
th~ eVIdence that two persons both read ancient Greek is stronger evidence of simi
lanty than the absence of this ability. Thus, it might be reasonable to discount the 
0-0 matches or even disregard them completely. To allow for differential treatment 
of the 1-1 matches and the 0-0 matches, several schemes for defining similarity co
efficients have been suggested. 

To introduce these schemes, let us arrange the frequencies of matches and mis
matches for items i and k in the form of a contingency table: 

Item k 
1 0 Totals 

Itemi 
1 a b a+b 
0 c d c+d 

(12-7) 

Totals a+c b+d p=a+b+c+d 

In this table, a represents the frequency of 1-1 matches, b is the frequency of 1-0 
matches, and so forth. Given the foregoing five pairs of binary outcomes, a = 2 and 
b=c=d=1. 
'. Table 12.1 lists com~on similarity coefficients defined in terms of the frequen
CIes In (12-7). A short rationale follows each definition. 

Table 12.1 Similarity Coefficients for Clustering Items* 

CoeffiCient Rationale 

l.a+d Equal weights for 1-1 matches and 0-0 matches. 
p 

2. 
2(a + d) 

2(a + d) + b + c 
Double weight for 1-1 matches and 0-0 matches. 

3. 
a+d 

Double weight for unmatched pairs. 
a + d + 2(b + c) 

4. ~ No 0-0 matches in numerator. 
p 

5. 
a 

No 0-0 matches in numerator or denominator. 
a+b+c (The 0-0 matches are treated as irrelevant.) 

6. 
2a 

No 0-0 matches in numerator or denominator. 
2a+b+c Double weight for 1-1 matches. 

7. 
a 

No 0-0 matches in numerator or denominator. 
a + 2(b + c) Double weight for unmatched pairs. 

8._a_ Ratio of matches to mismatches with 0-0 matches 
b+c excluded. 

• [p binary variables; see (12-7).] 
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Coefficients 1, 2, and 3 in the table are monotonically related. Suppose 
coefficient 1 is calculated for two contingency tables, Table I and Table 11. Then 
if (a, + d,)/p 2= (all + dll)/p, we also have 2(aI + dI)/[2\aI + dI) + bI + cd 
> 2 ( + d )/[2 ( + d ) + ~I + CII], and coefficient 3 Will be at least as large 
- an 11 all 11 ) ff· . 5 6 d 7 I 0 for Table I as it is for Table H. (See Exercise 12.4. Coe IClents , , an a s re-
tain their relative orders. 

M ··t . . portant because some clustering procedures are not affected onotomcl y IS Im , . d. 
if the definition of similarity is changed in a manner that leaves t~e relatlv~ or en~gs 

f . il ·t· changed The single linkage and complete hnkage hierarchical OSlmanlesun . h. 
rocedures discussed in Section 12.3 are not affected. For these meth~ds, an~ c. Oice 

~f the coefficients 1,2, and 3 in Table tu will produ~ ~he same ~oupmgs. Similarly, 
any choice of the coefficients 5,6, and 7 wiIJ yield identical groupmgs. 

Example 12.1 (Calculating the values ~f ~ similarity coefficient) Suppose five indi
viduals possess the following charactenstlcs: 

Eye Hair 
Height Weight color calor Handedness 

Individual 1 68in 140lb green blond right 
Individual 2 73 in 1851b brown brown right 
Individual 3 67 in 1651b blue blond right 
Individual 4 64 in 120lb brown brown right 
Individual 5 76 in 210lb brown brown left 

Define six binary variables Xl, X z, X 3 , X 4 , X s, X6 as 

= {I height:2!: 72 ~n. X
4 

= {I blond hair 
Xl 0 height < 72 tn. 0 not blond hair 

{I weight:2!: 150lb {I right handed 
Xz = 0 weight < 150lb Xs = 0 left handed 

1 brown eyes X = 
{ {

I female 
X3 = 0 otherwise 6 0 male 

The scores for individuals 1 and 2 on the p = 6 binary variables are 

Individual 1 
2 

o 
1 

o 
1 

o 
1 

1 
o 

1 
1 

1 
o 

Gender 

female 
male 
male 
female 
male 

and the number of matches and mismatches are indicated in the two-way array 

Individual 2 

1 0 Total 

1 1 2 3 
Individual 1 0 3 0 3 

----~--~~4--~2~--~6-
Totals 
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Employing similarity coefficient 1, which gives equal weight to matches, we 
compute 

a+d 1+0 1 
-.--=--=-

P 6 6 
Continuing with similarity coefficient 1, we calculate the remaining similarity 

numbers for pairs of individuals. These are displayed in the 5 X 5 symmetric 
matrix 

Individual 
1 2 3 4 5 

1 1 

2 1 

Individual 6 
4 3 6 

1 
3 
6 1 

4 4 
6 

3 Z 
6 6 

5 OCD~~1 
Based on the magnitudes of the similarity coefficient, we should conclude that 

individuals 2 and 5 are most similar and individuals 1 and 5 are least similar. Other 
pairs faH between these extremes. If we were to divide the individuals into two rela
tively homogeneous subgroups on the basis of the similarity numbers, we might 
form the subgroups (1 34) and (25). 

Note that X3 = 0 implies an absence of brown eyes, so that two people, one 
with blue eyes and one with green eyes, wilI yield a 0-0 match. Consequently, it may 
be inappropriate to use Similarity coefficient 1,2, or 3 because these coefficients give 
the same weights to 1-1 and 0-0 matches. _ 

We have described the construction of distances and similarities. It is always 
possible to construct similarities from distances. For example, we might set 

S;k = _1_ (12-8) 
1 + d ik 

where 0 < Sik $ 1 is the similarity between items i and k and d
ik 

is the corre
sponding distance. 

However, distances that must satisfy (1-25) cannot always be constructed from 
similarities. As Gower [11,)2] has shown, this can be done only if the matrix of sim
ilarities is nonnegative definite. With the nonnegative definite condition, and with 
the maximum similarity scaled so that Si; = 1, 

(12-9) 
has the properties of a distance. 

Similarities and Association Measures for Pairs of Variables 
Thus far, we have discussed similarity measures for items. In some applications, it is 
the variables, rather than the items, that must be grouped. Similarity measures for 
variables often take the form of sample correlation coefficients. Moreover, in some 
clustering applications, negative correlations are replaced by their absolute values. 
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When the variables are binary, the data can again be arranged in the form of a 
contingency table. This time, however, the variables, rather than the items, delineate the categories. For each pair of variables, there are n items categorized in the table. 
With the usual 0 and 1 coding, the table becomes as follows: 

Variablek 
1 0 Totals 

Variable i 
1 a b a+b 

(12-10) 0 e d e+d 

Totals a + e b+d n=a+b+e+d 

For instance, variable i equals 1 and variable k equals 0 for b of the n items. 
The usual product moment correlation formula applied to the binary variables 

in the contingency table of (12-10) gives (see Exercise 12.3) 

ad - be 
(12-11) r = [(a + b)(e + d)(a + e)(b + d)]Ij2 

This number can be taken as a measure of the similarity between the two variables. 
The correlation coefficient in (12-11) is related to the chi-square statistic 

(r2 = .Kin) for testing the independence of two categorical variables. For n fixed, a 
large similarity (or correlation) is consistent with the presence of dependence. 

Given the table in (12-10), measures of association (or similarity) exactly analo
gous to the ones listed in Table 12.1 can be developed. The only change required is 
the substitution of n (the number of items) for p (the number of variables). 

Concluding Comments on Similarity 
To summarize this section, we note that there are many ways to measure the simi
larity between pairs of objects. It appears that most practitioners use distances [see (12-1) through (12-5)] or the coefficients in Table 12.1 to cluster items and correla
tions to cluster variables. However, at times, inputs to clustering algorithms may be 
simple frequencies. 

Example 12.2 (Measuring the similarities of 11 languages) The meanings of words change with the course of history. However, the meaning of the numbers 1, 2, 3, ... 
represents one conspicuous exception. Thus, a first comparison of languages might be based on the numerals alone. Table 12.2 gives the first 10 numbers in English, Polish, Hungarian, and eight other modem European languages. (Only languages that use the Roman alphabet are considered, and accent marks, cedillas, diereses, 
etc., are omitted.) A cursory examination of the spelling of the numerals in the table suggests that the first five languages (English, Norwegian, Danish, Dutch, and Ger
man) are very much alike. French, Spanish, and Italian are in even closer agreement. Hungarian and Finnish seem to stand by themselves, and Polish has some of the 
characteristics of the languages in each of the larger subgroups. 679 
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Table 12.3 Concordant First Letters for Numbers in 11 Languages 

E N Da Du G Fr Sp I P H Fi 

E 10 
N 8 10 
Da 8 9 10 
Du 3 5 4 10 
G 4 6 5 5 10 
Fr 4 4 4 1 3 10 
Sp 4 4 5 1 3 8 10 
I 4 4 5 1 3 9 9 10 
P 3 3 4 0 2 5 7 6 10 
H 1 2 2 2 1 0 0 0 0 10 
Fi 1 1 1 1 1 1 1 1 1 2 10 

The words for 1 in French, Spanish, and Italian all begin with u. For illustrative 
purposes, we might compare languages by looking at the first letters of the numbers. 
We call the words for the same number in two different languages concordant if they 
have the same first letter and discordant if they do not. From Table 12.2, the table of 
concordances (frequencies of matching first initials) for the numbers 1-10 is given in 
Table 12.3: We see that English and Norwegian have the same first letter for 8 of the 
10 word pairs. The remaining frequencies were calculated in the same manner. 

The results in Table 12.3 confirm our initial visual impression of Table 12.2. That 
is, English, Norwegian, Danish, Dutch, and German seem to form a group. French, 
Spanish, Italian, and Polish might be grouped together, whereas Hungarian and 
Finnish appear to stand alone. _ 

In our examples so far, we have used our visual impression of similarity or dis
tance measures to form groups. We now discuss less subjective schemes for creating 
clusters. 

12.3 Hierarchical Clustering Methods 
We can rarely examiIJe all grouping possibilities, even with the largest and fastest 
computers. Because of this problem, a wide variety of clustering algorithms have 
emerged that find "reasonable" clusters without having to look at all configurations. 

Hierarchical clustering techniques proceed by either a series of successive 
mergers or a series of successive divisions. Agglomerative hierarchical methods start 
with the individual objects. Thus, there are initially as many clusters as objects. The 
most similar objects are first grouped, and these initial groups are merged according 
to their similarities. Eventually, as the similarity decreases, all subgroups are fused 
in to a single cluster. 

Divisive hierarchical methods work in the opposite direction. An initial single 
group of objects is divided into two subgroups such that the objects in one subgroup 
are "far from" the objects in the other. These subgroups are then further divided 
into dissimilar subgroups; the process continues until there are as many subgroups 
as objects-that is, until each object forms a group. 
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t: Th; results ~f bot~ agglo~erative and divisive methods may be displayed in the 
orm 0 a tW?-dImenslOnal dIagram known as a dendrogram. As we shall see the 

1e::f:.ogram illustrates the mergers or divisions that have been made. at succe~sive 

and I: th~ s~ction ~e shall concentrate on agglomerative hierarchical procedures 

h · ' h~ rtlIcular, lmkage methods. Excellent elementary discussions of divisive 
Ierarc Ica procedures and othe I . 

and [8]. r agg omerahve techniques are available in [3] . 

not ~::~~; ~~~OdS a~~ s~itable for cl~stering items, as well as variables. This is 
'. ~e~arc Ica. agglomerative procedures. We shall discuss, in turn 

szngle ~~nkage (mInImUm dIstance or nearest neighbor), complete linkage (maxi~ 
mum. Istance or farthest neighbor), and average linkage (average distance) The 

F~ergIng1202f clusters under the three linkage criteria is illustrated schematicaily in 
Igure .. 

cordf~;: t~: f~u;e, w\see that sin~le linkage results when groups are fused ac
e IS ance etween theIr nearest members. Complete linka e occurs 

;hen groups ~re fused according to the distance between their farthest !embers 
o~ avefrage hnka~e, groups are fused according to the average distance betwee~ 

paIrS 0 members In the respective sets. 

rith:;~ follow~ng Nare bt~e steps in the agglomerative hierarchical clustering algo
r groupIng 0 1ects (Items or variables): 

1. Start. with ~ clusters, each containing a single entity and an N X N symmetric 
matnx of dIs.tances (or similarities) D = {did. 

2. ~~~rch thbe dIstan~~ matri~ f?r the nearest (most similar) pair of clusters. Let the 
IS ance etween most sumlar" clusters U and V be duv . 

(c) 

Cluster distance 

d'3 + d'4 + d'5 + d 23 + d 24 + d 25 
6 

Figure 12.2 I.ntercluster distance (dissimilarity) for (a) single linkage (b) complete 
lInkage, and (c) average linkage. ' 
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3. Merge clusters U and V. Label the newly formed cluster (UV). Update the en
tries in the distance matrix by (a) deleting the rows and columns corresponding 
to clusters U and V and (b) adding a row and column giving the distances be
tween cluster (UV) and the remaining clusters. 

4. Repeat Steps 2 and 3 a total. of N - 1 times. (All objects will be in a single 
cluster after the algorithm terminates.) Record the identity of clusters that 
are merged and the levels (distances or similarities) at which the mergers take 
place. (12-12) 

The ideas behind any clustering procedure are probably best conveyed through 
examples, which we shall present after brief discussions of the input and algorithmic 
components of the linkage methods. 

Single Linkage 
The inputs to a single linkage algorithm can be distances or similarities between 
pairs of objects. Groups are formed from the individual entities by merging nearest 
neighbors, where the term nearest neighbor connotes the smallest distance or largest 

similarity. 
Initially, we must find the smallest distance in D = {did and merge the 

corresponding objects, say, U and V, to get the cluster (UV). For Step 3 of the general 
algorithm of (12-12), the distances between (UV) and any other cluster Ware 

computed by 

d(uv)w = min{duw,dvw } (12-13) 

Here the quantities duw and dvw are the distances between the nearest neighbors 
of clusters U and Wand clusters V and W, respectively. 

The results of single linkage clustering can be graphically displayed in the form 
of a dendrogram, or tree diagram. The branches in the tree represent clusters. The 
branches come together (merge) at nodes whose positions along a distance (or 
similarity) axis indicate the level at which the fusions occur. Dendrograms for some 
specific cases are considered in the following examples. 

Example 12.3 (Clustering using single linkage) To illustrate the single linkage 
algorithm, we consider the hypothetical distances between pairs of five objects as 

follows: 

Treating each object as a cluster, we commence clustering by merging the two 

closest items. Since 
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objects. 5 and 3 are merg~d to form the cluster (35). To implement the next level of 
clustenng, we need the dls.tances b~tween the cluster (35) and the remainin ob' ects 
1,2, and 4. The nearest nelghbor distances are g J ' 

d(3S)\ = min {d31> dsd = min {3, 11} = 3 

d(35)2 = min{d32 ,d52 } = min{7, 1O} = 7 

d(35)4 = min{d34 ,d54} = min{9, 8} = 8 

Deleting the rows and columns of D corresponding to objects 3 and 5, and addin a 
row and column for the cluster (35), we obtain the new distance matrix g 

(35) 

1 
2 

4 (f ~ ; J 
The smallest distance between pairs of clusters is now d - 3 d clu t (1) . h I ( '(35)1 - ,an we merge 

s er Wit c uster 35) to get the next cluster, (135). Calculating 

d(l35)2 = min {d(35)2' d12 } = min {7, 9} = 7 

d(135)4 = min {d(35)4' d\4} = min {8, 6} = 6 

we find that the distance matrix for the next level of clustering is 

(135) [(1~5) 2 4] 

2 7 0 

4 6 ~ 0 

The minir~1Um nearest neighbor distance between pairs of clusters is d = 5 and we 
merge ob~ects ~ and 2 to get the cluster (24). 42 , 

~t thIS POInt we have two distinct clusters (135) and (24) The' t' h 
bor distance is ,. Ir neares llelg -

d(135)(24) = min {d(I35)2, d(l35)4} = min{7,6} = 6 

The final distance matrix becomes 

(135) 

(24) 

(135) 

[® 
(24) 

o ] 
~~~~~;U(~~~~5)clus~ers (h135) and (24~ are me~ged to form a single cluster of all five 
J' ,w en ~ e nearest nelghbor distance reaches 6. 

F Th~ dendrogram p~cturing the hierarchical clustering just concluded is shown in 
'lllgure 2.3. The groupIngs and the distance levels at which they occur are clearly 
I ustrated by the dendrogram. • 

In typical. applications of hierarchical clustering, the intermediate results
:where the objects are sorted into a moderate number of clusters-are of chief 
Interest. 
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6 

o 
3 5 

Objects 

2 4 
Figure 12.3 Single linkage 
dendrogram for distances between 
five objects. 

Example 12.4 (Single linkage clustering of 11 languages) Consider the array of con-
cordances in Table 12.3 representing the closeness between the numbers 1-10 in 11 
languages. To develop a matrix of distances, we subtract the concordances from the 
perfect agreement figure of 10 that each language has with itself. The subsequent 
assignments of distances are 

E N Da Du G Fr Sp p H Fi 

E 0 
N 2 0 

Da 2 CD 0 

Du 7 5 6 0 

G 6 4 5 5 0 

Fr 6 6 6 9 7 0 

Sp 6 6 5 9 7 2 0 

I 6 6 5 9 7 CD CD 0 

P 7 7 6 10 8 5 3 4 0 

H 9 8 8 8 9 10 10 10 10 0 

Fi 9 9 9 9 9 9 9 9 9 8 0 

We first search for the minimum distance between pairs of languages (clusters). 
The minimum distance, 1, occurs between Danish and Norwegian, Italian and 
French, and Italian and Spanish. Numbering the languages in the order in which 
they appear across the top of the array, we have 

dB6 = 1; and dB7 = 1 

Since d
76 

= 2, we can merge only clusters 8 and 6 or clusters 8 and 7. We cannot 
merge clusters 6,7, and 8 at levell. We choose first to merge 6 and 8, and then to 
update the distance matrix and merge 2 and 3 to obtain the clusters (68) and (23). 
Subsequent computer calculations produce the dendrogram in Figure 12.4. 

From the dendrogram, we see that Norwegian and Danish, and also French and 
Italian, cluster at the minimum distance (maximum similarity) level. When the 
allowable distance is increased, English is added to the Norwegian-Danish group, 

10 

8 

8 6 
I§ 

is 4 

2 

0 
E N Da Fr Sp P Du G H Fi 

Languages 
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Figure 12.4 Single linkage 
dendrograms for distances 
between numbers in 11 languages. 

and Spanish merges with the French-Italian group. Notice that Hungarian and 
Finnish are more similar to each other than to the other clusters of languages. How
ever, these two clusters (languages) do not merge until the distance between nearest 
neighbors has increased substantially: Finally, all the clusters of languages are 
merged into a single cluster at the largest nearest neighbor distance, 9. • 

Since single linkage joins clusters by the shortest link between them, the tech
nique cannot discern poorly separated clusters. [See Figure 12.5(a).] On the other 
hand, single linkage is one of the few clustering methods that can delineate nonel
lipsoidal clusters. The tendency of single linkage to pick out long stringlike clusters 
is known as chaining. [See Figure 12.5(b).] Chaining can be misleading if items at 
opposite ends of the chain are, in fact, quite dissimilar. 

Variable 2 

• • :. Elliptical 
:.:~. configurations 

:.:.\~ .. 
=s:::;~ -.-:.

'------=-----Variable I 

(a) Single linkage confused by near overlap 

Variable 2 

Nonelliptical 

'~-...... ' configurations 
I " ,-" 
\ --- I 
" I 

, I 
...... _-----" 

t...,...---------Variable I 

(b) Chaining effect 

Figure 12.5 Single linkage clusters. 

The clusters formed by the single linkage method will be unchanged by any as
signment of distance (similarity) that gives the same relative orderings as the initial 
distances (similarities). In particular, anyone of a set of similarity coefficients from 
Table 12.1 that are monotonic to one another will produce the same clustering. 

Complete linkage 

Complete linkage clustering proceeds in much the same manner as single linkage 
clusterings, with one important exception: At each stage, the distance (similarity) 
between clusters is determined by the distance (similarity) between the two 
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elements, one from each cluster, that are most distant. Thus, complete linkage 
ensures that all items in a cluster are within some maximum distance (or minimum 
similarity) of each other. 

The general agglomerative algorithm again starts by finding the minimum entry 
in D = {d; k} and merging the corresponding objects, such as U and V, to get cluster 
(UV). For Step 3 of the general algorithm in (12-12), the distances between (UV) 
and any other cluster Ware computed by 

d(uv)w = max{duw,dvw } (12-14) 

Here duw and dvw are the distances between the most distant members of clusters 
U and Wand clusters Vand W, respectively. 

Example 12.5 (Clustering using complete linkage) Let us return to the distance 
matrix introduced in Example 12.3: 

1 2 3 4 5 

1 [/ I ~ ~ J 
At the first stage, objects 3 and 5 are merged, since they are most similar. This gives 

. the cluster (35).At stage 2, we compute 

d(35)1 = max{d3b d 51 } = max{3, ll} = 11 

d(35)2 = max{d32 ,ds2 } = 10 

d(35)4 = max{d34 ,d54 } = 9 

and the modified distance matrix becomes 

The next merger occurs between the most similar groups, 2 and 4, to give the cluster 
(24). At stage 3, we have 

d(24)(35) = max{d2(35),d4(35)} = max{1O,9} = 10 

d(24)1 = max {d21 , d 41 } = 9 

and the distance matrix 

(35) 
(24) 

1 

(24) 1 

® J 

10 
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Figure 12.6 Complete linkage 
dendrogram for distances between 
five objects. 

The next merger produces the cluster (124). At the final slage, the groups (35) and 
(124) ar~ merged as the single cluster (12345) at level 

d(124)(35) = max {d1(35), d(24)(35)} = max {ll, 1O} = 11 

The dendrogram is given in Figure 12.6. • 

Comparing Figures 12.3 and 12.6, we see that the dendrograms for single link
age and complete linkage differ in the allocation of object 1 to previous groups. 

Example 12.6 (Complete linkage clustering of 11 languages) In Example 12.4, we 
presented a distance matrix for numbers in 11 languages. The complete linkage clus
tering algorithm applied to this distance matrix produces the dendrogram shown in 
Figure 12.7. 

Comparing Figures 12.7 and 12.4, we see that both hierarchi~ methods yield the 
English-Norwegian-Danish and the French-Italian-Spanish language groups. Polish is 
merged with French-Italian-Spanish at an intermediate level. In addition, both meth
ods merge Hungarian and Finnish only at the penultimate stage. 

Howeller, the two methods handle German and Dutch differently. Single link
age merges German and Dutch at an intermediate distance, and these two lan
guages remain a cluster until the final merger. Complete linkage merges German 

E N Da G FT Sp 

Languages 

p Du H Fi Figure 12~7 Complete linkage 
dendrogram for distances between 
numbers in 11 languages. 
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with the English-Norwegian-Danish group at an intermediate level. Dutch remains 
a cluster by itself until it is merged with the English-Norwegian-Danish-German 
and French-Italian-Spanish-Polish groups at a higher distance level. The final com
plete linkage merger involves two clusters. The final merger in single linkage in
volves three clusters. _ 

Example 12.7 (Clustering variables using complete linkage) Data collected on 22 
U.S. public utility companies for the year 1975 are listed in Table 12.4. Although it is 
more interesting to group companies, we shall see here hQw the complete linkage al
gorithm can be used to cluster variables. We measure the similarity between pairs of 

Table 12.4 Public Utility Data (1975) 

Variables 

Company Xl X 2 X3 X 4 X5 X6 X 7 Xs 

1. Arizona Public Service 1.06 9.2 151 54.4 l.6 9077 o. .628 
2. Boston Edison Co. .89 10.3 202 57.9 2.2 5088 25.3 1.555 
3. Central Louisiana Electric Co. 1.43 15.4 113 53.0 3.4 9212 o. 1.058 
4. Commonwealth Edison Co. 1.02 11.2 168 56.0 . 3 6423 34.3 .700 
5. Consolidated Edison Co. (N.Y.) 1.49 8.8 192 51.2 1.0 3300 15.6 2.044 
6. Florida Power & Light Co. 1.32 13.5 111 60.0 -2.2 11127 22.5 1.241 
7. Hawaiian Electric Co. 1.22 12.2 175 67.6 2.2 7642 o. 1.652 
8. Idaho Power Co. LlO 9.2 245 57.0 3.3 13082 o. .309 
9. Kentucky Utilities Co. 1.34 13.0 168 60.4 7.2 8406 o. .862 

10. Madison Gas & Electric Co. 1.12 12.4 197 53.0 2.7 6455 39.2 .623 
11. Nevada Power Co. .75 7.5 173 51.5 6.5 17441 O. .768 
12. New England Electric Co. 1.13 10.9 178 62.0 3.7 6154 o. 1.897 
13. Northern States Power Co. Ll5 12.7 199 53.7 6.4 7179 50.2 .527 
14. Oklahoma Gas & Electric Co. 1.09 12.0 96 49.8 1.4 9673 o. .588 
15. Pacific Gas & Electric Co. .96 7.6 164 62.2 -0.1 6468 .9 1.400 
16. Puget Sound Power & Light Co. 1.16 9.9 252 56.0 9.2 15991 o. .620 
17. San Diego Gas & Electric Co. .76 6.4 136 61.9 9.0 5714 8.3 1.920 
18. TIle Southern Co. l.05 12.6 150 56.7 2.7 10140 O. 1.108 
19. Texas Utilities Co. Ll6 11.7 104 54.0 -2.1 13507 O. .636 
20. Wisconsin Electric Power Co. 1.20 11.8 148 59.9 3.5 7287 41.1 .702 
21. United Illuminating Co. 1.04 8.6 204 61.0 3.5 6650 o. 2.116 
22. Virginia Electric & Power Co. 1.07 9.3 174 54.3 5.9 10093 26.6 1.306 

KEY: XI: Fixed-charge coverage ratio (income/debt). 
X 2: Rate of return on capital. 
X3: Cost per KW capacity in place. 
X 4: Annual load factor. 
Xs: PeakkWh demand growth from 1974 to 1975. 
X6: Sales (kWh use per year). 
X7 : Percent nuclear. 
X8: Total fuel costs (cents per kWh). 

Source: Data courtesy of H. E. Thompson. 

Hierarchical Clustering Methods 689 

Table 12.5 Correlations Between Pairs of Variables (Public Utility Data) 

Xl X z X3 X 4 X5 X6 .X7 Xs 
1.000 
.643 

-.103 
-.082 
-.259 
-.152 

.045 
-.013 

1.000 
-.348 
-.086 
-.260 
-.010 

.211 
-.328 

1.000 
.100 
.435 
.028 
.115 
.005 

1.000 
.034 1.000 

-.288 .176 1.000 
-.164 -.019 -.374 1.000 

.486 -.007 -.561 -.185 1.000 

v~ria~les by the product-moment correlation coefficient. The correlation matrix is 
given m Table 12.5. 

When ~he sample .correlations are used as similarity measures, variables with 
~~rge negatlv~ correlatIOns are regarded as very dissimilar; variables with large pos
Itive cor~elatIOns are regarded as very similar. In this case, the "distance" between 
~lusters IS measured as the .smallest sim~larity between members of the correspond
m.g cl~sters. The complete lmkage algonthm, applied to the foregoing similarity ma
tnx, Yields the dendrogram in Figure 12.8 . 

. We see ~hat variables 1 and 2 (fixed-charge coverage ratio and rate of return on 
capital), vanable~ 4 and 8 (an~ual. load factor and total fuel costs), and variables 3 
and 5 (cost per kilowatt capacity m place and peak kiIowatthour demand growth) 
clust~r at intermediate "sin:ilarity:' levels. Variables 7 (percent nuclear) and 6 (sales) 
remam by themselves untIl the fmal stages. The final merger brings together the 
(12478) group and the (356) group. _ 

As in ~ingle lin~age, a "ne~" ~~sign.ment of distances (similarities) that have the 
same relatIve ordenngs as the mltlal dIstances will not change the configuration of 
the complete linkage clusters. 
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Average Linkage 
Average linkage treats the distance between two clusters as the average distance 
between all pairs of items where one member of a pair belongs to each cluster. Again, the input to the average linkage algorithm may be distances or similari
ties, and the method can be used to group objects or variables. The average linkage 
algorithm proceeds in the manner of the general algorithm of (12-12). We begin by 
searching the distance matrix D = {did to find the nearest (most similar) objectsfor example, U and V. These objects are merged to form the cluster (UV). For Step 
3 of the general agglomerative algorithm, the distances between (UV) and the other 
cluster Ware determined by 

d(uv)w = (12-15) 

where d;k is the distance between object i in the cluster (UV) and object k in the cluster W, and N(u
v ) and Nw are the number of items in clusters (UV) and W, 

respectively. 

Example 12.8 (Average linkage clustering of 11 languages) The average linkage algorithm was applied to the "distances" between 11 languages given in Example 12.4. 
The resulting dendrogram is displayed in Figure 12.9. 
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Figure 12.9 Average linkage 
dendrogram for distances between 
numbers in 11 languages. 

A comparison of the dendrogram in Figure 12.9 with the corresponding single 
linkage dendrogram (Figure 12.4) and complete linkage dendrogram (Figure 12.7) indicates that average linkage yields a configuration very much like the complete 
linkage configuration. However, because distance is defined differently for each 
case, it is not surprising that mergers take place at different levels. -

Example 12.9 (Average linkage clustering of public utilities) An average linkage 
algorithm applied to the Euclidean distances between 22 public utilities (see 
Table 12.6) produced the dendrogram in Figure 12.10 on page 692. 
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Figure 12.10 Average linkage dendrogram for distances between 22 public utility 
companies. 

Concentrating on the intermediate clusters, we see that the utility companies 
tend to group according to geographical location. For example, one intermediate 
cluster contains the firms 1 (Arizona Public Service), 18 (The Southern Company
primarily Georgia and Alabama), 19 (Texas Utilities Company), and 14 (Oklahoma 
Gas and Electric Company). There are some exceptions. The cluster (7, 12,21, 15,2) 
contains firms on the eastern seaboard and in the far west. On the other hand, all 
these firms are located near the coasts. Notice that Consolidated Edison Company 
of New York and San Diego Gas and Electric Company stand by themselves until 
the final amalgamation stages. 

It is, perhaps, not surprising that utility firms with similar locations (or types ~f 
locations) cluster. One would expect regulated firms in the same area to use, baSI
cally, the same type of fuel(s) for power plants and face common markets. C~nse
quently, types of generation, costs, growth rates, and so forth should be. relatI~ely 
homogeneous among these firms. This is apparently reflected in the hierarchIcal 

clustering. • 

For average linkage clustering, changes in the assignment of distances (similari
ties) can affect the arrangement of the final configuration of clusters, even though 
the changes preserve relative orderings. 

Ward's Hierarchical Clustering Method 

Ward [32] considered hierarchical clustering procedures based on minimizing ihe 
'loss of information' from joining two groups. This method is usually implemented 
with loss of information taken to be an increase in an error sum of squares criterion, 
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ESS. First, for a given cluster k, let ESSk be the sum of the squared deviations of 
every item in the cluster from the cluster mean (centroid). If there are currently K 
clusters, define ESS as the sum of the ESSk or ESS = ESS1 + ESSz + ... + ESS K' 

At each step in the analysis, the union of every possible pair of clusters is considered, 
and the two clusters whose combination results in the smallest increase in ESS (min
imum loss of information) are joined. Initially, each cluster consists of a single item, 
and, if there are N items, ESSk = 0, k = 1,2, ... , N, so ESS = O. At the other ex
treme, when all the clusters are combined in a single group of N items, the value of 
ESS is given by 

N 

ESS = ~ (Xj - i)'(xj - i) 
j=l 

where Xj is the multivariate measurement associated with the jth item and i is the 
mean of all the items. 

The results of Ward's method can be displayed as a dendrogram. The vertical 
axis gives the values of ESS at which the mergers occur. 

Ward's method is based on the notion that the clusters of multivariate observa~ 
tions are expected to be roughly elliptically shaped. It is a hierarchical precursor to 
nonhierarchical clustering methods that optimize some criterion for dividing data 
into a given number of elliptical groups. We discuss nonhierarchical clustering pro
cedures in the next section. Additional discussion of optimization methods of cluster 
analysis is contained in [8]. 

Example 12.10 (Clustering pure malt scotch whiskies) Virtually all the world's pure 
malt Scotch whiskies are produced in Scotland. In one study (see [22]),68 binary 
variables were created measuring characteristics of Scotch whiskey that can be 
broadly classified as col or, nose, body, palate, and finish. For example, there were 
14 color characteristics (descriptions), including white wine, yellOW, very pale, pale, 
bronze,full amber, red, and so forth. LaPointe and Legendre clustered 109 pure malt 
Scotch whiskies, each from a different distillery. The investigators were interested in 
determining the major types of single-malt whiskies, their chief characteristics, and 
the best representative. In addition, they wanted to know whether the groups pro
duced by the hierarchical clustering procedure corresponded to different geograph
ical regions, since it is known that whiskies are affected by local soil, temperature, 
and water conditions. 

Weighted similarity coefficients {sid were created from binary variables repre
senting the presence or absence of characteristics. The resulting "distances," defined 
as {dik = 1 - Sik}, were used with Ward's method to group the 109 pure (single-) 
malt Scotch whiskies. The resulting dendrogram is shown in Figure 12.11. (An aver
age linkage procedure applied to a similarity matrix produced almost exactly the 
same classification.) 

The groups labelled A-L in the figure are the 12 groups of similar Scotches 
identified by the investigators. A follow-up analysis suggested that these 12 
groups have a large geographic component in the sense that Scotches with similar 
characteristics tend to be produced by distilleries that are located reasonably 
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Figure 12.11 A dendrogram for similarities between 109 pure malt Scotch 
whiskies. 

close to one another. Consequently, tl).e investigators concluded, "The relati.onshi~ 
with geographic features was demonstrated, supporting. ~he hypothesIs tha 
whiskies are affected not only by distillery secrets and traditions but also by fac
tors dependent on region such as water, soil, microclimate, temperature and even 

I· " • air qua Ity. 
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Final Comments-Hierarchical Procedures 

There are many agglomerative hierarchical clustering procedures besides single 
linkage, complete linkage, and average linkage. However. all the agglomerative pro
cedures follow the basic algorithm of (12-12). 

As with most Clustering methods, sources of error and variation are not formal
ly considered in hierarchical procedures. This means that a Clusterfng method will be 
sensitive to outliers, or "noise points." 

In hierarchical clustering, there is no provision for a reallocation of objects that 
may have been "incorrectly" grouped at an early stage. Co'nsequently, the final 
configuration of Clusters should always be carefully examined to see whether it is 
sensible. 

For a particular problem, it is a good idea to try several clustering methods and, 
within a given method, a couple different ways of assigning distances (similarities). 
If the outcomes from the several methods are (roughly) consistent with one anoth
er, perhaps a case for "natural" groupings can be advanced. 

The stability of a hierarchical solution can sometimes be checked by applying 
the Clustering algorithm before and after small errors (perturbations) have been 
added to the data units. If the groups are fairly well distinguished, the clusterings 
before perturbation and after perturbation should agree. 

Common values (ties) in the similarity or distance matrix can produce multi
ple solutions to a hierarchical clustering problem. That is, the dendrograms corre
sponding to different treatments of the tied similarities (distances) can be 
different, particularly at the lower levels. This is not an inherent problem of any 
method; rather, multiple solutions occur for certain kinds of data. Multiple solu
tions are not necessarily bad, but the user needs to know of their existence so that 
the groupings (dendrograms) can be properly interpreted and different groupings 
(dendrograms) compared to assess their overlap. A further discussion of this issue 
appears in [27]. 

Some data sets and hierarchical clustering methods can produce inversions. 
(See [27].) An inversion occurs when an object joins an existing cluster at a smaller 
distance (greater similarity) than that of a previous consolidation. An inversion is 
represented two different ways in the following diagram: 
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In this example, the clustering method joins A and B at distance 20. At the next 
step, C is added to the group (AB) at distance 32. Because of the nature of the clus
tering algorithm, D is added to group (ABC) at distance 30, a smaller distance than 
the distance at which C joined (AB). In (i) the inversion is indicated by a dendro
gram with crossover. In (ii), the inversion is indicated by a dendrogram with a non
monotonic scale. 

Inversions can occur when there is no clear cluster structure and are generally 
associated with two hierarchical clustering algorithms known as the centroid 
method and the median method. The hierarchical procedures discussed in this book 
are not prone to inversions. 

12.4 Nonhierarchical Clustering Methods 
Nonhierarchical clustering techniques are designed to group items, rather than vari
ables, into a collection of K clusters. The number of clusters, K, may either be speci
fied in advance or determined as part of the clustering procedure. Because a matrix 
of distances (similarities) does not have to be determined, and the basic data do not 
have to be stored during the computer run, nonhierarchical methods can be applied 
to much larger data sets than can hierarchical techniques. 

Nonhierarchical methods start from either (1) an initial partition of items into 
groups or (2) an initial set of seed points, which will form the ~uclei of clusters. 
Good choices for starting configurations should be free of overt bIases. One way to 
start is to randomly select seed points from among the items or to randomly parti
tion the items into initial groups. 

In this section, we discuss one of the more popular nonhierarchical procedures, 
the K-means method. 

K-means Method 

MacQueen [25] suggests the term K-means for describing an algorithm of his that 
assigns each item to the cluster having the nearest centroid (mean). In its simplest 
version, the process is composed of these three steps: 

1. Partition the items into K initial clusters. 

2. Proceed through the list of items, assigning an item to the cluster whose centroid 
(meall) is nearest. (Distance is usually computed using Euclidean distance with 
either standardized or unstandardized observations.) Recalculate the centroid 
for the cluster receiving the new item and for the cluster losing the item. . 

3. Repeat Step 2 until no more reassignments take place. (12-16) 

R~ther than starting with a partition of all items into K preliminary groups 
in Step 1, we could specify K initial centroids (seed points) and then proceed to 
Step 2. 

The final assignment of items to clusters will be, to some extent, dependent 
upon the initial partition or the initial selection of seed points. Experience suggests 
that most major changes in assignment occur with the first reallocation step. 
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Ex~mple 12.11 (Clustering using the IC-means method) Suppose we measure two 
vanables XI and X2 for each of four items A, B, C, and D. The data are given in the 
following table: 

Observations 

Item XI X2 

A 5 3 
B -1 1 
C 1 -2 
D -3 -2 

The objective is to divide these items into K = 2 clusters such that the 
items within a cluster are closer to one another than they are to the items in 
different clusters. To implement the K = 2-means method, we arbitrarily parti
tio~ the ite:ns ~nto two clusters, such as (AB) and (CD), and compute the co
ordmates (XI, X2) of the cluster centroid (mean). Thus, at Step 1, we have 

Coordinates of centroid 
Cluster 

(AB) _5_+--'.-( -_1-,-) = 2 
2 

3 + 1 
--=2 

2 

(CD) _1 _+-.:.(_-3-.:.) = -1 
. 2 

-2 + (-2) 
--2-'----'- = - 2 

A~ Step 2, we ~ompute. the EUclidean distance of each item from the group 
centrolds and reassIgn each Item to the nearest group. If an item is moved from the 
initial configuration, the cluster centroids (means) must be updated before proceed
ing. The ith coordinate, i = 1,2, ... , p, of the centroid is easily updated using the 
formulas: 

nXi + Xji 
Xi,new = n + 1 

nXi - Xji 

Xi,new = n - 1 

if the jth item is added to a group 

if the jth item is removed from a group 

Here n is ,the num?:~ of items in the "old" group with centroid X' = (x), x2, , .. , x
p

). 

ConSIder the I11ltial clusters (AB) and (CD). The coordinates of the centroids are 
(2,2) and (-1, -2) respectively. Suppose item A.with coordinates (5,3) is moved to 
the (CD) group. The new groups are (B) and (ACD) with updated centroids: 

_ 2(2) -5 _ 2(2)-3 . 
Group (B) XI, new = 2 _ 1 = -1 X2. new = 2 _ 1 = 1, the coordinates of B 

_ 2( -1) + 5 
Group (ACD) XI, new = 2 + 1 = 1 

_ 2(-2) +3 
xZ,new = 2 + 1 = -.33 
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Returning to the initial groupings in Step 1, we compute the squared distances 

d 2(A,(AB» = (5 - 2f + (3 - 2)2 = 10 if A is not moved 

d 2(A,(CD» = (5 + If + (3 + 2)2 = 61 

d 2(A,(B» = (5 + 1)2 + (3 - If = 40 if A is moved to the (CD) grou;J 

d2 (A,(ACD» = (5 - 1)2 + (3 + .33? = 27.09 

Since A is closer to the center of (AB) than it is to the center of (ACD), it is not 

reassigned. 
Continuing, we consider reassigning B. We get 

d2(B,(AB» = (-1 - 2)2 + (1 - 2)2 = 10 ifB is not moved 
d2(B,(CD» = (-1 + 1)2 + (1 + 2)2 = it 

d2(B,(A») = (-1-5)2 + (1 - 3f = 40 if B is moved to the (CD) group 

d2 (B,(BCD» = (-1 + 1)2 + (1 + If = 4 

Since B is closer to the center of (BCD) than it is to the center of (AB!, B is rea~
signed to the (CD) group. We now have the dusters (A) and (BCD) wlth centrOJd 
coordinates (5,3) and (-1, ~ 1) respectively. 

We check C for reassignment. 

d 2(C,(A» = (1 - 5)2 + (-2 - 3)2 = 41 ifCis not moved 
d2 (C,(BCD» = (1 + 1)2 + (-2 + 1)2 = 5 

dZCC,(AC» = (1- 3)2 + (-2 - .5)2 = 10.25 ifCismoved to the (A) group 

d 2(C,(BD» = (1 + 2)2 + (-2 + .5)2 = 11.25 

Since C is closer to the center of the BCD group than it is to the center o.f the AC 
group, C is not moved. Continuing in this way, we find that no more re assignments 
take place and the final K = 2 clusters are (A) and (BCD). 

For the final clusters, we have 

Squared distances to 
group centroids 

Item 

Cluster A B C D 

A 0 40 41 89 

(BCD) 52 4 5 5 

The within cluster sum of squares (sum of squared distances to centroid) are 

Cluster A: 0 
Cluster (BCD): 4 + 5 + 5 = 14 

Equivalently, we can determine the K = 2 clusters by using the criterion 

min E = L d7.c(i) 
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where the minimum is over the number of K = 2 clusters and dt,c(i) is the squared 
distance of case i from the centroid (mean) of the assigned cluster. 

In this example, there are seven possibilities for K = 2 clusters: 

A, (BCD) 

B, (ACD) 

C, (ABD) 

D, (ABC) 

(AB), (CD) 

(AC), (BD) 
(AD), (BC) 

For the A, (BCD) pair: 

A d~,c(A) = 0 

(BCD) dic(B) + d~.c(c) + db,c(D) = 4 + 5 + 5 = 14 

Consequently, Ldt,c(i) = 0 + 14 = 14 

For the remaining pairs, you may verify that 

B,(ACD) Ld7,c(i) = 48.7 

C, (ABD) LdT,c(i) = 27.7 

D, (ABC) LdT,c(i) = 31.3 

(AB), (CD) Ld2 
(") = 28 t, Cl 

(AC), (BD) Ld2 Cl = 27 t,e l 

(AD), (BC) LdT,c(i) = 51.3 

Since the smallest 2. dr, c(i) occurs for the pair of clusters (A) and (BCD), this is the 

final partition. • 
To check the stability of the clustering, it is desirable to rerun the algorithm with 

a new initial partition. Once clusters are determined, intuitions concerning their in
terpretations are aided by rearranging the list of items so that those in the first clus
ter appear first, those in the second cluster appear next, and so forth. A table of the 
cluster centroids (II?eans) and within-cluster variances also helps to delineate group 
differences. 

Example 12.12 (K-means clustering of public utilities) Let us return to the problem 
of clustering public utilities using the data in Table 12.4. The K-means algorithm for 
several choices of K was run. We present a summary of the results for K = 4 and 
K = 5. In general, the choice of a particular K is not clear cut and depends upon 
subject-matter knowledge, as well as data-based appraisals. (Data-based appraisals 
might include choosing K so as to maximize the between-cluster variability relative 
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K = 4 

Cluster 

1 

2 

3 

4 

K = 5 

Cluster 

1 

2 

3 

4 

5 

to the within-cluster variability. Relevant measures might include I will B + W I 
[see (6-38)] and tr(W-1B).) The summary is as follows: 

Number of 
firms 

5 

6 

5 

6 

Number of 
firms 

5 

6 

5 

2 

4 

Firms 

{
Idaho Power Co, (8), Nevada Power Co. (11), Puget 
Sound PoweL& Light Co. (16), Virginia Electric & 
Power Co. (22), Kentucky Utilities Co. (9). 

{
Central Louisiana Electric Co. (3), Oklahoma Gas & Electric 
Co. (14), The Southern Co. (18), Texas Utilities. Co. (19), 
Arizona Public Service (1), Florida Power & Light Co. (6). 

{
New England Electric Co. (12), Pacific Gas & Electric 
Co. (15), San Diego Gas & Electric Co. (17), 
United Illuminating Co. (21), Hawaiian Electric Co. (7). 

{

Consolidated Edison Co. (N.Y.) (5), Boston Edison Co. 
(2), Madison Gas & Electric Co. (10), Northern States 
Power Co. (13), Wisconsin Electric Power Co. 
(20), Commonwealth Edison Co. (4). 

Distances between Cluster Centers 

1 2 3 4 

~ l3'~8 0 l' 3 3.29 3.56 0 
4 3.05 2.84 3.18 0 

Firms 

{

Nevada Power Co. (11), Puget Sound Power & Light 
Co. (16), Idaho Power Co. (8), Virginia Electric & Power Co. 
(22), Kentucky Utilities Co. (9). 

{

Central Louisiana Electric Co. (3), Texas Utilities Co. (19), 
Oklahoma Gas & Electric Co. (14), The Southern Co. 
(18), AriZona Public Service (1), Florida Power & Light Co. (6). 

{

New England Electric Co. (12), Pacific Gas & Electric 
Co. (15), San Diego Gas & Electric Co. (17), United 
Illuminating Co. (21), Hawaiian Electric Co. (7). 

{
Consolidated Edison Co. (N.Y.) (5), Boston 
Edison Co. (2) . 

{
Commonwealth Edison Co. (4), Madison Gas & Electric Co. (10), 
Northern States Power Co. (13), WISconsin Electric Power Co. (20). 
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Distances between Cluster Centers 

1 2 3 4 5 
1 

[3~ J 
2 0 
3 3.29 3.56 0 
4 3.63 3.46 2.63 0 
5 3.18 2.99 3.81 2.89 

The cluster profiles (K = 5) shown in Figure 12.12 order the eight variables 
according to the ratios of their between-cluster variability to their within-cluster 
variability. [For univariate F-ratios, see Section 6.4.] We have 

mean square percent nuclear between clusters 3.335 
Fnuc = . . = -- = 13.1 mean square percent nuclear WIthIn clusters .255 

so firms within different clusters are widely separated with respect to percent nu
clear, but firms within the same cluster show little percent nuclear variation. Fuel 
costs (FUELC) and annual sales (SALES) also seem to be of some importance in 
distinguishing the clusters. 

Reviewing the firms in the five clusters, it is apparent that the K-means method 
gives results generally consistent with the average linkage hierarchical method. (See 
Example 12.9.) Firms with common or compatible geographical locations cluster. 
Also, the firms in a given cluster seem to be roughly the same in terms of percent 
nuclear. '. 

We must caution, as we have throughout the book, that .the importance of 
individual variables in clustering must be judged from a multivariate perspective. 
All of the variables (muItivariate observations) determine the cluster means and 
the reassignment of items. In addition, the values of the descriptive statistics 
measuring the importance of individual variables are functions of the number of 
clusters and the final configuration of the clusters. On the other hand, descriptive 
measures can be helpful, after the fact, in assessing the "success" of the clustering 
procedure. 

Final Comments-Nonhierarchical Procedures 

There are strong arguments for not fixing the number of clusters, K, in advance, 
including the following: 

1. If two or more seed points inadvertently lie within a single cluster, their resulting 
clusters will be poorly differentiated. 
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2. The existence of an outlier might produce at least one group with very disperse 
items. 

3. Even if the population is known to consist of K groups, the sampling method 
may be such that data from the rarest group do not appear in the sample. Forc
ing the data into K groups would lead to nonsensical clusters. 

In cases in which a single run of the algorithm requires the user to specify K, it 
is always a good idea to rerun the algorithm for several choices. 

Discussions of other nonhierarchical clustering procedures are available in [3], 
[8], and [16]. 

12.5 Clustering Based on Statistical Models 
The popular clustering methods discussed earlier in this chapter, including single 
linkage, complete linkage, average linkage, Ward's method and K-means cluster
ing, are intuitively reasonable procedures but that is as much as we can say with
out having a model to explain how the observations were produced. Major 
advances in clustering methods have been made through the introduction of sta
tistical models that indicate how the collection of (p x 1) measurements Xj' from 
the N objects, was generated. The most common model is one where cluster k has 
expected proportion Pk of the objects and the corresponding measurements are 
generated by a probability density function A(x). Then, if there are K clusters, the 
observation vector for a single object is modeled as arising from the mixing distri
bution 

where each Pk 2:: 0 and 2::=1 Pk = 1. This distribution fMix(X) is called a mixture of 
the K distributions fl(X), h(x), ... , fK(x) because the observation is generated 
from the component distribution fk(X) with probability Pk. The collection of N ob
servation vectors generated from this distribution will be a mixture of observations 
from the component distributions. 

The most common mixture model is a mixture of multivariate normal distribu
tions where the k-th component fk(X) is the Np(P.h :Ik ) density function. 

The normal mixture model for one observation x is 

(12-17) 

Clusters generated by this model are ellipsoidal in shape with the heaviest concen
tration of observations near the center. 
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Inferences are based on the likelihood, which for N objects and a fixed number 
of clusters K, is 

N 

L(pl> ... , PK, iLl> II> ... , iLk> I K) = IT fMix(Xj I iLl> IJ, ... , iLK, I K) 
j-I 

where the proportions PI> ... , Ph the mean vectors iLl; ... , ILk> and the covariance 
matrices :IJ> ... ,:Ik are unknown. The measurements for different objects are 
treated as independent and identically distributed observations from the mixture. 
distribution. 

There are typically far too many unknown parameters for parameters for mak
ing inferences when the number of objects to be clustered is at least moderate. 
However, certain conclusions can be made regarding situations where a heuristic 
clustering method should work well. In particular, the likelihood based procedure 
under the normal mixture model with all :Ik the same multiple of the identity 
matrix, 7)1, is approximately the same as K-means clustering and Ward's method. 
To date, no statistical models have been advanced for which the cluster formation 
procedure is approximately the same as single linkage, complete linkage or average 
linkage. 

Most importantly, under the sequence of mixture models (12-17) for different 
K, the problems of choosing the number of clusters and choosing an appropriate 
clustering method has been reduced to the problem of selecting an appropriate sta
tistical model. This is a major advance. 

A good approach to s~lecting a mopel is to fir:st obtain the maximum likelihood 
estimates PI> ... , PK, ill> :II, ... , ilK,:IK for a fixed number of clusters K. These es
timates must be obtained numerically using special purpose software. The resulting 
value of the maximum of the likelihood 

Lmax = L(pJ, . .. , PK, ill, IJ, ... ,ilK, I K) 

provides the basis for model selection. How do we decide on a reasonable value for 
the number of clusters K? In order to compare models with different numbers 
of parameters, a penalty is subtracted from twice the maximized value of the 
log-likelihood to give 

-2 In Lmax - Penalty 

where the penalty depends on the number of parameters estimated and the number 
of observations N. Since the probabilities Pk sum to 1, there are only K - 1 proba
bilities that must be estimated, K X P means and K X p(p + 1)/2 variances and 
covariances. For the Akaike information criterion (AIC), the penalty is 
2N X (number of parameters) so 

AIC = 2 In Lmax - 2N ( K ~ (p + l)(p + 2) - 1 ) (12-19) 

I 
i 

1 
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The Bayesian information criterion (BIC) is similar but uses the logarithm of the 
number of parameters in the penalty function 

BIC = 21n Lmax - 2In(N)( K ~ (p + 1)(p + 2) - 1) (12-20) 

There is still occasional difficulty with too many parameters in the mixture model so 
simple structures are assumed for the I k • In particular, progressively more compli
cated structures are allowed as indicated in the following table. 

Assumed form 
for :Ik 

Total number 
of parameters BIC 

Ik = 7) 1 
:Ik = 7)k I 

K(p + 1) 1n Lmax - 2In(N)K(p + 1) 
1n Lmax - 2In(N)(K(p + 2) - 1) 

Ik = 7)k Diag(AI ,A2 , .•• ,Ap ) 

K(p + 2) - 1 
K(p + 2) + P - 1 In Lmax - 2In(N)(K(p + 2) + p - 1) 

Additional structures for the covariance matrices are considered in [6] and [9J. 
Even for a fixed number of clusters, the estimation of a mixture model is 

complicated. One current software package, MCLUST, available in the R software 
library, combines hierarchical clustering, the EM algorithm and the BIC criterion to 
develop an appropriate model for clustering. In the 'E'-step of the EM algorithm, a 
(N X K) matrix is created whose jth row contains estimates of the conditional (on 
the current parameter estimates) probabilities that observation Xj belongs to cluster 
1,2, ... ,K. So, at convergence, the jth observation (object) is assigned to the cluster 
k for which the conditional probability 

K 

p(k I Xj) = pd(Xj I k)l2.p;[(x;! k) 
i=1 

of membership is the largest. (See [6] and [9] and the references therein.) 

Example 12.13 (A model based clustering of the iris data) Consider the Iris data in 
Table 11.5. Using MCLUST and specifically the me function, we first fit the p = 4 
dimensional normal mixture model restricting the covariance matrices to satisfy 
Ik = 7)k I, k = 1,2,3. 

Using theBIC criterion, the software chooses K = 3 clusters with estimated 
centers 

[

5'01] [5.90] [6.85] 3~ 2~ 3m 
iLl = 1.46 ' IL2 = 4.40 '. IL3 = 5.73 ' 

0.25 1.43 2.07 

and estimated variance-covariance scale factors 771 = .076,772 = .163 and 773 = .163. 
The estimated mixing proportions are PI = .3333, P2 = .4133 and [;3 = .2534. For 
this solution, B'IC = -853.8. A matrix plot of the clusters for pairs of variables is 
shown in Figure 12.13. 

Once we have an estimated mixture model, a new object Xj will be assigned to the 
cluster for which the conditional probability of membership is the largest (see [9]). 

Assuming the :Ik = 7)k 1 covariance structure and allowing up to K = 7 clus
ters, the BIC can be increased to BIC = -705.1. 
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Figure 12.13 Multiple scatter plots of K = 3 clusters for Iris data 

Finally, using the BIC criterion with up to K = 9 groups and several different 
covariance structures, the best choice is a two group mixture model with uncon
strained covariances. The estimated mixing probabilities are ih = .3333 and 
[;2 = .6667. The estimated group centers are 

[

5.01j [6.261 3.43 2.87 
11-1 = 1.46' 11-2.= 4.91 

0.25 1.68 

and the two estimated covariance matrices are 

[1218 .0972 .0160 0101

1 

['SW .1209 .4489 

16551 i = .0972 .1408 .0115 .0091 i = .1209 .1096 .1414 .0792 
1 .0160 .0115 .0296 .0059 2 .4489 .1414 .6748 .2858 

.0101 .0091 .0059 .0109 .1655 .0792 .2858 .1786 

Essentially, two species of Iris have been put in the same cluster as the projected 
view of the scatter plot of the sepal measurements in Figure 12.14 shows. • 

12.6 Multidimensional Scaling 
This section begins a discussion of methods for displaying (transformed) multivari
ate data in low-dimensional space. We have already considered this issue wherl we 
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Figure 12.14 Scatter plot of sepal measurements for best model. 

discussed plotting scores on, say, the first two principal components or the scores on 
the first two linear discriminants. The methods we are about to discuss differ from 
these procedures in the sense that their primary objective is to "fit" the original data 
into a low-dimensional coordinate system such that any distortion caused by a re
duction in dimensionality is minimized. Distortion generally refers to the similari
ties or dissimilarities (distances) among the original data points. Although 
Euclidean distance may be used to measure the closeness of points in the final low
dimensional configuration, the notion of similarity or dissimilarity depends upon 
the underlying technique for its definition. A low-dimensional plot of the kind we 
are alluding to is called an ordination of the data. 

Multidimensional scaling techniques deal with the following problem: For a set 
of observed similarities (or distances) between every pair of N items, find a repre
sentation of the items in few dimensions such that the interitem proxirnities "nearly 
match" the original similarities (or distances). 

It may not be possible to match exactly the ordering of the original similarities 
(distances). Consequently, scaling techniques attempt to find configurations in 
q :5 N - 1 ~imensions such that the match is as close as possible. The numerical 
measure of closeness is called the stress. 

It is possible to arrange the N items in a low-dimensional coordinate system using 
only the rank orrJers of the N(N - 1)/2 original similarities (distances), and not their 
magnitudes. When only this ordinal information is used to obtain a geometric repre
sentation, the process is called nonmetric multidimensional scaling. If the actual magni
tudes of the original similarities (distances) are used to obtain a geometric 
representation in q dimensions, the process is called metric multidimensional scaling. 
Metric multidimensional scaling is also known as principal coordinate analysis. 
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Scaling techniques were developed by Shepard (see [29J for a 'review of earl 
wor~), ~ruskal [19, 2?,.11 J, a~d others. A good summary of the history, theory, an~ 
app~cat~ons ?f multId~enslOnal scaling is contained in [35J. Multidimensional 
scalmg mvanably re~ulres the use of a computer, and several good computer 
programs are now avaIlable for the purpose. 

The Basic Algorithm 

F?r N ite~s, there are.~ = .tv.(N - 1)/2 similarities (distances) between pairs 0',' 

dIf~~rent Items. These sImllantJes constitute the basic data. (In cases where the simi
larItles cannot be easily quantified as, for example, the similarity between two c L 
ors, the ra~ order~ of the similarities are the basic data.) o. 

Assummg no tIes, the similarities can be arranged in a strictly ascending order as 

Silk I < Si2k2 < ... < SiMkM (12-21 \ 

He~e Silkl is the smallest ?f ~he M similarities. The subscript ilkl indicates the pai; 
of Ite.ms that are leas~ SImIlar-that is, the items with rank 1 in the similaritv 
ord.enng .. Other su~scnp~s are interpreted in the same manner. We want to find ~ 
q-dlmenslonal confIguratIOn of the N items such that the distances d!q) b t . f". , ,k, e ween 
paIrs 0 lte~s match the ordenng in (12-21). If the distances are laid out in a manner 
correspondmg to that ordering, a perfect match Occurs when 

d (q) d(q) ( ) 
ilk, > i2kz > ... > d'!kM (12-22} 

That is, the descen~ing orde~ing of the distances in q dimensions is exactly analo~ 
go~S to. the ascendmg orden~g of the initi~l similarities. As long as the order in 
(1 22) IS p:eserved, the ma~Dltudes of the dIstances are unimportant. 

For a .gIv~n v~lue of q, It may not be possible to find a configuration of points 
whose paIrwlse dIstances are monotonically related to the original similarities 
~ruskal [19J proposed a measure of the extent to which a geometrical representa~ 
tIOn falls short of a perfect match. This measure, the stress, is defined as 

Stress (q) = ~,<~k~· _____ _ 

2:2: [d}Z)]2 
(12-23) 

, {2: 2: (d/Z) - JiZ»2} 1/2 

d(q), . i<k 

The ,k s m .the stress fonnula are numbers kno,wn to satisfy (12-22); that is, they 
are monoton.lcally related to the similarities. The dff)'s are not distances in the sense 
that they satIsfy ~he usual distance properties of (1-25). They are merely reference 
numbers. use~ to Ju?ge the nonmonotonicity of the observed d;Z)'s. 

The Idea IS, to fmd a representation of the items as points in q-dimensions such 
~hat the stress IS a~ small as possible. Kruskal [19] suggests the stress be infonnally 
mterpreted accordmg to the following guidelines: . 

Stress Goodness offit 

20% Poor 
10% Fair 
5% Good (12-24) 

2.5% Excellent 
0% Perfect 

C!0od~ess Offit refers to the monotonic relationship between the similarities and the 
fmal dIstances. 
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A second m~as~re of discTC::pancy: intro.duced by Takane et al.l311, is becoming 
the preferred cntenon~ For a gIven dImenSIon q, this measure, denoted by SStress, 
replaces the dik's and djk's in (12-23) by their squares and is given by 

r
2:2: (dtk - Jldllf2 

SStress = _'<_k _____ _ (12-25) 

2:2: d1k 
i<k 

The value of SStress is always between 0 and 1. Any value less than .1 is typically 
taken to mean that there is a good representation of the objects by the points in the 
given configuration. 

Once items are located in q dimensions, thei{ q x 1 vectors of coordinates can be 
treated as multivariate observations. For display purposes, it is convenient to represent 
this q-dimensional scatter plot in tenns of its principal component axes. (See Chapter 8.) 

We have written the stress measure as a function of q, the number of dimensions 
for the geometrical representation. For each q, the configuration leading to the min
imum stress can be obtained. As q increases, minimum stress will, within rounding 
error, decrease and will be zero for q = N - 1. Beginning with q = 1, a plot of 
these stress (q) numbers versus q can be constructed. The value of q for which this 
plot begins to level off may be selected as the "best" choice of the dimensionality. 
That is, we look for an "elbow" in the stress-dimensionality plot. 

The entire multidimensional scaling algorithm is summarized in these steps: 
1. For Iv items, obtain the M = N(N - 1)/2 similarities (distances) between dis

tinct pairs of items. Order the similarities as in (12-21). (Distances are ordered" 
from largest to smallest.) If similarities (distances) cannot be computed, the 
rank orders must be specified. 

2. Using a trial configuration in q dimensions, determil,le the interitem distances d}'!c) 
and numbers Jf%), where the latter satisfy (12-22) and minimize the stress (12-23) or 
SStress (12-25). (The d;Z) are frequently determined within scaling computer pro
grams using regression methods designed to produce monotonic "fitted" distances.) 

3. Using the d12)'s, move the points around to obtain an improved configuration. 
(For q fixed, an improved configuration is determined by a general function 
minimization procedure applied to the stress. In this context, the stress is re
garded as a function of the N x, q coordinates of the N items.) A new configu
ration will have new d;Z)'s new d}k),s and smaller stress. The process is repeated 
until the best (minimum stress) representation is obtained. 

4. Plot minimum stress (q) versus q and choose the best number of dimensions, q*, 
from an examination of this plot. (12-26) 

We have assumed that the initial similarity values are symmetric (Sik = Sk;), that 
there are no ties, and that there are no missing observations. Kruskal [19, 20J has 
suggested methods for handling asymmetries, ties, and missing observations. In ad
dition, there are now multidimensional scaling computer programs that will handle 
not only Euclidean distance, but any distance of the Minkowski type. [See (12-3).] 

The next three examples illustrate multidimensional scaling with distances as 
the initial (dis )similarity measures. 

Example 12.14 (Multidimensional scaling of U.S. cities) Table 12.7 displays the 
airline distances between pairs of selected U.S. cities. 
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Figure 12.15 A geometrical representation of cities produced by multidimensional 
scaling. 

Since the cities naturally lie in a two-dimensional space (a nearly level part of the curved surface of the earth), it is not surprising that multidimensional scaling with q = 2 will locate these items about as they occur on a map. Note that if the distances in the table are ordered from largest to smallest-that is, from a least similar to most 
similar-the first position is occupied by dBoston, L.A. = 3052. 

A multidimensional scaling plot for q = 2 dimensions is shown in Figure 12.15. 
The axes lie along the sample principal components of the scatter plot. 

A plot of stress (q) versus q is shown in Figure 12.16 on page 712. Since stress (1) X 100% = 12%, a representation of the cities in one dimension (along a single axis) is not unreasonable. The "elbow" of the stress function occurs at q = 2. 
Here stress (2) X 100% = 0.8%, and the "fit" is almost perfect. 

The plot in Figure 12.16 indicates that q = 2 is the best choice for the dimen
sion of the final configuration. Note that the stress actually increases for q = 3. This anomaly can occur for extremely small values of stress because of difficulties 
with the numerical search procedure used to locate the minimum stress. -

Example 12.15 (Multidimensional scaling of public utilities) Let us try to represent the 22 public utility firms discussed in Example 12.7 as points in a Iow-dimensional space. The measures of (dis)similarities between pairs of firms are the Euclidean distances listed in Table 12.6. Multidimensional scaling in q = 1,2, ... ,6 dimensions 
produced the stress function shown in Figure 12.17. 
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Figure 12.16 Stress function for airline distances between cities. 
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Figure 12.17 Stress function for distances between utilities. 
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Figure 12.18 A geometrical represyntation of utilities produced by multidimensional 
scaling. 

The stress function in Figure 12.17 has no sharp elbow. The plot appearS to level 
out at "good" values of stress (less than or equal to 5%) in the neighborhood of 
q = 4. A good four-CIimensional representation of the utilities is achievable, but dif
ficult to display. We show a plot of the utility configuration obtained in q = 2 di
mensions in Figure 12.18. The axes lie along the sample principal components of the 
final scatter . 

Although the stress for two dimensions is rather high (stress (2) X 100% = 
19% ), the distances between firms in Figure 12.18 are not wildly inconsistent with 
the clustering results presented earlier in this chapter. For example, the midwest 
utilities-Commonwealth Edison, Wisconsin Electric Power (WEPCO), Madison 
Gas and Electric (MG & E), and Northern States Power (NSP)-are close together 
(similar). Texas Utilities and Oklahoma Gas and Electric (Ok. G & E) are also very 
close together (similar). Other utilities tend to group according to geographical 
locations or similar environments . 

The utilities cannot be positioned in two dimensions such that the interutility 
distances d;~) are entirely consistent with the original distances in Table 12.6. More 
flexibility for positioning the points is required, and this can only be obtained by in
troducing additional dimensions. . • 

Example 12.16 (Multidimensional scaling of universities) Data related to 25 U.S. 
universities are given in Table 12.9 on page 729. (See Example 12.19.) These data 
give the average SAT score of entering freshmen, percent of freshmen in top 
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Figure 12.19 A two-dimensional representation of universities produced by metric 
multidimensional scaling. 

10% of high school class, percent of applicants accepted, student-faculty ratio, esti
mated annual expense, and graduation rate (%). A metric multidimensional scaling 
algorithm applied to the standardized university data gives the two-dimensional 
representation shown in Figure 12.19. Notice how the private universities cluster 
on the right of the plot while the large public universities are, generally, on the left. 
A nonmetric multidimensional scaling two-dimensional configuration is shown in 
Figure 12.20. For this example, the metric and nonmetric scaling representations 
are very similar, with the two dimensional stress value being approximately 10% 
for both scalings. . • 

Classical metric scaling, or principal coordinate analysis, is equivalent to ploting 
the principal components. Different software programs choose the signs of the ap
propriate eigenvectors differently, so at first sight, two solutions may appear to be 
different. However, the solutions will coincide with a reflection of one or more of 
the axes. (See [26].) 
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Figure 12.20 A two-dimensional representation of universities produced by nonmetric 
multidimensional scaling. 

To summarize, the key objective of multidimensional scaling procedures is a 
low-dimensional picture. Whenever multivariate data can be presented graphically 
in two or three dimensions, visual inspection can greatly aid interpretations. 

When the multivariate observations are naturally numerical, and EucIidean dis
tances in p-dimensions, dlf), can be computed, we can seek a q < p-dimensional 
representation by minimizing 

(12-27) 

In this alternative approach, the Euclidean distances in p and q dimensions are 
compared directly. Techniques for obtaining low-dimensional representations by 
minimizing E are called nonlinear mappings. 

The final goodness of fit of any Iow-dimensional representation can be 
depicted graphically by minimal spanning trees. (See [16] for a further discussion of 
these topics.) 
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J 2.7 Correspondence Analysis 
Developed by the French, correspondence analysis is a graphical procedure for rep
resenting associations in a table of frequencies or counts. We will concentrate on a 
two-way table of frequencies or contingency table. If the contingency.table has I 
rows and J columns, the plot produced by correspondence analysis contams two sets 
of points: A set of I points corresponding to the rows and a set of J points corre
sponding to the columns. The positions of the points reflect associations. 

Row points that are close together indicate rows that have similar profiles (con
ditional distributions) across the columns. Column points that are close together in
dicate columns with similar prefIles (conditional distributions) down the rows. 
Finally, row points that are close to column points represent combinations that 
occur more frequently than would be expected from an independence model-that 
is, a model in which the row categories are unrelated to the column categories. 

The usual output from a correspondence analysis includes the "best" two
dimensional representation of the data, along with the coordinates of the plotted 
points, and a measure (called the inertia) of the amount of information retained in 
each dimension. 

Before briefly discussing the algebraic development of correspondence analy
sis, it is helpful to illustrate the ideas we have introduced with an example. 

Example 12.17 (Correspondence analysis of archaeological data) Table 12.8 contains 
the frequencies (counts) of J = 4 different types of pottery (called potsherds) 
found at I = 7 archaeological sites in an area of the American Southwest. If we 
divide the frequencies in each row (archaeological site) by the corresponding row 
total, we obtain a profile of types of pottery. The profiles for the different sites 
(rows) are shown in a bar graph in Figure 12.21(a). The widths of the bars are 
proportional to the total row frequencies. In general, the profiles a:e diffen~nt; 
however, the profiles for sites PI and P2 are similar, as are the profIles for SItes 
P4 and P5. 

The archaeological site profile for different types of pottery (columns) are 
shown in a bar graph in Figure 12.21 (b). The site profiles are constructed using the 

Table 12.8 Frequencies of 'lYpes of Pottery 

'lYpe 

Site A B C D Total 

PO 30 10 10 39 89 
PI 53 4 16 2 75 
P2 73 1 41 1 116 
P3 20 6 1 4 31 
P4 46 36 37 13 132 
P5 45 6 59 10 120 
P6 16 28 169 5 218 

Total 283 91 333 74 781 

Source: Data courtesy of M. 1. Tretter. 
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Figure 12.21 Site and pottery type profiles for the data in Table 12.8. 

column totals. The bars in the figure appear to be quite different from one another. 
This suggests that the various types of pottery are not distributed over the archaeo
logical sites in the same way. 

The two-dimensional plot from a correspondence analysis2 of the pottery 
type-site data is shown in Figure 12.22. 

The plot in Figure 12.22 indicates, for example, that sites PI and P2 have similar 
pottery type profiles (the two points are close together), and sites PO and P6 have very 
different profiles (the points are far apart). The individual points representing the 
types of pottery are spread out, indicating that their archaeological site profiles are 
quite different. These findings are consistent with the profiles pictured in Figure 12.21. 

Notice that the points PO and D are quite close together and separated from the 
remaining points. This indicates that pottery type D tends to be associated, almost 
exclusively, with site PO. Similarly, pottery type A tends to be associated with site PI 
and, to lesser degrees, with sites P2 and P3. Pottery type B is associated with sites P4 
and P5, and pottery type C tends to be associated, again, almost exclusively, with site 
P6. Since the archaeological sites represent different periods, these associations are 
of considerable interest to archaeologists. 

The number Ai = .28 at the end of the first coordinate axis in the two
dimensional plot is the inertia associated with the first dimension. This inertia is 55% 
of the total inertia. The inertia associated with the second dimension is A~ = .17, and 
the second dimension accounts for 33% of the total inertia. Together, the two di
mensions account for 55% + 33% = 8'8% of the total inertia. Since, in this case, the 
data could be exactly represented in three dimensions, relatively little information 
(variation) is lost by representing the data in the two-dimensional plot of 
Figure 12.22. Equivalently, we may regard this plot as the best two-dimensional rep
resentation of the multidimensional scatter of row points and the multidimensional 

2The JMP software was used for a correspondence analysis of the data in Table 12.8. 
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Figure 12.22 A correspondence analysis plot of the pottery type-site data. 

scatter of column points. The combined inertia of 88% suggests that the representa
tion "fits" the data well. 

In this example, the graphical output from a correspondence analysis shows the 
nature of the associations in the contingency table quite clearly. -

Algebraic Development of Correspondence Analysis 

To begin, let X, with elements Xij' be an 1 X J two-way table of unsc~led fre
quencies or counts. In our discussion we take 1 > J and assume that X IS of full 
column rank J. The rows and columns of the contingency table X correspond to 
different categories of two different characteristics. As an example, the array of 
frequencies of different pottery types at different archaeological sites shown in 
Table 12.8 is a contingency table with 1 = 7 archaeological sites and J = 4 pot
tery types. 

If n is the total of the frequencies in the data matrix X, we first construct a ma
trix of proportions P = {Pij} by dividing each element of X by n. Hence 

i=1,2, ... ,I, j=1,2, ... ,J, 

The matrix P is called the correspondence matrix. 

1 
or P =- X 

(IXJ) n (Ix!) 
(12-28) 
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Next define the vectors of row and column sums rand c respectively, and the 
diagonal matrices Dr and Dc with the elements of rand c on the diagonals. Thus 

J J x .. 
ri= 2:Pij= 2:-;-, 

j=1 j=1 1 

1 1 x .. 
Cj = 2: Pij = 2: 2, 

;=1 ;=1 n 

i = 1,2, ... ,1, or r P IJ 
(Ixl) (IXJ)(JX I) 

(12-29) 

j = 1,2, ... ,J, or c = P' 11 
(JXI) (JXI)(IXI) 

where IJ is a J X 1 and 11 is a 1 X 1 vector of l's and 

Dr = diag(rj,rz, ... ,rj) and Dc = diag(cI,cz, ... ,cJ) (12-30) 

We define the square root matrices 

D;/2 = diag (vr;-, ... , Yr;) D-1/z _ d' (_1_ _1_) 
r - Jag V'i) , ... , Yr; 

(12-31) 

D ~/2 = diag ( vC;', ... , \10) -1/2 _ . (_1 _1 ) 
Dc - dIag vC;', ... , \10 

for scaling purposes. 
Correspop.dence analysis can be formulated as the weighted least squares prob

lem to select P = {.vij}, a matrix of specified reduced rank, to minimize 

(12-32) 

As Result 12.1 demonstrates, the term rc' is commoIl to the approximation P 
whatever the 1 X J correspondence matrix P. The matrix P = rc' can be shown to 
be the best rank 1 approximation to P. 

Result 12.1. The term rc' is common to the approximation P whatever the 1 X J 
correspondence matrix P. 

The reduced rank s approximation to P, which minimizes the sum of squares 
(12-32), is given by 

s s 

P == 2: Ak(D!/z uk)(D~/z Vk)' = rc' + 2: Ak (DV2 uk)(D~f2 vd 
k=1 k=2 

where the Ak are the singular values and the 1 X 1 vectors Uk and the J X 1 vectors 
Vk are the corresponding singular vectors of the 1 X J matrix D;:-I/zPD~I/z. The 

J 

minimum value of (12-32) is 2: A~. 
k=s+1 

The reduced rank K > 1 approximation to P - rc' is 

K 

P - rc' == 2: Ak(D;f2ud(D~/2vd (12-33) 
k=l 
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where the Ak are the singular values and the I x 1 vectors Uk and the J X 1 vectors 
Vk are the correwonding singular vectors of the I X J matrix D;:-1/2(p - rc') D~l/2. 

Here Ak = Ak+b Uk =. Uk+b and Vk = Vk+l for k = 1, ... , J - 1. 

Proof. We first consider a scaled version B = D;:-1/2PD~1/2 of the correspondence 
matrix P. According to Result 2A.16, the best low rank = s approximation B to 
D;:-1/2PD~I/2 is given by the first s terms in the the singular·value decomposition 

where 

and 

I (D;:-I/2PD~1/2) (D;:-1/2pD~I/2)' - A~I I = 0 for k = 1, ... , J 

The approximation to P is then given by 

p = D;/2BD~/2 == ± Ak(D;/2Uk) (D~/2vd 
k=1 

J 

and, by Result 2A.16, the error of approximation is 2: AZ. 
k=s+1 

(12-34) 

(12-35) 

Whatever the correspondence matrix P, the term rc' always provides a (the 
best) rank one approximation. This corresponds to the assumption of independence 
of the rows and columns. To see this, let UI = DV21/ and VI = D~/21/' where 1[ is a 
I X 1 and 11 a J X 1 vector of 1 'so We verify that (12-35) holds for these choices. 

and 

That is, 

ul (D;:-I/2pD~1/2) = (D;/2l/)' (D;:-1/2pD~1(2) 

= l[PD~1/2 = C'D~l/2 

= [vC;", ... , '.i01 = (D~/21d = vi 

(D;:-I/2pD~1/2) VI = (D;:-1/2pD~1/2) (D~/21J) 

= D;:-1/2Pll = D;:-I/2r 

(12-36) 

are singular vectors associated with singular value Al = 1. For any correspondence 
matrix, P, the common term in every expansion is 

D;/2ulviD~/2 = Drl/l/Dc = rc' 
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Therefore, we have established the first approximation and (12-34) can always be 
expressed as 

I 

P = rc' + 2: Ak(D;/2Ud (D~/2Vd' 
k=2 

Because of the common term, the problem can be rephrased in terms of P - rc' 
and its scaled version D;:-I/2(p - rc') D~If2. By the orthogonality of the singular 
vectors of D;:-I/2pD~I/2, we have uk(D;/2l[) = ° and vk(D~/2l/) = 0, for k > 1, so 

is the singular-value decomposition of D ;:-1/2 (P - rc') D ~ 1/2 in terms of the singular val
ues and vectors obtained from D;:-I/2pD~I/2. Converting to singular values and vectors 
Ab Uk> and Vk from D;:-1/2(p - rc')D~If2 only amounts to changing k to k - 1 so 
Ak = Ak+l, Uk = Uk+l, and Vk = Vk+1 for k = 1, ... , J - 1. 

In terms of the singular value decomposition for D;:-1/2(p - rc') D~1/2, the ex
pansion for P - rc' takes the form 

1-1 

P - rc' = 2: Ak(D;/2uk ) (D~/2vk)' 
k=l 

(12-37) 

K 

The best rank K approximation to D;:-I/2(p - rc')D~1/2 is given by 2: AkUkVic· 
Then, the best approximation to P - rc' is k=l 

K 

P - rc' == 2: Ak(D;/2uk) (D~/2vk)' 
k=1 

(12-38) 

• 
Remark. Note that the vectors D;/2uk and D~/2Vk in the expansion (12-38) of 
P - rc' need not have length 1 but satisfy the scaling 

(D;/2UdD;:-I(D;/2Uk) = UicUk = 1 

(D~/2vk)'D~1(D~/2vk) = V~Vk = 1 

Because of this scaling, the expansions in Result 12.1 have been called a generalized 
singular-value decomposition. 

Let A, U = [uj, ... , u[] and V = [VI>"" VI 1 be the matricies of singular values 
and vectors obtained from D;:-1/2(p - rc') D~1/2. It is usual in correspondence 
analysis to glot the first two or three columns of F = D;:-I(D;J2U) A and 
G = D~l(D~ V) A or AkD;:-l/2Uk and AkD~1/2Vk for k = 1, 2, and maybe 3. 

The joint plot of the coordinates in F and G is called a symmetric map (see 
Greenacre [13]) since the points representing the rows and columns have the same 
normalization, or scaling, along the dimensions of the solution. That is, the geometry 
for the row points is identical to the geometry for the column points. 
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Example 12.18 (Calculations for correspondence analysis) Consider the 3 X 2 
contingency table 

B1 B2 Total 

Al 24 12 36 
A2 16 48 64 
A3 60 40 100 

100 100 200 

The correspondence matrix is 

[

.12 .06] 
P = .08 .24 

.30 .20 

with marginal totals c' = [.5, .5] and r' = [.18, .32, .50]. The negative square root 
matrices are 

D;l(2 = diag(v2j.6, v2/.8, v2) D~1/2 = diag(Vi, v2) 

Then 

[

.12 .06] [.18] 
P - rc' = .08 .24 - .32 [.5 

.30.20 .50· 
[ 

.03 -.03] 
.5] = -.08 .08 

. .05 -.05 

The scaled version of this matrix is 

. [v2 .6 
A = D;lf2(p - rc') D~1/2 = 0 

o 

[ 

0.1 
= -0.2 

0.1 

o 

v2 
.8 
o 

o 1 [_.03 -.03] [v2 DJ o .08 .08 0 v2 
.05 -.05 

v2 

-0.1] 
0.2 

-0.1 

Since I > J, the square of the singular values and the Vi are determined from 

A'A = [ .1 -.2 .1J [_:~ -:~] = [ .06 -.06J 
-.1 .2 -.1 1 -.06 .06 

.1 -. 
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It is easily checked that AI = .12, A1 = 0, since J - 1 = 1, and that 

Further, 

[ .1 -.1] [ 
AA' = -.2 .2 _.1 

.1 -.1 .1 

-.2 .IJ _ [ .02 -.04 .02] 
.2 -.1 - -.04 .08 -.04 

.02 -.04 .02 

A computer calculation confirms that the single nonzero eigenvalue is AI = .12, 
so that the singular value has absolute value Al = .2 V3 and, as you can easily 
check, 

The expansion of P - rc' is then the single term 

= VTI 

.6 

v'2 

0 

D 

.3 

V3 
• r.;;:; .8 

= v.12 - V3 

.5 

V3 

0 
1 

0 
v'6 

.8 
0 

2 [~ 2Jr ~ 0 J v'2 -v'6 
v2 0 _I_ 

0 
1 1 Vi 

v'2 v'6 

[1 -1] [.03 -.03] '2 2 = -.08 .08 
.05 -.05 

check 
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There is only one pair of vectors to plot 

.6 1 .3 

v'2 
0 0 v'6 V3 

AIDV2uI = v'J2 
.8 2 

v'J2 
.8 

0 
v'2 

0 -v'6 -V3 

1 1 .5 
0 0 

v'2 v'6 V3 

and 

• 
There is a second way to define contingency analysis. Following Greenacre [13], 

we call the preceding approach the matrix approximation method and the approach 
to follow the profile approximation method. We illustrate the profile approximation 
method using the row profiles; however, an analogous solution results if we were to 
begin with the column profiles. 

Algebraically, the row profiles are the rows of the matrix D~lp, and contin
gency analysis can be defined as the approximation of the row profiles by points in 
a low-dimensional space. Consider approximating the row profiles by the matrix P*. 
Using the square-root matrices D~f2 and D~2 defined in (12-31), we can write 

and the least squares criterion (12-32) can be written, with P;j = Pij/ri' as 

( , )2 • )2 :L:L Pij - Pij =:L ri:L (Pij/ri - Pij 
riCj i j Cj 

= tr [D;/2D;t2(p~lp - P*) D~I/2D~I/2(D~lp - P*)'J 

= tr[D;/2(D~I/2p - DV2p*)D~If2D~I/2(D~I/2p ~ DV2p*)'D~I/2J 

= tr [[ (D;-I/2p - D~/2p*) D~I/2][ (D~I/2p - D~/2p*) D~I/2]'] (12-39) 

Minimizing the last expression for the trace in (12-39) is precisely the first min
imization problem treated in the proof of Result 12.1. By (12-34), D~1/2pD~I/2 has 
the singular-value decomposition 

J _ 

D~If2PD~I/2 = :L AkUkVk (12-40) 
k=1 

The best rank K approximation is obtained by using the first K terms of this expan
sion. Since, by (12-39), we have D~I/2PD~/2 approximated by D~/2p*D~I/2, we left 
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multiply by D;1/2 and right multiply by D~/2 to obtain the generalized singular-value 
decomposition 

J 

D-Ip = "A D-I/2- (DI/2- )' r L.J k r Uk c Vk (12-41) 
k=1 

where, from (12-36), (UI, vd = (D;f2l[, D~/2IJ) are singular vectors associated with 
singular value Al = 1. Since D~If2(D;/2l[) = I[ and (D~f21J )'D~f2 = c', the leading 
term in the decomposition (12-41) is IfC'. 

Consequently, in terms of the singular values and vectors from D;If2 PD~I/2, the 
reduced rank K < J approximation to the' row profiles D~lp is 

K 

p* == l[c' + :L AkD~1/2Uk(D~/2Vd (12-42) 
k=2 

In terms of the sin:gular values and vectors Ab uk and Vk obtained from 
D;I/2(p - rc') D~I/2 , we can write 

K-I 

p* - l[c' == 2: AkD~If2Uk(D~/2vd 
k=1 

(Row profiles for the archaeological data in Table 12.8 are shown in Figure 12.21 on 
page 717.) 

Inertia 

Total inertia is a measure of the variation in the count data and is defined as the 
weighted sum of squares 

tr [D~1/2(p - rc') D~I/2(D~I/2(p - rc') D~I/2),J = :L:L (Pij - riCj/ = "5: A~ 
riCj k=1 

(12-43) 

where the Ak are the singular values obtained from the singular-value decomposi
tion of D~If2(p - rc') D~I/2 (see the proof of Result 12.1).3 

The inertia associated with the best reduced rank K < J approximation to the 
K 

centered matrix P - rc' (the K-dimensional solution) has inertia :L A~. The 
k=1 

residual inertia (variation) not accounted for by the rank K solution is equal to the 
sum of squares of the remaining singular values: Ak+1 + Ak+2 + ... + AJ-I' For 
plots, the inertia associated with dimension k, AL is ordinarily displayed along the 
kth coordinate axis, as in Figure 12.22 for k = 1,2. 

3Total inertia is related to the chi-square measure of association in a two-way contingency table, 
(Oij-Eif 

~ = ~ £.. . Here Oij = Xij is the observed frequency and E;j is the expected frequency for 
I.) '/ 

the ijth cell. In our context, if the row variable is independent of (unrelated to) the column variable, 
Eil :::: n TiCj, and 

. . I J (Pij - r;ci __ ~ 
Totalmertla = L L --'----'-

;=1 j=l riCj n 
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Interpretation in Two Dimensions 

Since the inertia is a measure of the data table's total variation, how do we interpret 
I-I 

a large value for the proportion (AI + A~)/2: A~? Geometrically, we say that the 
k~1 

associations in the centered data are well represented by points in a plane, and this 
best approximating plane accounts for nearly all the variation in the data beyond 
that accounted for by the rank 1 solution (independence model). Algebraically, we 
say that the approximation 

is very good or, equivalently, that 

Final Comments 

Correspondence analysis is primarily a graphical technique designed to represent 
associations in a low-dimensional space. It can be regarded as a scaling method, and 
can be viewed as a complement to other methods such as multidimensional scaling 
(Section 12.6) and biplots (Section 12.8). Correspondence analysis also has links to 
principal component analysis (Chapter 8) and canonical correlation analysis 
(Chapter 10). The book by Greenacre [14] is one choice for learning more about 
correspondence analysis. 

12.8 Biplots for Viewing Sampling Units and Variables 
A biplot is a graphical representation of the information in an n X p data matrix. 
The bi- refers to the two kinds of information contained in a data matrix. The infor
mation in the rows pertains to samples or sampling units and that in the columns 
pertains to variables. 

When there are only two variables, scatter plots can represent the information 
on both the sampling units and the variables in a single diagram. This permits the vi
sual inspection of the position of one sampling unit relative to another and the rela
tive importance of each of the two variables to the position of any unit. 

With several variables, one can construct a matrix array of scatter plots, 
but there is no one single plot of the sampling units. On the other hand, a two
dimensional plot of the sampling units can be obtained by graphing the first two 
principal components, as in Section 8.4. The idea behind biplots is to add the infor
mation about the variables to the principal component graph. 

Figure 12.23 gives an example of a biplot for the public utilities data in 
Table 12.4. 

You can see how the companies group together and which variables con
tribute to their positioning within this representation. For instance, X 4 = annual 
load factor and Xg = total fuel costs are primarily responsible for the grouping of 
the mostly coastal companies in the lower right. The two variables XI = fixed-
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Figure 12.23 A biplot of the data on public utilities, 

charge ratio and X 2 = rate of return on capital put the Florida imd Louisiana 
companies together. 

Constructing Biplots 

The construction of a biplot proceeds from the sample principal components. 
According to Result 8A.1, the best two-dimensional approximation to the data 

matrix X approximates the jth observation Xj in terms of the sample values of the 
first two principal components. In particular, 

(12-44) 

w~ere el and e2 are the first two eigenvectors of S or, equivalently, of 
XcXc = (n - 1) S. Here Xc denotes the mean corrected data matrix with rows 
(Xj - i)'. The eigenvectors determine a plane, and the coordinates of the jth unit 
(row) are the pair of values of the principal components, (Yjl, Yj2)' 

To include the information on the variables in this plot, we consider the pair of 
eigenvectors (el, e2)' These eigenvectors are the coefficient vectors for the first two 
sample principal components. Consequently, each row of the matrix E = [eJ, e2] 
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positions a variable in the graph, and the magnitudes of the coefficients (the coordi
nates of the variable) show the weightings that variable has in each principal com
ponent. The positions of the variables in the plot are indicated by a vector. Usually, 
statistical computer programs include a multiplier so that the lengths of all of the 
vectors can be suitably adjusted and plotted on the same axes as the sampling units. 
Units that are close to a variable likely have high vall!es on that variable. To inter
pret a new point Xo, we plot its principal components E'(xo - i). 

A direct approach to obtaining a biplot starts from the singular value decom
position (see Result 2A.15), which first expresses the n x p mean corrected 
matrix Xc as 

Xc U A V' 
(nXp) (nXp) (pXp) (pXp) 

(12-45). 

where A = diag (AI, A2, ... , Ap) and V is an orthogonal matrix whose columns are the 
eigenvectors of X~XCA= (n - 1)8. That is, V = E = [el' e2,"" epj. Multiplying 
(1245) on the right by E, we find 

(12-46) 

where the jth row of the left-hand side, 

is just the value of the principal components for the jth item. That is, U A contains all 
of the values of the principal components, while V = E contains the coefficients 
that define the principal components. 

The best rank 2 approximation to Xc is obtained by replacing A by 
A * = diag(A1, A2, 0, ... ,0). This result, called t.lle Eckart-Young theorem, was es
tablished in Result 8.A.1. The approximation is then 

(12-47) 

where Y1 is the n X 1 vector of values of the first principal component and Y2 is the 
n X 1 vector of values of the second principal component. 

In the biplot, each row of the data matrix, or item, is represented by the point lo
cated by the pair of values of the principal components. The ith column of the data 
matrix, or variable, is represented as an arrow from the origin to the point with co
ordinates (e1j, e2i), the entries in the ith column of the second matrix [el, e2l' in the 
approximation (12-47). This scale may not be compatible with that of the principal 
components, so an arbitrary multiplier can be introduced that adjusts all of the vec
tors by the same amount. 

The idea of a biplot, to represent both units and variables in the same plot, ex
tends to canonical correlation analysis, multidimensional scaling, and even more 
complicated nonlinear techniques. (See [12].) 
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Example 12.19 CA biplot of universities and their characteristics) Table 12.9 gives the 
data on some universities for certain variables used to compare or rank major 
universities. These variables include Xl = average SAT score of new freshmen, 
X 2 = ~ercentage of new freshmen in top 10% of high school class, X3 = percentage 
of applicants accepted, X 4 = student-faculty ratio, Xs = estimated annual expens
es and X6 = graduation rate (%). 

Because two of the variables, SAT and Expenses, are on a much different scale 
from that of the other variables, we standardize the data and base our biplot on the 
matrix of standardized observations Zj' The biplot is given in Figure 12.24 on 
page 730. 

Notice how Cal Tech and Johns Hopkins are off by themselves; the variable 
Expense is mostly responsible for this positioning. The large state universities in our 
sample are to the left in the biplot, and most of the private schools are on the right. 

Table 12.9 Data on Universities 

University SAT Top 10 Accept SFRatio Expenses Grad 

Harvard 14.00 91 14 11 39.525 97 
Princeton l3.75 91 14 8 30.220 95 
Yale 13.75 95 19 11 43.514 96 
Stanford 13.60 90 20 12 36.450 93 
MIT 13.80 94 30 10 34.870 91 
Duke l3.15 90 30 12 31.585 95 
CalTech 14.15 100 25 6 63.575 81 
Dartmouth 13.40 89 23 10 32.162 95 
Brown 13.10 89 22 13 22.704 94 
JohnsHopkins l3.05 75 44 7 58.691 87 
UChicago 12.90 75 50 13 38.380 87 
UPenn 12.85 80 36 11 27.553 90 
Cornell 12.80 83 33 13 21.864 90 
Northwestern 12.60 85 39 11 28.052 89 
Columbia 13.10 76 24 12 31.510 88 
NotreDame 12.55 81 42 13 15.122 94 
UVirginia 12.25 77 44 14 13.349 92 
Georgetown 12.55 74 24 12 20.126 92 
CarnegieMellon 12.60 62 59 9 25.026 72 
UMichigan 11.80 65 68 16 15.470 85 
UCBerkeley 12.40 95 40 17 15.140 78 
UWisconsin 10.85 40 69 15 11.857 71 
PennState 10.81 38 54 18 10.185 80 
Purdue 10.05 28 90 19 9.066 69 
TexasA&M 10.75 49. 67 25 8.704 67 

Source: u.s. News & World Report, September 18, 1995, p. 126. 
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Figure 12.24 A biplot of the data on universities. 

Large values for the variables SAT, ToplO, and Grad are associated with the private 
school group. Northwestern lies in the middle of the biplot. _ 

A newer version of the biplot, due to Gower and Hand [12], has some advan
tages. Their biplot, developed as an extension of the scatter plot, has features that 
make it easier to interpret. 

• The two axes for the principal components are suppressed. 
• An axis is constructed for each variable and a scale is attached. 

As in the original biplot, the i-th Item is located by the corresponding pair of 
values of the first two principal components 

(YH, Yu) = «x; - x)'edx; - x)'e2) 

where el and where e2 are the first two eigenvectors of S. The scales for the princi
pal components are not shown on the graph. 

In addition the arrows for the variables in the original biplot are replaced by 
axes that extend in both directions and that have scales attached. As was the case 
-.yith the arrows, the axis for the i-the variable is determined by the i-the row of 
E = [eh e2). 
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To begin, we let Ui the vector with 1 in the i-th position and O's elsewhere. Then 
an arbitrary p X 1 vector x can be expressed as 

p 

x = 2:x;u; 
;=1 

and, by Definition 2.A.12, its projection onto the space of the first two eigenvectors 
has coefficient vector 

~ p ~ 

E'x = ~xi(E'Ui) 
i=1 

so the contribution of the i-th variable to the vector sum is Xi (E'u;) = X; [eH, e2i]'. 

The two entries eH and e2i in the i-the row of E determine the direction of the axis 
for the i-th variable. 

The projection vector of the sample mean x = L;=lx;Ui 

~ p ~ 

E'x = ~X;(E'Ui) 
i=1 

is the origin of the biplot. Every x can also be written as x = x + (x - x) and its 
projection vector has two components 

p ~ p ~ 

~X;(E'Ui) + L(x; - xi)(E'u;) 
i=1 ;=1 

Starting from the origin, the points in the direction w[eli> e2i]' are plotted for 
w = 0, ± 1, ± 2, ... This provides a scale for the mean centered variable Xi - Xi. It 
defines the distance in the biplot for a change of one unit in Xi. But, the origin for 
the i-th variable corresponds to w = 0 because the term X;(E'Ui) was ignored. 
The axis label needs to be translated so that the value Xi is at the origin of the biplot. 
Since Xi is typically not an integer (or another nice number), an integer (or other 
nice number) closest to it can be chosen and the scale translated appropriately. 
Computer software simplifies this somewhat difficult task. 

The scale allows us to visually interpolate the position of Xi [eli' e2i]' in the 
biplot. The scales predict the values of a variable, not give its exact value, as they are 
based on a two dimensional approximation. 

Example 12.20 (An alternative biplot for the university data) We illustrate this 
newer biplot with the university data in Table 12.9. The alternative biplot with an 
axis for each variable is shown in Figure 12.25. Compared with Figure 12.24, the 
software reversed the direction of the first principal component. Notice, for exam
ple, that expenses and student faculty ratio separate Cal Tech and Johns Hopkins 
from the other universities. Expenses for Cal Tech and Johns Hopkins can be seen to 
be about 57 thousand a year, and the student faculty ratios are in the single digits. 
The large state universities, on the right hand side of the plot, have relatively high 
student faculty ratios, above 20, relatively low SAT scores of entering freshman, and 
only about 50% or fewer of their entering students in the top 10% of their high 
school class. The scaled axes on the newer biplot are more informative than the 
arrows in the original biplot. -
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Figure 12.25 An alternative biplot of the data on universities. 
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See le Roux and Gardner [23] for more examples of this alternative biplot and 
references to appropriate special purpose statistical software. 

12.9 Procrustes Analysis: A Method 
for Comparing Configurations 

Starting with a given n X n matrix of distances D, or similarities S, that relate n 
objects, two or more configurations can be obtained using different techniques. The 
possible methods include both metric and nonmetric multidimensional scaling. 
The question naturally arises as to how well the solutions coincide. Figures 12.19 ~nd 
12.20 in Example 12.16 respectively give the metric multidimensional scalmg 
(principal coordinate analysis) and nonmetric multidimensional scaling solutions 
for the data on universities. The two configurations appear to be quite similar, but a 
quantitative measure would be useful. A numerical comparison of two configur~
tions, obtained by moving one configuration so that it aligns best with the other, IS 
called Procrustes analysis, after the innkeeper Procrustes, in Greek mythology, who 
would either stretch or lop off customers' limbs so they would fit his bed. 
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Constructing the Procrustes Measure of Agreement 

Suppose the n x p matrix X* contains the coordinates of the n points obtained for 
plotting with technique 1 and the n X q matrix y* contains the coordinates from 
technique 2, where q s p. By adding columns of zeros to Y*, if necessary, we can 
assume that X* and y* both have the same dimension n X p. To determine how 
compatible the two configurations ~re, we move, say, the second configuration to 
match the first by shifting each point by the same amount and rotating or reflecting 
the configuration about the coordinate axes. 4 

Mathematically, we translate by a vector b and mUltiply by an orthogonal 
matrix Q so that the coordinates of the jth point Yi are transformed to 

QYi + b 

The vector band orthogonal matrix Q are then varied to order to minimize the sum, 
over all n points, of squared distances 

(12-48) 

between Xj and the transformed coordinates QYi + b obtained for the second tech
nique. We take, as a measure of fit, or agreement, between the two configurations, 
the residual sum of squares 

n 

PR2 = min 2: (x· - Qy. - b)' (x· - Qy. - b) 
Q,b i=l J J J J 

(12-49) 

The next result shows how to evaluate this Procrustes residual Sum of squares mea
sure of agreement and determines the Procrustes rotation of y* relative to X*. 

Result 12.2 Let the n X p COnfigurations X* and y* both be centered so that all 
columns have mean zero. Then 

n n p 

PR
2 

= 2: xjxi + 2: yjYi - 2 2: A; 
i=1 j=1 ;=1 

= tr[X*X*'] + tr[Y*Y*'] - 2 tr[A] 

where A = diag(A1, A2 , ... , Ap) and the minimizing transformation is 

- p 
Q = 2: vioi = VU' 

;=1 
b=O 

(12-50) 

(12-51) 

4 Sibson [30] has proposed a numerical measure of the agreement between two configurations, given 
by the coefficient 

[tr (Y*'X*X"y*)I/2f 
'Y = 1 - tr(X"X*) tr(Y*'Y*) 

For identical configurations, 'Y = O. If necessary, 'Y can be computed after a Proerustes analysis has been 
completed. 
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Here A, U, and V are obtained from the singular-value decomposition 

n 

:L y·x'· = ¥' x* = U A V' 
j=1 1 1 (pxn) (nxp) (pXp) (pxp) (pXp) 

Proof. Because the configurations are centered to have zero means (± x· = 0 
n ) j=1 1 

and ~ YI = 0 , we have 

n n 

:L (Xj - QYj - b)' (Xj - QYj - b) = ~ (Xj - QYj)' (Xj - QYj) + nb'b' 
j=1 1=1 

The last term is nonnegative, so the best fit occurs for b = O. Consequently, we need 
only consider 

n n n n 

PR2 = min :L (Xj - QYj)' (Xj - QYj) = :L xjXj + :L yjYj - 2 max :L xjQYj 
Q j=1 ;=1 j=1 Q j=1 

Using xjQYj = tr [QYjxiJ, we find that the expression being maximized becomes 

n n [ n ] 
~ xjQYj = ~ tr[QYjxj] = tr Q ~ Yjxj 

By the singular-value decomposition, 

n P 

:L YjXi = Y*'X* = UAV' = :L A;u;v; 
j=1 j=1 

where U = [Ul, U2, ... , up] and V = [VI, V2, ... , V p] are p X P orthogonal matrices. 
Consequently, 

± xiQYj = tr [Q (± A;U;V;)] = ± A; tr [Qu;vj] 
j=l 1=1 1=1 

The variable quantity in the ith term 

has an upper bound of 1 as can be seen by applying the Cauchy-Schwarz inequality 
(2-48) with b = Qv; and d = u;. That is, since Q is orthogonal, 

viQu; =:; VviQQ'v; ~ = V;;;; X 1 = 1 
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Each of these p terms can be maximized by the same choice Q = VU'. With this 
choice, 

Therefore, 

o 

o 
viQu; = vjVU'u; = [0, ... ,0,1,0, ... ,0] 1 = 1 

o 

o 

n 

-2 m8x ~ xjQYj = -2(Al + A2 + ... + Ap) 

Finally, we verify that QQ' = VU'UV' = VIp V' = lp, so Q is a p X P orthogonal 
matrix, as required. _ 

Example 12.21 (Procrustes analysis of the data on universities) Tho ctlnfigurations, 
produced by metric and nonmetric multidimensional scaling, of data on universities 
are given Example 12.16. The two configurations appear to be quite close. There is a 
two-dimensional array of coordinates for each of the two scaling methods. Initially, 
the sum of squared distances is 

25 

:L (Xj - Yj)' (Xj - Yj) = 3.862 
j=1 

A computer calculation gives 

U = [-.9990 .0448J V = [-1.0000 
.0448 '.9990 .0076 

A = [114.9439 O'OOOJ 
0.000 21.3673 

.0076J 
1.0000 

According to Result 12.2, to better align these two solutions, we multiply the non
metric scaling solution by the orthogonal matrix 

~ 2 [.9993 -.0372J Q = :L v;ui = VU' = 
;=1 .0372 .9993 

This corresponds to clockwise rotation of the nonmetric solution by about 
2 degrees. After rotation, the sum of squared distances, 3.862, is reduced to the 
Procrustes measure of fit 

25 25 2 

PR2 = :L xjXj + :L yjYj - 2 :L A; = 3.673 -j=1 j=1 j=1 
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Example 12.22 (Procrustes analysis and additional ordinations of data on forests) 
Data were collected on the populations of eight species of trees growing on ten 
upland sites in southern Wisconsin. These data are shown in Table 12.10. 

The metric, or principal coordinate, solution and nonmetric multidimensional 
scaling solution are shown in Figures 12.26 and 12.27. 

Table 12.10 Wisconsin Forest Data 

Site 

nee 1 2 3 4 5 6 7 8 9 10 

BurOak 9 8 3 5 6 0 5 0 0 0 
BlackOak 8 9 8 7 0 0 0 0 0 0 
WhiteOak 5 4 9 9 7 7 4 6 0 2 
RedOak 3 4 0 6 9 8 7 6 4 3 
AmericanElm 2 2 4 5 6 0 5 0 2 5 
Basswood 0 0 0 0 2 7 6 6 7 6 
Ironwood 0 0 0 0 0 0 7 4 6 5 
SugarMaple 0 0 0 0 0 5 4 8 8 9 

Source: See [24]. 
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Figure 12.26 Metric multidimensional scaling of the data on forests. 
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Figure 12.27 Nonmetric multidimensional scaling of the data on forests. 

Using the coordinates of the points in Figures 12.26 and 12.27, we obtain the 
initial sum of squared distances for fit: 

10 

2: (Xi - Yi)' (x; - Y;) = 8.547 
j=1 

A computer calculation gives 

U = [-.9833 
-.1821 

-.1821J 
.9833 

A = [43.3748 o.OOOOJ 
0.0000 14.9103 

[
-1.0000 -.OOOlJ 

V = -.0001 1.0000 

According to Result 12.2, to better align these two solutions, we multiply the non
metric scaling solution by the orthogonal matrix 

A ~ , U' [.9833 .1821J 
Q = ~ VjDi = V = _ .1821 .9833 
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2 I-

11-

This corresponds to clockwise rotation of the nonmetric solution by about 10 degrees. 
After rotation, the sum of squared distances, 8.547, is reduced to the Procrustes 
measure of fit 

10 10 2 

P R2 = 2: xjXj + 2: yjYj - 2 2: Ai = 6.599 
j=1 j=1 1=1 

We note that the sampling sites seem to fall along a curve in both pictures. This 
could lead to a one-dimensional nonlinear ordination of the data. A quadratic or 
other curve could be fit to the points. By adding a scale to the curve, we would 
obtain a one-dimensional ordination. 

It is informative to view the Wisconsin forest data when both sampling units and . 
variables are shown. A correspondence analysis applied to the data produces the 
plot in Figure 12.28. The biplot is shown in Figure 12.29. 

All of the plots tell similar stories. Sites 1-5 tend to be associated with species of 
oak trees, while sites 7-10 tend to be associated with basswood, ironwood, and sugar 
maples. American elm trees are distributed over most sites, but are more closely 
associated with the lower numbered sites. There is almost a continuum of sites 
distinguished by the different species of trees. • 
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Figure 12.28 The correspondence analysis plot of the data on forests. 
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Figure 12.29 The biplot of the data on forests. 
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DATAMINING 

Introduction 
A very large sample in applications of traditional statistical methodology may mean 
10,000 observations on, perhaps, 50 variables. Today, computer-based repositories 
known as data warehouses may contain many terabytes of data. For some organiza
tions, corporate data have grown by a factor of 100,000 or more over the last few 
decades. The telecommunications, banking, pharmaceutical, and (package) shipping 
industries provide several examples of companies with huge databases. Consider the 
following illustration. If each of the approximately 17 million books in the Library 
of Congress contained a megabyte of text (roughly 450 pages) in MS Word format, 
then typing this collection of printed material into a computer database would con
sume about 17 terabytes of disk space. United Parcel Service (UPS) has a package
level detail database of about 17 terabytes to track its shipments. . 

For our purposes, data mining refers to the process associated with discovering 
patterns and relationships in extremely large data sets. That is, data mining is 
concerned with extracting a few nuggets of knowledge from a relative mountain of 
numerical information. From a business perspective, the nuggets of knowledge rep
resent actionable information that can be exploited for a competitive advantage. 

Data mining is not possible without appropriate software and fast computers. Not 
surprisingly, many of the techniques discussed in this book, along with algorithms de
veloped in the machine learning and artificial intelligence fields, play important roles 
in data mining. Companies with well-known statistical software packages now offer 
comprehensive data mining programs.5 In addition, special purpose programs such as 
CART have been used successfully in data mining applications. 

Data mining has helped to identify new chemical compounds for prescription 
drugs, detect fraudulent claims and purchases, create and maintain individ~al 
customer relationships, design better engines and build appropriate inventOrIes, 
create better medical procedures, improve process control, and develop effective 
credit scoring rules. 

5SAS Institute's data mining program is currently called Enterprise Miner. SPSS's data mining 
program is Clementine. 
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In traditional statistical applications, sample sizes are relatively small, data are 
carefully collected, sample results provide a basis for inference, anomalies are 
treated but are often not of immediate interest, and models are frequently highly 
structured. In data mining, sample sizes can be huge; data are scattered and histori
cal (routinely recorded), samples are used for training, validation, and testing (no 
formal inference); anomalies are of interest; and modelS are often unstructured. 
Moreover, data preparation-including data collection, assessment and cleaning, 
and variable definition and selection-is typically an arduous task and represents 60 
to 80% of the data mining effort. 

Data mining problems can be roughly classified into the following categories: 

• Classification (discrete outcomes): 

Who is likely to move to another cellular phone service? 

• Prediction ( continuous outcomes): 

What is the appropriate appraised value for this house? 

• Association/market basket analysis: 

Is skim milk typically purchased with low-fat cottage cheese? 

• Clustering: 

Are there groups with similar buying habits? 

• Description: 

On Thursdays, grocery store consumers often purchase corn chips and soft 
drinks together. 

Given the nature of data mining problems, it should not be surprising that many of 
the statistical methods discussed in this book are part of comprehensive data mining 
software packages. Specifically, regression, discrimination and classification proce
dures (linear rules, logistic regression, decision trees such as those produced by 
CART), and clustering algorithms are important data mining tools. Other tools, 
whose discussion is beyond the scope of this book, include association rules, multi
variate adaptive regression splines (MARS), K-nearest neighbor algorithm, neural 
networks, genetic algorithms, and visualization.6 

The Data Mining Process 

Data mining is a process requiring a sequence of steps. The steps form a strat!!gy 
that is not unlike the strategy associated with any model building effort. Specifically, 
data miners must 

1. Define the problem and identify objectives. 

2. Gather and prepare the appropriate data. 

3. Explore the data for suspected associations, unanticipated characteristics, and 
obvious anomalies to gain understanding. 

4. Clean the data and perform any variable transformation that seems appropriate. 

6For more information on data mining in general and data mining tools in particular, see the refer
ences at the end of this chapter. 
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5. Divide the data into training, validation, and, perhaps, test data sets. 

6. Build the model on the training set. 

7. Modify the model (if necessary) based on its performance with the validation data. 

8. Assess the model by checking its performance on validation or test data. 
Compare the model outcomes with the initial objectives. Is the model likely to 
be useful? 

9. Use the model. 

10. Monitor the model performance. Are the results reliable, cost effective? 

In practice, it is typically necessary· to repeat one of more of these steps several 
times until a satisfactory solution is achieved. Data mining software suites such as 
Enterprise Miner and Clementine are typically organized so that the user can work 
sequentially through the steps listed and, in fact, can picture them on the screen as a 
process flow diagram. 

Data mining requires a rich collection of tools and algorithms used by a skilled 
analyst with sound subject matter knowledge (or working with someone with sound 
subject matter knowledge) to produce acceptable results. Once established, any suc
cessful data mining effort is an ongoing exercise. New data must be collected and 
processed, the model must be updated or a new model developed, and, in general, 
adjustments made in light of new experience. The cost of a poor data mining effort 
is high, so careful model construction and evaluation is imperative. 

Model Assessment 

In the model development stage of data mining, several models may be examined 
simultaneously. In the example to follow, we briefly discuss the results of applying 
logistic regression, decision tree methodology, and a neural network to the problem 
of credit scoring (determining good credit risks) using a publicly available data set 
known as the German Credit data. Although the data miner can control the model 
inputs and certain parameters that govern the development of individual models, in 
most data mining applications there is little formal statistical inference. Models are 
ordinarily assessed (and compared) by domain experts using descriptive devices 
such as confusion matrices, summary profit or loss numbers, lift charts, threshold 
charts, and other, mostly graphical, procedures. 

The split of the very large initial data set into training, validation, and testing 
subsets allows potential models to be assessed with data that were not involved in 
model development. Thus, the training set is used to build models that are assessed 
on the validation (hold out) data set. If a model does not perform satisfactorily in the 
validation phase, it is retrained. Iteration between training and validation continues 
until satisfactory performance with validation data is achieved. At this point, a 
trained and validated model is assessed with test data. The test data set is ordinarily 
used once at the end of the modeling process to ensure an unbiased assessment of 
model performance. On occasion, the test data step is omitted and the final assess
ment is done with the validation sample, or by cross-validation. 

An important assessment tool is the lift chart. Lift charts may be formatted in 
various ways, but all indicate improvement ofthe selected procedures (models) over 
what can be achieved by a baseline activity. The baseline activity often represents a 
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prior c~nviction or a random assignment. Lift charts are particularly useful for 
companng the performance of different models. ' 

Lift is defined as 

L
'f P(result I condition) 
1 t = --'------....:.!.... 

P(result) 

If the result is independent of the condition, then Lift = 1. A value of Lift > 1 
implies the condition (generally a model or algorithm) leads to a greater probabili
ty of the desired result and, hence, the condition is useful and potentially profitable. 
Different conditions can be compared by comparing their lift charts. 

Example 12.23 (A small-scale data mining exercise) A publicly available data set 
known as the German Credit data7 contains observations on 20 variables for 1000 
past applicants for credit. In addition, the resulting credit rating ("Good" or "Bad") 
for each applicant was recorded. The objective is to develop a credit scoring rule 
that can be used to determine if a new applicant is a good credit risk or a bad 
credit risk based on values for one or more of the 20 explanatory variables. 
The 20 explanatory variables include CHECKING (checking account status), 
DURATION (duration of credit in months), HISTORY (credit history),AMOUNT 
(credit amount), EMPLOYED (present employment since), RESIDENT (present 
resident since), AGE (age in years), OTHER (other installment debts), INSTALLP 
(installment rate as % of disposable income), and so forth. Essentially, then, we 
must develop a function of several variables that allows us to classify a new appli
cant into one of two categories: Good or Bad. 

We will develop a classification procedure using three approaches discussed in 
Sections 11.7 and 11.8; logistic regression, classification trees, and neural networks. 
An abbreviated assessment of the three approaches will allow us compare the per

. formance of the three approaches on a validation data set. This data mining exercise 
is implemented using the general data mining process described earlier and SAS 
Enterprise Miner software. 

In the full credit data set, 70% of the applicants were Good credit risks and 30% 
of the applicants were Bad credit risks. The initial data were divided into two sets for 
our purposes, a training set and a validation set. About 60% of the 'data (581 cases) 
were allocated to the training set and about 40% of the data (419 cases) were allo
cated to the validation set. The random sampling scheme employed ensured that 
each of the training and validation sets contained about 70% Good applicants and 
about 30% Bad applicants. The applicant credit risk profiles for the data sets follow. 

Credit data 1faining data Validation data 

Good: 700 401 299 
Bad: 300 180 120 
Total: 1000 581 419 

7 At the time this supplement was written, the German Credit data were available in a sample data 
"file accompanying SAS Enterprise Miner. Many other publicly available data sets can be downloaded 
from the following Web site: www.kdnuggets.com. 
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Neural 
Network 

SAMPSIO. 
DMAGESCR 

Figure 12.30 The process flow diagram. 

Figure 12.30 shows the process flo.w diagr~~ !ro,? the Enterpr~s~ Miner screen. 
The icons in the figure represent VarIOUS actIvItIes III the dat~ ~llmng process. As 
examples, SAMPSlO.DMAGECR contains the data; Data PartItIOn alI~ws the data 
to be split into training, validation, and testing subsets; ~ransform Vanabl.es, as the 
name implies, allows one to make variable transformatIOns; the. R~g.ressIOn, Tree, 
and Neural Network icons can each be opened to develop the llldlVldual m~d~ls; 
and Assessment allows an evaluation of each predictive model in terms of predIctIve 
power, lift, profit or loss, and so on, and a comparison of all models. 

The best model (with the training set parameters) can be used to score a new 
selection of applicants without a credit designation (SAM.rSlO:D~A~ESCR). The 
results of this scoring can be displayed, in various ways, WIth DIstnbutIon Explorer. 

For this example, the prior probabilities were set proportional. t? !he data; ~?n
sequently, P(Good) = .7 and P(Bad) = .3. The cost matrix was InItIally speCIfIed 
as follows: 

Actual 
Good 
Bad 

Predicted (Decision) 

Good (Accept) Bad (Reject) 

o $1 
$5 0 

so that it is 5 times as costly to classify a Bad applicant as Good (Accept) as i~ is. to 
classify a Good applicant as Bad (Reject). In practice, accepting a G~od credIt r.Isk 
should result in a profit or, equivalently, a negative cost. To match thIS formul~tIOn 
more closely, we subtract $1 from the entries in the first row of the cost matnx to 
obtain the "realistic" cost matrix: . 

Actual 
Good 
Bad 

Predicted (Decision) 

Good (Accept) Bad (Reject) 

-$1 0 
$5 0 
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This matrix yields the same decisions as the original cost matrix, but the results are 
easier to interpret relative to the expected cost objective function. For example, 
after further adjustments, a negative expected cost Score may indicate a potential 
profit so the applicant would be a Good credit risk. 

Next, input variables need to be processed (perhaps transformed), models (or 
algorithms) must be specified, and required parameters must be set in all of the icons in 
the process flow diagram. Then the process can be executed up to any point in the dia
gram by clicking on an icon. All previous connected icons are run. For example, clicking 
on Score executes the process up to and including the Score icon. Results associated 
with individual icons can then be examined by clicking on the appropriate icon. 

We illustrate model assessment using lift charts. These lift charts, available in 
the Assessment icon, result from one execution of the process flow diagram in 
Figure 12.30. 

Consider the logistic regression classifier. Using the logistic regression function 
determined with the training data, an expected cost can be computed for each case 
in the validation set. These expected cost "scores" can then ordered from smallest to 
largest and partitioned into groups by the 10th, 20th, ... , and 90th percentiles. The 
first percentile group then contains the 42 (10% of 419) of the applicants with the 
smallest negative expected costs (largest potential profits), the second percentile 
group contains the next 42 applicants (next 10%), and so on. (From a classification 
viewpoint, those applicants with negative expected costs might be classified as Good 
risks and those with nonnegative expected costs as Bad risks.) 

If the model has no predictive power, we would expect, approximately, a uni
form distribution of, say, Good credit risks over the percentile groups. That is, we 
would expect 10% or .10(299) = 30 Good credit risks among the 42 applicants in 
each of the percentile groups. 

Once the validation data have been scored, we can count the number of Good 
credit risks (of the 42 applicants) actually faIling in each percentile group. For 
example, of the 42 applicants in the first percentile group, 40 were actually Good 
risks for a "captured response rate" of 40/299 = .133 or 13.3 %. In this case, lift for 
the first percentile group can be calculated as the ratio of the number of Good 
predicted by the model to the number of Good from a random assignment or 

Lift = 40 = 1.33 
30 

The lift value indicates the model assigns 10/299 = .033 or 3.3% more Good risks 
to the first percentile group (largest negative expected cost) than would be assigned 
by chance.8 

Lift statistics can be displayed as individual (noncumulative) values or as cumu
lative values. For example, 40 Good risks also occur in the second percentile group 
for the logistic regression classifier, and the cumulative risk for the first two per
centile groups is 

·f = 40 + 40 = 1.33 
LIt 30 + 30 

8The lift numbers calculated here differ a bit from the numbers displayed in the lift diagrams to fol
low because of rounding. 
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.Baseline 11 Reg 
Figure 12.31 Cumulative lift 
chart for the logistic regression 
classifier. 

The cumulative lift chart for the logistic regression model is displayed in Figure 12.31. 
Lift and cumulative lift statistics can be determined for the classification tree 

tool and for the neural network tool. For each classifier, the entire data set is scored 
(expected costs computed), applicants ordered fr<?m smallest score to largest score 
and percentile groups created. At this point, the lift calculations follow those out
lined for the logistic regression method. The cumulative charts for all three classi
fiers are shown in Figure 12.32. 

Lift Value 
1.4 ~~-':'--,.-..---.--~-.--.----. 

30 50 70 cc90 
2040 ·60 cc. CcC 80 ccc<Jqo 

Figure 12.32 Cumulative lift 
charts for neural network, 
classification tree, and logistic 
regression tools. 
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We see from Figure 12.32 that the neural network and the logistic regression 
have very similar predictive powers and they both do better, in this case, than the 
classification tree. The classification tree, in turn, outperforms a random assignment. 
If this represented the end of the model building and assessment effort, one model 
would be picked (say, the neural network) to score a new set of applicants (without 
a credit risk designation) as Good (accept) or Bad (reject). 

In the decision flow diagram in Figure 12.30, the SAMPSlO.DMAGESCR file 
contains 75 new applicants. Ef{pected cost scores for these applicants were created 
using the neural network model. Of the 75 applicants, 33 were classified as Good 
credit risks (with negative expected costs). -

Data mining procedures and soft~are continue to evolve, and it is difficult to 
predict what the future might bring. Database packages with embedded data mining 
capabilities, such as SQL Server 2005, represent one evolutionary direction. 

12.1. Certain characteristics associated with a few recent U.S. presidents are listed in Table 12.11. 

Table 12.11 

Birthplace Elected PriorU.S. 
(region of first congressional Served as 

President United States) term? Party experience? vice president? 

1. R. Reagan Midwest Yes Republican No No 
2. J. Carter South Yes Democrat No No 
3. G.Ford Midwest No Republican Yes Yes 
4. R.Nixon West Yes Republican Yes Yes 
5. L. Johnson South No Democrat Yes Yes 
6. J. Kennedy East Yes Democrat Yes No 

(a) Introducing appropriate binary variables, calculate similarity coefficient 1 in 
Table 12.1 for pairs of presidents. 

Hint: You may use birthplace as South, non-South. 
(b) Proceeding as in Part a, calculate similarity coefficients 2 and 3 in Table 12.1 Verify 

the mono tonicity relation of coefficients 1,2, and 3 by displaying the order of the 15 
similarities for each coefficient. 

12.2. Repeat Exercise 12.1 using similarity coefficients 5,6, and 7 in Table 12.1. 

12.3. Show that the sample correlation coefficient [see (12-11)] can be written as 

ad - be 

r = [(a + b)(a + e)(b + d)(e + d)]l/2 

for two 0-1 binary variables with the following frequencies: 

Variable 1 
o 
1 

Variable 2 

o 
a 
e 

1 

b 
d 
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12.4. Show that the monotonicity property holds for the similarity coefficients 1,2, and 3 in 
Table 12.1. 
Hint: (b + c) = P - (a + d). SO,forinstance, 

a+d 1 
a + d + 2(b + c) 1 + 2[p/(a + d) - 1] 

This equation relates coefficients 3 and 1. Find analogous representations for the other 
pairs. 

12.5. Consider the matrix of distances 

J 234 

dl~ ~ ~ J 
Cluster the four items using each of the following procedures. 

(a) Single linkage hierarchical procedure. 

(b) Complete linkage hierarchical procedure. 

(c) Average linkage hierarchical procedure. 

Draw the dendrograms and compare the results in (a), (b), and (c). 

12.6. The distances between pairs of five items are as follows: 

1 2 3 4 5 

HI ~ ~ ~ J 
Cluster the five items using the single linkage, complete linkage, and average linkage hi
erarchical methods. Draw the dendrograms and compare the results. 

12.7. Sample correlations for five stocks were given in Example 8.5. These correlations, 
rounded to two decimal places, are reproduced as follows: 

JP Wells Royal Exxon 
Morgan Citibank Fargo DutchShell Mobil 

JP Morgan 

r 
1 

1 
Citibank . 63 1 
Wells Fargo .51 .57 1 
Royal DutchShell .12 .32 .18 
ExxonMobil .16 .21 .15 .68 1 

Treating the sample correlations as similarity measures, cluster the stocks using the sin
gle linkage and complete linkage hierarchical procedures. Draw the dendrograms and 
compare the results. 

12.8. Using the distances in Example 12.3, cluster the items using the average linkage 
hierarchical procedure. Draw the dendrogram. Compare the results with those in 
Examples 12.3 and 12.5. 
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12.9. The vocabulary "richness" of a text can be quantitatively described by counting the 
words used once, the words used twice, and so forth. Based on these counts, a linguist 
proposed the following distances between chapters of the Old Testament book Lamenta
tions (data courtesy of Y. T. Radday and M. A. Pollatschek): 

Lamentations 
chapter 

1 2 3 4 5 

1 

r 0 J Lamentations 2 .76 0 
chapter 3 2.97 .80 0 

4 4.88 4.17 .21 0 
5 3.86 1.92 1.51 .51 

Cluster the chapters of Lamentations using the three linkage hierarchical methods we 
have discussed. Draw the dendrograms and compare the results. 

12.10. Use Ward's method to cluster the four items whose measurements on a single variable X 
are given in the following table. 

Item 

1 
2 
3 
4 

Measurements 

x 

2 
1 
5 
8 

(a) Initially, each item is a cluster and we have the clusters 

{I} {2} {3} {4} 
Show that ESS = 0, as it must. 

(b) If we join clusters {I} and {2}, the new cluster {12} has 

ESS1 = 2: (Xj - i)2 = (2 - 1.5)2 + (1 - 1.5)2 = .5 

and the ESS associated with the grouping {12}, P}, {4} is ESS = .5 
+ 0 + 0 = .5. The increase in ESS (loss of information) from the first step to the 
current step in .5 - 0 = .5. Complete the following table by determining the in
crease in ESS for all the possibilities at step 2 . 

Increase 
Clusters inESS 

{12} {3} {4} .5 
{13} {2} {4} 
{14} {2} {3} 
{I} {23} {4} 
{I} {24} {3} 
{I} {2} {34} 

(c) Complete the last two algamation steps, and construct the dendrogram showing the 
values of ESS at which the mergers take place. 
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12.11. Suppose we measure two variables Xl and X 2 for four itemsA,B, C, and D. The data are 
as follows: 

Observations 

Item Xl x2 

A 5 4 
B 1 -2 
C -1 1 
D 3 1 

Use the K-means clustering technique to divide the items into K = 2 clusters. Start with 
the initial groups (AB) and (CD). 

12.12. Repeat Example 12.11, starting with the initial groups (AC) and (BD). Compare your 
solution with the solution in the example. Are they the same? Graph the items in terms 
oftheir (Xl, x2) coordinates, and comment on the solutions. 

12.13. Repeat Example 12.11, but start at the bottom of the list of items, and proceed up in the 
order D, C, B, A. Begin with the initial groups (AB) and (CD). [The first potential reas
signment will be based on the distances d 2(D, (AB» and d2(D, (CD) ).J Compare your 
solution with the solution in the example. Are they the same? Should they be the same? 

The following exercises require the use of a computer. 

12.14. Table 11.9 lists measurements on 8 variables for 43 breakfast cereals. 

(a) Using the data in the table, calculate the Euclidean distances between pairs of cereal 
brands. 

(b) Treating the distances calculated in (a) as measures of (dis )similarity, cluster the 
cereals using the single linkage and complete linkage hierarchical procedures. 
Construct dendrograms and compare the results. 

12.1 S. Input the data in Table 11.9 into a K-means clustering program. Cluster the cereals into 
K = 2,3, and 4 groups. Compare the results with those in Exercise 12.14. 

12.16. The national track records data for women are given in Table 1.9. 

(a) Using the data in Table 1.9, calculate the Euclidean distances between pairs of 
countries. 

(b) neating the distances in (a) as measures of (dis)similarity, cluster the countries using 
the single linkage and complete linkage hierarchical procedures. Construct dendro
grams and compare the results. 

< c) Input the data in Table 1.9 into a K-means clustering program. Cluster the countries 
into groups using several values of K. Compare the results with those in Part b. 

12.17. Repeat Exercise 12.16 using the national track records data for men given in Table 8.6. 
Compare the results with those of Exercise 12.16. Explain any differences. 

12.18. Table 12.12 gives the road distances between 12 Wisconsin cities and cities in neighboring 
states. Locate the cities in q = 1,2, and 3 dimensions using multidimensional scaling. Plot 
the minimum stress (q) versus q and interpret the graph. Compare the two-dimensional 
multidimensional scaling configuration with the locations of the cities on a map from an 
atlas. 

12.19. Table 12.13 on page 752 gives the "distances" between certain archaeological sites 
from different periods, based upon the frequencies of different types of potsherds found 
at the sites. Given these distances, determine the coordinates of the sites in q = 3,4, 
and 5 dimensions using multidimensional scaling. Plot the minimum stress (q) versus q 
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and interpret the graph. If possible, locate the sites in two dimensions (the first two 
principal components) using the coordinates for the q = 5-dimensional solution. (Treat 
the sites as variables.) Noting the periods associated with the sites, interpret the two
dimensional configuration. 

12.20. A sample of n = 1660 people is cross-classified according to mental.health status and 
socioeconomic status in Table 12.14 . 

Perform a correspondence analysis of these data. Interpret the results. Can the asso
ciations in the data be well represented in one dimension? 

12.21. A sample of 901 individuals was cross-classified according to three categories of income 
and four categories of job satisfaction. The results are given in Table 12.15. 

Perform a correspondence analysis of these data. Interpret the results. 

12.22. Perform a correspondence analysis of the data on forests listed in Table 12.10, and verify 
Figure 12.28 given in Example 12.22. 

12.23. Construct a biplot of the pottery data in Table 12.8. Interpret the biplot. Is the biplot con
sistent with the correspondence analysis plot in Figure 12.22? Discuss your answer. (Use 
the row proportions as a vector of observations at a site.) 

12.24. Construct a biplot of the mental health and socioeconomic data in Table 12.14. Interpret 
the biplot. Is the biplot consistent with the correspondence analysis plot in Exercise 
12.20? Discuss your answer. (Use the column proportions as the vector of observations 
for each status.) 

Table 12.14 Mental Health Status and Socioeconomic Status Data 

Parental Socioeconomic Status 

Mental Health Status A (High) B C D E (Low) 

Well 121 57 72 36 21 

Mjld symptom formation 188 105 141 97 71 
Moderate symptom formation 112 65 77 54 54 

Impaired 86 60 94 78 71 

Source: Adapted from data in Srole, L., T. S. Langner, S. T. Michael, P. Kirkpatrick, M. K. Opler, and 
T. A. C. Rennie, Mental Health in the Metropolis: The Midtown Manhatten Study, rev. ed. (New York: NYU 
Press, 1978). 

Table 12.IS Income and Job Satisfaction Data 

Job Satisfaction 

Very Somewhat Moderately Very 
Income dissatisfied dissatisfied satisfied satisfied 

< $25,000 42 62 184 207 

$25,000-$50,000 13 28 81 113 

> $50,000 7 18 54 92 

Source: Adapted from data in Table 8.2 in Agresti, A., Categorical Data Analysis (New York: John 
Wiley, 1990). 
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12.25. Using the archaeological data in Table 12.13, determine the two-dimensional metric and 
nonmetric multidimensional scaling plots. (See Exercise 12.19.) Given the coordinates of 
the points in each of these plots, perform a Procrustes analysis. Interpret the results. 

12.26. Table 8.7 contains the Mali family farm data (see Exercise 8.28). Remove the outliers 25, 
34, 69 and 72, leaving at total of n = 72 observations in the data set. Theating the 
Euclidean distances between pairs of farms as a measure of similarity, cluster the farms 
using average linkage and Ward's method. Construct the dendrograrns and compare'the 
results. Do there appear to be several distinct clusters of farms? 

12.27. Repeat Exercise 12.26 using standardized observations. Does it make a difference 
whether standardized or unstandardized observations are used? Explain. 

12.28. Using the Mali family farm data in Table 8.7 with the outliers 25,34,69 and 72 removed, 
'cluster the farms with the K-means clustering algorithm for K = 5 and K = 6. 
Compare the results with those in Exercise 12.26. Is 5 or 6 about the right number of dis
tinct clusters? Discuss. 

12.29. Repeat Exercise 12.28 using standardized observations. Does it make a difference 
whether standardized of unstandardized observations are used? Explain. 

12.30. A company wants to do a mail marketing campaign. It costs the company $1 for each 
item mailed. They have information on 100,000 customers. Create and interpret a cumu
lative lift chart from the following information. 

Overall Response Rate: Assume we have no model other than the prediction of the 
overall response rate which is 20%. That is, if all 100,000 
customers are contacted (at a cost of $100,000), we will re
ceive around 20,000 positive responses. 

Results of Response Model: A response model predicts who will respond to a 
marketing campaign. We use the response model to as
sign a score to all 100,000 customers and predict the 
positive responses from contacting only the top 
10,000 customers, the top 20,000 customers, and so 
forth. The model predictions are summarized below. 

Cost Total Customers Positive 
($) Contacted Responses 

10000 10000 6000 
20000 20000 10000 
30000 30000 13000 
40000 40000 15800 
50000 50000 17000 
60000 60000 18000 
70000 70000 18800 
80000 80000 19400 
90000 90000 19800 

100000 100000 20000 

12.31. Consider the crude-oil data in Table 11.7.1tansform the data as in Example 11.14. Ignore, 
the known group membership. Using the special purpose software MCLUST, 

(a) select a mixture model using the BIC criterion allowing for the different covariance 
structures listed in Section 12.5 and up to K = 7 groups. 

(b) compare the clustering results for the best model with the known classifications 
given in Example 11.14. Notice how several clusters correspond to one crude-oil 
classification. 
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TABLE 2 STUDENT'S t-DISTRIBUTION PERCENTAGE POINTS .ABLE 1 STANDARD NORMAL PROBABILITIES 

o z D 
0 tvCa) 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
d.f. a 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 
.100 .050 .025 .010 .00833 .00625 .005 .0025 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636. .5675 .5714 .5753 v .250 

.2 .5793 .5832 .5871 .5910 .5948 . .5987 .6026 .6064 .6103 .6141 1 1.000 3.078 6.314 12.706 31.821 38.190 50.923 63.657 127.321 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

I 2 .816 1.886 2.920 4.303 6.965 7.649 8.860 9.925 14.089 
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 3 .765 1.638 2.353 3.182 4.541 4.857 5.392 5.841 7.453 
.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 4 .741 1.533 2.132 2.776 3.747 3.961 4.315 4.604 5.598 
.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 I 5 .727 1.476 2.015 2.571 3.365 3.534 3.810 4.032 4.773 
.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852 6 .718 1.440 1.943 2.447 3.143 3.287 3.521 3.707 4.317 

I .8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

I 7 .711 1.415 1.895 2.365 2.998 3.128 3.335 3.499 4.029 
.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 8 .706 1.397 1.860 2.306 2.896 3.016 3.206 3.355 3.833 

9 .703 1.383 1.833 2.262 2.821 2.933 3.111 3.250 3.690 
.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 10 .700 1.372 1.812 2.228 2.764 2.870 3.038 3.169 3.581 

'.1 .8643 .8665 .8686 . 8708 .8729 .8749 .8770 .8790 .8810 .8830 11 .697 1.363 1.796 2.201 2.718 2.820 . 2.981 3.106 3.497 
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 12 .695 1.356 1.782 2.179 2.681 2.779 2.934 3.055 3.428 
~.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 13 .694 1.350 1.771 2.160 2.650 2.746 2.896 3.012 3.372 
.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 14 .692 1.345 1.761 2.145 2.624 2.718 2.864 2.977 3.326 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 15 .691 1.341 1.753 2.131 2.602 2.694 2.837 2.947 3.286 
L.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 16 .690 1.337 1.746 2.120 2.583 2.673 2.813 2.921 3.252 
~.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 17 .689 1.333 1.740 2.110 2.567 2.655 2.793 2.898 3.222 
.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 18 .688 1.330 1.734 2.101 2.552 2.639 2.775 2.878 3.197 

1 9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 19 .688 1.328 1.729 2.093 2.539 2.625 2.759 2.861 3.174 

20 .687 1.325 1.725 2.086 2.528 2.613 2.744 2.845 3.153 
_.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 21 .686 1.323 1.721 2.080 2.518 2.601 2.732 2.831 3.135 

J .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 22 .686 1.321 1.717 2.074 2.508 2.591 2.720 2.819 3.119 
"'2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 23 .685 1.319 1.714 2.069 2.500 2.582 2.710 2.807 3.104 
1..3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 24 .685 1.318 1.711 2.064 2.492 2.574 2.700 2.797 3.091 
_.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 25 .684 1.316 1.708 2.060 2.485 2.566 2.692 2.787 3.078 

.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 26 .684 1.315 1.706 2.056 2.479 2.559' 2.684 2.779 3.067 
"'6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 27 .684 1.314 1.703 2.052 2.473 2.552 2.676 2.771 3.057 
/..7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 28 .683 1.313 1.701 2.048 2.467 2.546 2.669 2.763 3.047 
_.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 29 .683 1.311 1.699 2.045 2.462 2.541 2.663 2.756 3.038 

9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 30 .683 1.310 1.697 2.042 2.457 2.536 2.657 2.750 3.030 

40 .681 1.303 1.684 2.021 2.423 2.499 2.616 2.704 2.971 
i.O .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 60 .679 1:296 1.671 2.000 2.390 2.463 2.575 2.660 2.915 
~.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 120 .677 1.289 1.658 1.980 2.358 2.428 2.536 2.617 2.860 

.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 .674 1.282 1.645 1.960 2.326 2.394 2.498 2.576 2.813 
00 
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;.4 .9997 .9997 .9997 .9997 ' .9997 .9997 .9997 .9997 .9997 .9998 
~.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 
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.100 
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32.85 
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9.21 
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21.67 
23.21 
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26.22 
27.69 
29.14 
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33.41 
34.81 
36.19 
37.57 
38.93 
40.29 
41.64 
42.98 
44.31 
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46.96 
48.28 
49.59 
50.89 
63.69 
76.15 
88.38 

100.43 
112.33 
124.12 
135.81 

.005 

7.88 
10.60 
12.84 
14.86 
16.75 
18.55 
20.28 
21.95 
23.59 
25.19 
26.76 
28.30 
29.82 
31.32 
32.80 
34.27 
35.72 
37.16 
38.58 
40.00 
41.40 
42.80 
44.18 
45.56 
46.93 
48.29 
49.64 
50.99 
52.34 
53.67 
66.77 
79.49 
91.95 

104.21 
116.32 
128.30 
140.17 
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TABLE 4 F-DISTRIBUTION PERCENTAGE POINTS (a = .10) 
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120 

00 

F 

2 . 3 4 5 6 7 

39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 6122 61.74 62.05 62.26 62.53 62.79 

~~~~~~~~~~~~~~~~~ 

5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 

4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 

4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 

3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.% 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.76 

3~ 3~ 3m 2~ 2. 2m 2~ 2~ 2n 2~ 2m 2S 2~ 2~ ~6 2~ 2~ 

3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 256 254 2.50 2.46 2.42 2.40 2.38 2.36 2.34 

336 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 227 2.25 2.23 2.21 

3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.11 

3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 

3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.96 

3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 

3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.86 

3.07 2.70 2.49 2.36 2.27 221 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.82 

3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.78 

3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.75 

3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.72 

2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.70 

2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.% 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.68 

2.% 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.66 

2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 

2.94 2.55 2.34 221 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.62 

2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 

2.92 253 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.59 

2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.58 

2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.57 

2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.56 

~ ~ ~ ~~ 1$ 1~ 1_1. 1~ 1~ 1~ 1M 1M 1Q1~ 1~ 

~ ~ ~ ~~ ~ ~ ~ 1~ 1~ 1n 1n 1m 1~ 1M1~ 1~ 

2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 

2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.40 

2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 

2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 



b..l Appendix 

~BLE 5 F-DISTRIBUTION PERCENTAGE POINTS (a = .05) 

F 

2 3 4 5 6 7 8 9 10 12 15' 20 25 30 40 60 

161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 243.9 246.0 248.0 249.3 250.1 251.1 252.2 

18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 

1 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.57 

" 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 

j 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.43 

5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.74 

'1 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.30 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.01 

:J 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.79 

4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.62 

"1 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.49 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.50 2.47 2.43 238 

.3 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.30 

4.60 3.74 3.34 3.11 2.% 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.22 

. ~ 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.16 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.11 

.1 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.06 

4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.02 

. '1 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 

70 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.95 

~i 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 

4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.89 

-1 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.86 

7,4 4.26 3.40 3.01 2.78 2.62 2.51 2.42 236 2.30 2.25 2.18 ~.1l 2.03 1.97 1.94 1.89 1.84 

~5 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 

4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.80 

-7 4.21 3.35 2.% 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.79 

7.8 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 

3 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.75 

4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.74 

'f) 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.64 

r,o 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.53 

u.O 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.% 1.91 1.83 1.75 1.66 1.60 1.55 1.50 1.43 

3.84 3.00 2.61 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.51 1.46 1.39 1.32 

1 

I TABLE' F-DISTRIBUTION PERCENTAGE POINTS (a = .01) 

I~ "2 1 2 3 4 5 6 7 8 9 10 

I 
1 4052. 5000. 5403. 5625. 5764. 5859. 5928. 5981. 6023. 6056. 

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 

I 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 , 5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 
I 6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 
f 
I 7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 
! 8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 

I 9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 
J 

i 10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 

1 11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 

1 

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 

I 14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 
, 15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 
1 16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 , 
I 17 8.40 6.11 5:19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 
I , 

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 , 
, 19 8.18 
J 

5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 
J 22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 I 
I 23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 

: 25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 

i 27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 
I 28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 

1 29 7.60 5.42 ' 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 
J 60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 

120 6.85 4.79 3.95 3.48 3.17 2.% 2.79 2.66 2.56 2.47 

00 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 

Appendix 763 

F 

12 15 20 25 30 40 60 

6106. 6157. 6209. 6240. 6261. 6287. 6313. 

99.42 99.43 99.45 99.46 99.47 99.47 99.48 

27.05 26.87 26.69 26.58 26.50 26.41 26.32 

14.37 14.20 14.02 13.91 13.84 13.75 13.65 

9.89 9.72 9.55 9.45 9.38 9.29 9.20 

7.72 7.56 7.40 7.30 7.23 7.14 7.06 

6.47 6.31 6.16 6.06 5.99 5.91 5.82 

5.67 5.52 5.36 5.26 5.20 5.12 5.03 

5.11 4.96 4.81 4.71 4.65 4.57 4.48 

4.71 4.56 4.41 4.31 4.25 4.17 4.08 

4.40 4.25 4.10 4.01 3.94 3.86 3.78 

4.16 4.01 3.86 3.76 3.70 3.62 3.54 

3.96 3.82 3.66 3.57 3.51 3.43 3.34 

3.80 3.66 3.51 3.41 3.35 3.27 3.18 

3.67 3.52 3.37 3.28 3.21 3.13 3.05 

3.55 3.41 3.26 3.16 3.10 3.02 2.93 

3.46 3.31 3.16 3.07 3.00 2.92 2.83 

3.37 3.23 3.08 2.98 2.92 2.84 2.75 

3.30 3.15 3.00 2.91 2.84 2.76 2.67 

3.23 3.09 2.94 2.84 2.78 2.69 2.61 

3.17 3.03 2.88 2.79 2.72 2.64 2.55 

3.12 2.98 2.83 2.73 2.67 2.58 2.50 

3.07 2.93 2.78 2.69 2.62 2.54 2.45 

3.03 2.89 2.74 2.64 2.58 2.49 2.40 

2.99 2.85 2.70 2.60 2.54 2.45 2.36 

2.% 2.81 2.66 2.57 2.50 2.42 2.33 

2.93 2.78 2.63 2.54 2.47 2.38 2.29 

2.90 2.75 2.60 2.51 2.44 2.35 2.26 

2.87 .2.73 2.57 2.48 2.41 2.33 2.23 

2.84 2.70 2.55 2.45 2.39 2.30 2.21 

2.66 2.52 2.37 2.27 2.20 2.ll 2.02' 

2.50 2.35 2.20 2.10 2.03 1-:94 1.84 

2.34 2.19 2.03 1.93 1.86 1.76 1.66 

2.18 2.04 1.88 1.78 1.70 1.59 1.47 



:Jata Index 

Admission, 661 
examples, 614, 660 

Airline distances, 710 
example, 709 

Air poUution, 39 
examples, 39,206, 425, 474, 535 

Amitriptyline, 426 
example, 426 

Anaconda snake, 357 
example, 356 

Archeological site distances, 752 
examples, 750, 754 

Bankruptcy, 657 
examples, 45,656,658 

Battery failure, 424 
example, 424 

Biting fly, 352 
example, 350 

Bonds, 346 
example, 345 

Bones (mineral content), 43, 353 
examples, 41,207,268,350,351, 

425,476 
Breakfast cereal, 666 

examples, 45, 665, 750 
Bull, 46 
example~ 46,207,425,476,537,665 

Calcium (bones), 329,330 
example, 331 

Carapace (painted turtles), 344,532 
example~ 343,356,445,454,532 

Car body assembly, 271 
examples, 270, 480 

Census tract, 474 
example~ 443,474,535 

College test scores, 228 
examples, 226, 267, 423 

Computer requirements, 380, 400 
examples, 380,383,400,405,408, 

410,412 
Concho water snake, 668 

example, 665 
Crime, 569 

example, 569 
Crude oil, 662 

examples, 347,356,625, 
661, 754 

Diabetic, 572 
example, 572 

Effluent, 276 
example~ 276,337,338 

Egyptian skull, 349 
examples, 269,347 

Electrical consumption, 289 
, examples, 289, 293, 295, 338, 356 

Electrical time-of-use pricing, 350 
example, 349 

Energy consumption, 147 
examples, 147,270 

Examination scores, 505 
example, 505 

Female bear, 24 
example~ 24, 262 

Forest, 736 
example~ 736, 753 

I 
I 
I 
i 

Fowl, 521 
example~ 520,532,552,559 

Grizzly bear, 262, 478 
example~ 262,478 

Hair (Peruvian), 263 
example, 263 

Hemophilia, 587,664,665 
examples, 587,591,663 

Hook-billed kite, 268, 346 
examples, 268, 344 

Iris, 658 
example~ 347,619,645,658,660,705 

Job satisfaction/characteristics, 
555, 753 

examples, 553, 563, 565, 753 

Lamentations, 749 
example, 749 

Largest companies, 38 
examples, 38, 183, 205, 206, 423, 471 

Lizards-two genera, 335 
example, 334 

Lizard size, 17 
examples, 17, 18 

Love and marriage, 326 
example, 325 

Lumber, 267 
example, 267 

Mali family farm, 479 
examples, 479, 538, 754 

Mental health, 753 
example, 753 

Mice, 453, 475 
examples, 453, 458, 475, 537 

Milk transportation cost, 269,345 
examples, 45, 268, 343 

Multiple sclerosis, 42 
examples, 41,207,656 

Musical aptitude, 236 
example, 236 

Na(ional parks, 47 
example~ 46, 208 

Data Index 

National track records, 44,477 
examples, 43,207,357,476, 

537, 750 
Natural gas, 414 

example, 413 
Number parity, 342 

example, 342 
Numerals, 679 

examples, 678,684,687,690 
Nursing home, 306-07 

examples, 306, 309, 311 

Olympic decathlon, 499 
examples, 499, 511, 573 

Overtime (police), 240,478 
examples, 239,242,244,248,269, 

270,460,463,464,478 
Oxygen consumption, 348 

examples, 45,347 

Paper quality, 15 
examples, 14,20,207 

Peanut, 354 
example, 353 

Plastic film, 318 
example, 318 

Pottery, 716 
example~ 716,753 

Profitability, 533 
example~ 533, 571 

Psychological profile, 207 
examples, 207, 478, 537 

Public utility, 688 
example~ 26, 28, 45, 46, 688, 690, 

699, 711, 726 
Pulp and paper properties, 427 

examples, 427,478,537,538,573 

Radiation, 180,198 
examples, 180,197,206,221,226, 

233,261 
Radiotherapy, 42 

examples, 41,207,475 
Reading/arithmetic test scores, 

569 
example, 569 

Real estate, 372 
examples, 372, 423 

765 



766 Data Index 

Relay tower breakdowns, 358, 428 
examples, 357, 427 

Road distances, 751 
example, 750 

Salmon, 604 
example~ 603,639,663,669 

Sleeping dog, 282 
example, 281 

Smoking, 573 
example, 572 

Snow removal, 148 
examples, 148,208,270 

Spectral reflectance, 355 
examples, 354, 355 

Spouse, 351 
example, 350 

Stiffness (lumber), 186, 190 
examples, 186, 190, 342, 

535,571 
Stock price, 473 

examples, 451,457,473,493,497, 
503,510,517,570,748 

Sweat, 215 
examples, 214,261,475 

University, 729 
examples, 713,729, 731 

Welder, 245 
example, 244 

Wheat, 571 
example, 570 

, 
. I 

Subject Index 

Akaike Information Criterion (AlC), 
386,397,704 

Analysis of variance, multivariate: 
one-way, 301 
two-way, 315, 340 

Analysis of variance, univariate: 
one-way, 297 
two-way, 312 

ANOVA (see Analysis of variance, 
univariate) 

Autocorrelation, 414 
Autoregressive model, 415 
Average linkage (see Cluster analysis) 

Bayesian Information Criterion 
(BIC),705 

Biplot, 726, 730 
Bonferroni intervals: 

comparison with J'l intervals, 234 
definition, 232 
for means, 232, 276, 291 
for treatment effects, 309,317-18 

Box's M test (see Covariance matrix, 
test for equality of) 

Canonical correlation analysis: 
canonicai correlations, 539,541, 

547,551 
canonical variables, 539, 

541-42,551 
correlation coefficients in, 546, 

551-52 
definition of, 541,550 
errors of approximation, 558 
geometry of, 549 

•••••••••••••••••••••••••••••••••••••••• ~ .. , "'1,\., .""., , .. :".>i1f.,t~.i!l."'''''''tE£&2 = 

interpretation of, 545 
population, 541-42 
sample, 550-51 
tests of hypothesis in, 563-64 
variance explained, 561-62 

CART, 644 
Central-limit theorem, 176 
Characteristic equation, 97 
Characteristic roots (see Eigenvalues) 
Characteristic vectors (see 

Eigenvectors ) 
Chemoff faces, 27 
Chi-square plots, 184 
Classification: 

Anderson statistic, 592 . 
Bayes' rule, 584,608 
confusion matrix, 598 
error rates, 596, 598, 599 
expected cost, 581,607 
Lachenbruch holdout procedure, 

599,619 
linear discriminant functions, 585, 

586,590,591,611,623 
with logistic regression, 638-39 
misclassification probabilities, 579-

80,583 
with normal population~ 584, 

593,609 
quadratic discriminant function, 

594,610 
qualitative variables, 644 
selection of variables, 648 
for several groups, 606, 629 
for two grou~ 576, 584, 591 

Classification trees, 644 

767 



768 Subject Index 

Cluster analysis: 
algorithm, 681,696 
average linkage, 681,690 
complete linkage, 681, 685 
dendrogram, 681 
hierarchical, 680 
inversions in, 695 
K -means, 696 
similarity and distance, 677 
similarity coefficients, 675,678 
single linkage, 681,682 
with statistical models, 703 
Ward's method, 692 

Coefficient of determination, 367, 403 
Communality, 484 
Complete Jinkage (see Cluster 

analysis) 
Confidence intervals: 

mean of normal population, 211 
simultaneous, 225,232,235,265, 

276,309,317-18 
Confidence regions: 

for contrasts, 281 
definition, 220 
for difference of mean vectors, 

286,292 
for mean vectors, 221 
for paired comparisons, 276 

Contingency table, 716 
Contrast matrix, 280 
Contrast vector, 279 

partial, 409 
sample, 8, 117 

Correlation matrix: 
population, 72 
sample, 9 
tests of hypotheses for 

equicorrelation, 457-58 
Correspondence analysis: 

algebraic development, 718 
correspondence matrix, 718 
inertia, 716,717,725 
matrix approximation method, 724 
profile approximation method, 724 

Correspondence matrix, 718 
Covariance: 

definitions of, 69 
of linear combinations, 75,76 
sample, 8 

Covariance matrix: 
definitions of, 69 
distribution of, 175 
factor analysis models for, 483 
geometrical interpretation of 

sample, 119, 124-26 
large sample behavior, 175 
as matrix operation, 139 
partitioning, 73, 78 
population, 71 
sample, 123 
test for equality of, 310 

I 
I 
I 
j. 

f 

Distance: 
Canberra, 674 
Czekanowski, 674 
development of, 30-37,64 
Euclidean, 30 
Minkowski, 673 
properties, 37 
statistical, 31,36 

Distributions: 
chi-square (table), 760 
F (table), 761,762,763 
multinomial, 264 
normal (table), 758 
Q-Q plot correlation coefficient 

(table), 181 
t (table), 759 
Wishart, 174 

Eigenvalues, 97 
Eigenvectors, 93 
EM algorithm, 252 
Estimation: 

generalized least squares, 422 
least squares, 364 
maximum likelihood, 168 
minimum variance, 369-70 
unbiased, 121,123,369-70 
weighted least squares, 420 

Estimator (see Estimation) 
Expected value, 67, 68 
Experimental unit, 5 

Control chart: Data mining: 
definition, 239 lift chart, 742 Factor analysis: 
ellipse format, 241,250,460 model assessment, 742 bipolar factor, 506 
for subsample means; 249,251 process, 741 common factors, 482,483 
multivariate, 241,461-62,465 Dendrogram, 681 communality, 484 
'J'l chart, 243,248,250,251,462 Descriptive statistics: computational details, 527 

Control regions: correlation coefficient, 8 of correlation matrix, 490,494, 529 
definition, 247 covariance, 8 Heywood cases, 497, 529 
for future observations, 247,251, mean, 7 least squares (BartIett) computation 

463 variance, 7 offactor scores, 514,515 
Correlation: Design matrix, 362,388,411 loadings, 482,483 

autocorrelation, 414 Determinant: maximum likelihood estimation 
coefficient of, 8, 71 computation of, 93 j in, 495 

sample, 119 Discriminant function (see oblique rotation, 506, 512 
geometrical interpretation of product of eigenvalues, 104 I] nonuniqueness of loadings, 487 

multiple, 367,403,548 Classification) orthogonal factor model, 483 

____________ ............... .Li~;~ ..... ~~.~,~~:~~ .. ~~G~~~~~~------

Subject Index 

principal component estimation 
in, 488, 490 

769 

principal factor estimation in, 494 
regression computation of factor 

scores, 516,517 
residual matrix, 490 
rotation of factors, 504 
specific factors, 482,483 
specific variance, 484 
strategy for, 520 
testing for the number of 

factors, 501 
varimax criterion, 507 

Factor loading matrix, 482 
Factor scores, 515, 517 
Fisher's linear discriminants: 

population, 654 
sample, 590-91,623 
scaling, 589 

Gamma plot, 184 
Gauss (Markov) theorem, 369 
Generalized inverse, 369,421 
Generalized least squares (see 

Estimation) 
Generalized variance: 

geometric interpretation of sample, 
124,135-36 

sample, 123, 135 
situations where zero, 133 

General linear model: 
design matrix for, 362, 388 
multivariate, 388 
univariate, 362 

Geometry: 
of classification, 618 
generalized variance, 124, 135-36 
of least squares, 367 
of principal components, 468, 469 
of sample, 119 

Gram-Schmidt process, 86 
Graphical techniques: 

biplot, 726, 730 
Chemoff faces, 27 
marginal dot-diagrams, 12 
n points in p dimensions, 17 
p points in n dimensions, 19 
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Graphical techniques (continued) 
scatter diagram (plot), 11, 20 
stars, 26 

Growth curve, 24, 328 

Hat matrix, 364, 421, 643 
Heywood cases (see Factor analysis) 
HoteHing's TZ (see TZ-statistic) 

Independence: 
definition, 69 
of multivariate normal variables, 

159-60 
of sample mean and covariance 

matrix, 174 
tests of hypotheses for, 472 

Inequalities: 
Cauchy~Schwarz, 78 
extended Cauchy-Schwarz, 79 

Inertia, 725 
Influential observations, 384, 643 
Invariance of maximum likelihood 

estimators, 172 
Item (individual), 5 

K-means (see Cluster analysis) 

Lawley-Hotelling trace statistic, 
336,398 

Leverage, 381,384 
Lift chart, 742 
Likelihood function, 168 
Likelihood ratio tests: 

definition, 219 
limiting distribution, 220 
in regression,' 374,396 
and J!-, 218 

Linear combination of vectors, 
83,165 

Linear combination of variables: 
mean of, 76 
normal populations, 156, 157 
sample covariances of, 141,144 
sample means of, 141,144 
variance and covariances of, 76 

Logistic classification: 
classification rule, 638-39 

linear discriminant, 639 
Logistic regression: 

deviance, 642 
estimation in, 637-38 
logit, 635 
logistic curve, 636 
model, 637 
residuals, 643 
tests of regression coefficients, 638 

MANOVA (see Analysis of variance, 
multivariate) 

Matrices: 
addition of, 88 
characteristic equation of, 97 
correspondence, 718 
definition of, 54, 87 
determinant of, 93, 104 
dimension of, 88 
eigenvalues of, 59,97,98 
eigenvectors of, 59, 98 
generalized inverses of, 364, 

369,421 
identity, 58, 90 
inverses of, 58, 95 
multiplication of, 56, 90, 109 
orthogonal, 59, 97 
partitioned, 73,74,78 
positive definite, 61,62 
products of, 56, 90, 91 
random, 66 
rank of, 94 
scalar multiplication in, 89 
singular and nonsingular, 95 
singular-value decomposition, 100, 

721,725,728 
spectral decomposition, 61,100 
square root, 66 . 
symmetric, 57, 90 
trace of, 96 
transpose of, 55, 89 

Maxima and minima (with matrices), 
79,80 

Maximum likelihood estimation: 
development, 170-72 
invariance property of, 172 
in regression, 370, 395, 404-05 

Mean, 66 
Mean vector: 

defmition, 69 
distribution of, 174 
large sample behavior, 175 
as matrix operation, 139 
partitioning, 73,78 
sample, 9, 78 

Minimal spanning tree, 715 
Missing observations, 251 
Mixture model, 703 
Model based clustering: 

estimation in, 704 
mixture model, 703 
model selection, 704-05 

Model selection criterion: 
AIC, 386,397,704 
BIC, 705 

Multicollinearity, 386 
MUItidimeusional scaling: 

algorithm, 709 
development, 706-15 
sstreSs, 709 
stress, 708 

Multiple comparisons (see 
Simultaneous confidence 
intervals) 

Multiple correlation coefficient: 
popUlation, 403, 548 
sample, 367 

Multiple regression (see Regression 
and General linear model) 

Multivariate analysis of variance (see 
Analysis of variance, multivariate) 

Multivariate control chart (see 
Control chart) 

Multivariate normal distribution (see 
Normal distribution, multivariate) 

Neural network, 647 
Nonlinear mapping, 715 
Nonlinear ordination, 738 
Normal distribution: 

bivariate, 151 
checking for normality, 177 
conditional, 160-61 
constant density contours, 153, 435 

Subject Index 

marginal, 156, 158 
maximum likelihood estimation 

in,l71 
multivariate, 149-55 
properties of, 156-67 
transformations to, 192 

Normal equations, 421 
Normal probability plots (see Q-Q 

plots) 

Outliers: 
definition, 187 
detection of, 189 

Paired comparisons, 273-79 
Partial correlation, 409 
Partitioned matrix: 

definition, 73,74,78 
determinant of, 202-03 
inverse of, 203 

Pillai's trace statistic, 336, 398 
Plots: 

biplot, 726 
biplot, alternative, 730-31 
Cp , 385 
factor scores, 515, 517 
gamma (or chi-square), 184 
principal components, 454-55 
Q-Q, 178,382 
residual, 382-83 
scree, 445 
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Positive definite (see Quadratic forms) 
Posterior probabilities, 584, 608 
Principal component analysis: 

correlation coefficients in, 433, 
442,451 

for correlation matrix, 437,451 
definition of, 431-32,442 
equicorrelation matrix, 440-41 
geometry of, 466-70 
interpretation of, 435-36 
large-sample theory of, 456-69 
monitoring quality with, 459-65 
plots, 454-55 
population, 431-41 
reduction of dimensionality by, 

466-68 
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Principal component analysis 
(continued) 

sample, 441-53 
tests of hypotheses in, 457-59,472 
variance explained, 433,437,451 

Procustus analysis: 
development, 732-39 
measure of agreement, 733 
rotation, 733 

Profile analysis, 323-28 
Proportions: 

large-sample inferences, 264-65 
multinomial distribution, 264 

Q-Q plots: 
correlation coefficient, 181 
critical values, 181 
description, 1 n -82 

Quadratic forms: 
definition, 62, 99 
extrema, 80 
nonnegative definite, 62 
positive definite, 61, 62 

Random matrix, 66 
Random sample, 119-20 
Regression (see also General linear 

model): 
autoregressive model, 415 
assumptions, 361-62,370,388,395 
coefficient of determination, 

367,403 
confidence regions in, 371, 378, 

399,421 
Cp plot, 385 
decomposition of sum of squares, 

366-67,389 
extra sum of squares and cross 

products, 374, 396 
fitted values, 364, 389 
forecast errors in, 379 
Gauss theorem in, 369 
geometric interpretation of, 367 
least squares estimates, 364, 393 
likelihood ratio tests in, 374,396 
maximum likelihood estimation in, 

370-71,395,404,407 

multivariate, 387-401 
regression coefficients, 364, 406 
regression function, 370, 404 
residual analysis in, 381-83 
residuals, 364, 381, 389 
residual sum of squares and cross 

products, 364, 389 
sampling properties of estimators, 

369-71,393,395 
selection of variables, 385-86 
univariate, 360-62 
weighted least squares, 420 
with time-dependent errors, 413-17 

Regression coefficients (see 
Regression) 

Repeated measures designs, 279-83,· 
328-32 

Residuals, 364,381-83,389,455,643 
Roy's largest root, 336, 398 

Sample: 
geometry, 119 

Sample splitting, 520, 599, 742 
Scree plot, 445 
Simultaneous confidence ellipses: 

as projections, 258-60 
Simultaneous confidence intervals: 

comparisons of, 229-31,234,238 
for components of mean vectors, 

225,232,235 
for contrasts, 281 
development, 223-26 
for differences in mean vectors, 

288,291-92 
for paired comparisons, 276 
as projections, 258 
for regression coefficients, 371 
for treatment effects, 309, 

317-18 
Single linkage (see Cluster analysis) 
Singular matrix, 95 
Singular-value decomposition, 100, 

721, 725, 728 
Special causes (of variation), 239 
Specific variance, 484 
Spectral decomposition, 61,100 
SStress, 709 

1 

Standard deviation: 
population, 72 
sample,7 . 

Standard deviation matrix: 
population, 72 
sample, 139 

Standardized observations, 8, 449 
Standardized variables, 436 
Stars, 26 
Strategy for multivariate 

comparisons, 337 
Stress, 708 
Studentized residuals, 381 
Sufficient statistics, 173 
Sum of squares and cross products 

matrices: 
between, 302 
total, 302 
within, 302 

Time dependence (in multivariate 
observations), 256-57, 413-17 

T2-statistic: 
definition of, 211-13 
distribution of, 212 
invariance property of, 215-16 
in quality control, 243,247-48,250-

51,462 
in profile analysis, 324, 325 
for repeated measures designs, 280 
single-sample, 211-12 
two-sample, 286 
two-sample, approximate, 294 

Subject Index 

Trace of a matrix, 96 
Transformations of data, 192-200 

Variables: 
canonical, 541-42,550-51 
dummy, 363 
predictor, 361 
response, 361 
standardized, 436 

Variance: 
definition, 68 
generalized, 123, 134 
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geometrical interpretation of, 119 
total sample, 137,442,451,561 

Varimax rotation criterion, 507 
Vectors: 

addition, 51, 83 
angle between, 52, 85 
basis, 84 
definition of, 49,82 
inner product, 52, 53, 85 
length of, 51,53,84 
linearly dependent, 53, 83 
linearly independent, 53, 83 
linear span, 83 
perpendicular (orthogonal), 53, 86 
projection of, 54, 86, 87 
random, 66 
scalar mUltiplication, 50, 82 
unit, 51 
vector space, 83 

Wilks's lambda, 217,303,398 
Wishart distribution, 174 


